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Variable Clustering in

High-Dimensional Linear Regression:

The R Package clere
by Löıc Yengo, Julien Jacques, Christophe Biernacki and Mickael Canouil

Abstract Dimension reduction is one of the biggest challenge in high-dimensional regression models.
We recently introduced a new methodology based on variable clustering as a means to reduce
dimensionality. We present here an R package that implements this methodology. An overview of the
package functionalities as well as examples to run an analysis are described. Numerical experiments
on real data were performed to illustrate the good predictive performance of our parsimonious
method compared to standard dimension reduction approaches.

Introduction

High dimensionality is increasingly ubiquitous in numerous scientific fields including genetics,
economics and physics. Reducing the dimensionality is a challenge that most statistical methodologies
must meet not only to remain interpretable but also to achieve reliable predictions. In linear regression
models, dimension reduction techniques often refer to variable selection. Approaches for variable
selection are implemented in publicly available software, that involve the well-known R packages
glmnet [Friedman et al. (2010)] and spikeslab [Ishwaran et al. (2013)]. The R package glmnet
implements the Elastic net methodology [Zou and Hastie (2005)], which is a generalization of both
the LASSO [Tibshirani (1996)] and the ridge regression (RR) [Hoerl and Kennard (1970)]. The R
package spikeslab in turn, implements the Spike and Slab methodology [Ishwaran and Rao (2005)],
which is a Bayesian approach for variable selection.

Dimension reduction can not however be restricted to variable selection. Indeed, the field can
be extended to include approaches which aim is to create surrogate covariates that summarize the
information carried in initial covariates. Since the emblematic Principal Component Regression
(PCR) [Jolliffe (1982)], many of the other methods spread in the recent literature. As specific
examples, we may refer to the OSCAR methodology [Bondell and Reich (2008)], or the PACS
methodology [Sharma et al. (2013)] which is a generalization of the latter approach. Those methods
mainly proposed variables clustering within a regression model as a way to reduce the dimensionality.
Despite their theoretical and practical appeal, implementations of those methods were often proposed
only through Matlab or R scripts, limiting thus the flexibility and the computational efficiency
of their use. The CLusterwise Effect REgression (CLERE) methodology [Yengo et al. (2014)], was
recently introduced as a novel methodology for simultaneous variables clustering and regression. The
CLERE methodology is based on the assumption that each regression coefficient is an unobserved
random variable sampled from a mixture of Gaussian distributions with an arbitrary number g
of components. In addition, all components in the mixture are assumed to have different means
(b1, . . . , bg) and equal variances γ2.

In this paper, we propose two new features for the CLERE model. First, the stochastic EM
(SEM) algorithm is proposed as a more computationally efficicient alternative to the Monte Carlo
EM (MCEM) algorithm previously introduced in [Yengo et al. (2014)]. Secondly, the CLERE model
is enhanced with the possibility of constraining the first component to have its mean equal to 0, i.e.
b1 = 0. This enhancement mainly aimed at facilitating the interpretation of the model. Indeed when
b1 is set to 0, variables assigned to the cluster associated with b1 might be considered less relevant
than other variables provided γ2 to be small enough. Those two new features were implemented
in the R package clere. The core of the package is a C++ program interfaced with R using R
packages Rcpp [Eddelbuettel and François (2011)] and RcppEigen [Bates and Eddelbuettel (2013)].
The R package clere can be downloaded from the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org/web/packages/clere/.

The outline of the present paper is the following. In the following section the definition of the
model is recalled and the strategy to estimate the model parameter is presented. Afterwards, the
main functionalities of the R package clere are presented. Real data analyses are then presented,
aiming at illustrating the good predictive performances of CLERE, with noticeable parsimony ability,
compared to standard dimension reduction methods. Finally, perspectives and further potential
improvements of the package are discussed in the last section.
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Model definition and notation

Our model is defined by the following hierarchical relationships:
yi ∼ N

(
β0 + ∑

p
j=1 β jxij, σ2

)
β j|zj ∼ N

(
∑

g
k=1 bkzjk, γ2

)
zj =

(
zj1, . . . , zjg

)
∼M

(
1, π1, . . . , πg

)
,

(1)

where N (µ, σ2) is the normal distribution of center µ and variance σ2, and M
(
1, π1, . . . , πg

)
the

one-order multinomial distribution of parameters π =
(
π1, . . . , πg

)
such as, ∀ k = 1, . . . , g πk > 0

and ∑
g
k=1 πk = 1, and β0 is a constant term. For an individual i = 1, . . . , n, yi is the response and

xij is an observed value for the j-th covariate. β j is the regression coefficient associated with the
j-th covariate (j = 1, . . . , p), which is assumed to follow a mixture of g Gaussians. The variable zj
indicates from which mixture component β j is drawn (zjk = 1 if β j comes from component k of the
mixture, zjk = 0 otherwise). Let’s note that model (1) can be considered as a variable selection-like
model by constraining the model parameter b1 to be equal to 0. Indeed, assuming that one of the
components is centered in zero means that a cluster of regression coefficients have null expectation,
and thus that the corresponding variables are not significant for explaining the response variable.
This functionality is available in the package.
Let β =

(
β1, . . . , βp

)
, y = (y1, . . . , yn)′, X = (xij), Z = (zjk), b = (b1 . . . bg)′ and π = (π1, . . . , πg)′.

Moreover, log p(y|X; θ) denotes the log-likelihood of model (1) assessed for the parameter θ =(
β0, b, π, σ2, γ2). Model (1) can be interpreted as a Bayesian approach. However, to be fully

Bayesian a prior distribution for parameter θ would have been necessary. Instead, we proposed
to estimate θ by maximizing the (marginal) log-likelihood, log p(y|X; θ). This partially Bayesian
approach is referred to as Empirical Bayes (EB) [Casella (1985)]. Let Z be the set of p× g-matrices
partitioning p covariates into g groups. Those matrices are defined as

Z =
(

zjk

)
1≤j≤p,1≤k≤g

∈ Z ⇔ ∀j = 1, . . . , p

{
∃! k such as zjk = 1
For all k′ 6= k zjk′ = 0.

The log-likelihood log p(y|X; θ) is defined as

log p(y|X; θ) = log

[
∑

Z∈Z

∫
Rp

p(y, β, Z|X; θ)dβ

]
.

Since it requires integrating over Z with cardinality gp, evaluating the likelihood becomes rapidly
computationally unaffordable.

Nonetheless, maximum likelihood estimation is still achievable using the expectation maximization
(EM) algorithm [Dempster et al. (1977)]. The latter algorithm is an iterative method which starts
with an initial estimate of the parameter and updates this estimate until convergence. Each iteration
of the algorithm consists of two steps, denoted as the E and the M steps. At each iteration d of the
algorithm, the E step consists in calculating the expectation of the log-likelihood of the complete
data (observed + unobserved) with respect to p(β, Z|y, X; θ(d)), the conditional distribution of the
unobserved data given the observed data, and the value of the parameter at the current iteration,
θ(d). This expectation, often denoted as Q(θ|θ(d)) is then maximized with respect to θ at the M
step.

In model (1), the E step is analytically intractable. A broad literature devoted to intractable E
steps recommends the use of a stochastic approximation of Q(θ|θ(d)) through Monte Carlo (MC)
simulations [Wei and Tanner (1990), Levine and Casella (2001)]. This approach is referred to as the
MCEM algorithm. Besides, mean-field-type approximations are also proposed [Govaert and Nadif
(2008), Mariadassou et al. (2010)]. Despite their computational appeal, the latter approximations
do not generally ensure convergence to the maximum likelihood [Gunawardana and Byrne (2005)].
Alternatively, the SEM algorithm [Celeux et al. (1996)] was introduced as a stochastic version of
the EM algorithm. In this algorithm, the E step is replaced with a simulation step (S step) that
consists in generating a complete sample by simulating the unobserved data using p(β, Z|y, X; θ(d))

providing thus a sample (β(d), Z(d)). Note that the Monte Carlo algorithm we use to perform this
simulation is the Gibbs sampler. After the S step follows the M step which consists in maximizing

p(β(d), Z(d)|y, X; θ) with respect to θ. Alternating those two steps generate a sequence
(

θ(d)
)

,

which is a Markov chain whose stationary distribution (when it exists) concentrates around a local
maximum of the likelihood.
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Estimation and model selection

In this section, two algorithms for model inference are presented: the Monte-Carlo Expectation
Maximization (MCEM) algorithm and the Stochastic Expectation Maximization (SEM) algorithm.
The section starts with the initialization strategy common to both algorithms and continues with the
detailed description of each algorithm. Then, model selection (for choosing g) and variable selection
are discussed.

Initialization

The two algorithms presented in this section are initialized using a primary estimate β j
(0) of each β j.

The latter can be chosen either at random, or obtained from univariate regression coefficients or
penalized approaches like LASSO and ridge regression. For large SEM or MCEM chains, initialization
is not a critical issue. The choice of the initialization strategy is therefore made to speed up the
convergence of the chains. A Gaussian mixture model with g component(s) is then fitted using

β(0) =
(

β
(0)
1 , . . . , β

(0)
p

)
as observed data to produce starting values b(0), π(0) and γ2(0)

respectively

for parameters b, π and γ2. Using maximum a posteriori (MAP) clustering, an initial partition

Z(0) =
(

z(0)
jk

)
∈ Z is obtained as

∀j ∈ {1, . . . , p}, z(0)
jk =

1 if k = argmink′∈{1,...,g}

(
β j

(0) − b(0)
k′

)2

0 otherwise.

β0 and σ2 are initialized using β(0) as follows:

β
(0)
0 =

1
n

n

∑
i=1

yi −
p

∑
j=1

β
(0)
j xij

 and σ2(0)
=

1
n

n

∑
i=1

yi − β
(0)
0 −

p

∑
j=1

β
(0)
j xij

2

.

MCEM algorithm

The Stochastic Approximation of the E step

Suppose at iteration d of the algorithm that we have
{(

β(1,d), Z(1,d)
)

, . . . ,
(

β(M,d), Z(M,d)
)}

, M

samples from p
(

β, Z|y, X; θ(d)
)

. Then the MC approximation of the E -step can be written

Q
(

θ|θ(d)
)

= E
[
log p(y, β, Z|X; θ(d))|y, X; θ(d)

]
≈ 1

M

M

∑
m=1

log p(y, β(m,d), Z(m,d)|X; θ(d)).

However, sampling from p
(

β, Z|y, X; θ(d)
)

is not straightforward. However, we can use a Gibbs sam-

pling scheme to simulate unobserved data, taking advantage of p
(

β|Z, y, X; θ(d)
)

and p
(

Z|β, y, X; θ(d)
)

from which it is easy to simulate. Those distributions, respectively Gaussian and multinomial, are
described below in Equations (2) and (3).

β|Z, y, X; θ(d) ∼ N
(

µ(d), Σ(d)
)

µ(d) =

[
X′X + σ2(d)

γ2(d) Ip

]−1
X ′
(

y− β
(d)
0 1p

)
+ σ2(d)

γ2(d)

[
X′X + σ2(d)

γ2(d) Ip

]−1
Zb(d)

Σ(d) = σ2(d)
[

X′X + σ2(d)

γ2(d) Ip

]−1

(2)

and (note that p
(

Z|β, y, X; θ(d)
)

does not depend on X nor y)

p
(

zjk = 1|β; θ(d)
)

∝ π
(d)
k exp

−
(

β j − b(d)
k

)2

2γ2(d)

 . (3)
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In Equation (2), Ip and 1p respectively stands for the identity matrix in dimension p and the vector

of Rp which all coordinates equal 1. To efficiently sample from p
(

β|Z, y, X; θ(d)
)

a preliminary

singular vector decomposition of matrix X is necessary. Once this decomposition is performed the
overall complexity of the approximated E step is O

[
M(p2 + pg)

]
.

The M step

Using the M draws obtained by Gibbs sampling at iteration d, the M step is straightforward as
detailed in Equations (4) to (8). The overall computational complexity of that step is O (Mpg).

π
(d+1)
k =

1
Mp

M

∑
m=1

p

∑
j=1

z(m,d)
jk , (4)

b(d+1)
k =

1

Mpπ
(d+1)
k

M

∑
m=1

p

∑
j=1

z(m,d)
jk β

(m,d)
j , (5)

γ2(d+1)
=

1
Mp

M

∑
m=1

p

∑
j=1

g

∑
k=1

z(m,d)
jk

(
β

(m,d)
j − b(d+1)

k

)2
, (6)

β
(d+1)
0 =

1
n

n

∑
i=1

yi −
p

∑
j=1

(
1
M

M

∑
m=1

β
(m,d)
j

)
xij

, (7)

σ2(d+1)
=

1
nM

M

∑
m=1

n

∑
i=1

yi − β
(d+1)
0 −

p

∑
j=1

β
(m,d)
j xij

2

. (8)

SEM algorithm

In most situations, the SEM algorithm can be considered as a special case of the MCEM algorithm
[Celeux et al. (1996)], obtained by setting M = 1. In model (1), such a direct derivation leads to an
algorithm which computational complexity remains quadratic with respect to p. To reduce that
complexity, we propose a SEM algorithm based on the integrated complete data likelihood p(y, Z|X; θ)
rather than p(y, β, Z|X; θ). A closed form of p(y, Z|X; θ) is available and given subsequently.

Closed form of the integrated complete data likelihood

Let the SVD decomposition of matrix X be USV ′, where U and V are respectively n × n and
p× p orthogonal matrices, and S is n× p rectangular diagonal matrix which diagonal terms are
the eigenvalues

(
λ2

1, . . . , λ2
n
)

of matrix XX ′. We now define Xu = U′X and yu = U′y. Let M be
the n× (g + 1) matrix which first column is made of 1’s and which additional columns are those of

matrix XuZ. Let also t = (β0, b) ∈ R(g+1) and R be a n× n diagonal matrix which i-th diagonal
term equal σ2 + γ2λ2

i . With these notations we can express the complete data likelihood integrated
over β as

log p (y, Z|X; θ) = −n
2

log (2π)− 1
2

n

∑
i=1

log
(

σ2 + γ2λ2
i

)
− 1

2
(yu −Mt)′ R−1 (yu −Mt)

+
p

∑
j=1

g

∑
k=1

zjk log πk. (9)

Simulation step

To sample from p (Z|y, X; θ) we use a Gibbs sampling strategy based on the conditional distributions

p
(

zj|y, Z−j, X; θ
)

, Z−j denoting the set of cluster membership indicators for all covariates but

the j-th. Let w−j =
(

w−j
1 , . . . , w−j

n

)′
, where w−j

i = yu
i − β0 − ∑l 6=j ∑

g
k=1 zlkxu

ilbk. The conditional
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distribution p(zjk = 1|Z−j, y, X; θ) can be written

p(zjk = 1|Z−j, y, X; θ) ∝ πk exp

[
−

b2
k

2

(
xu

j

)′
R−1xu

j + bk

(
w−j

)′
R−1xu

j

]
, (10)

where xu
j is the j-th column of Xu. In the classical SEM algorithm, convergence to p (Z|y, X; θ)

should be reached before updating θ. However, a valid inference can still be ensured in settings when
θ is updated only after one or few Gibbs iterations. These approaches are referred to as SEM-Gibbs
algorithm [Biernacki and Jacques (2013)]. The overall computational complexity of the simulation
step is O (npg), so linear with p and no more quadratic contrarily to the previous MCEM.
To improve the mixing of the generated Markov chain, we start the simulation step at each iteration
by creating a random permutation of {1, . . . , p}. Then, according to the order defined by that
permutation, we update each zjk using p(zjk = 1|Z−j, y, X; θ).

Maximization step

log p (y, Z|X; θ) corresponds to the marginal log-likelihood of a linear mixed model [Searle et al.
(1992)] which can be written

yu = Mt + λv + ε (11)

where v is an unobserved random vector such as v ∼ N
(
0, γ2In

)
, ε ∼ N

(
0, σ2In

)
and λ =

diag (λ1, . . . , λn). The estimation of the parameters of model (11) can be performed using the EM al-
gorithm, as in [Searle et al. (1992)]. We adapt below the EM equations defined in [Searle et al. (1992)],

using our notations. At iteration s of the internal EM algorithm, we define R(s) = σ2(s) In + γ2(s)
λ′λ.

The detailed internal E and M steps are given below:
Internal E step:

v(s)
σ = E

[(
yu −Mt(s) − λv

)′ (
yu −Mt(s) − λv

)
|yu
]

= σ4(s) (
yu −Mt(s)

)′
R(s)R(s)

(
yu −Mt(s)

)
+ n× σ2(s) − σ4(s) n

∑
i=1

1

σ2(s) + γ2(s)
λ2

i

.

v(s)
γ = E

[
v′v|yu]

= γ4(s) (
yu −Mt(s)

)′
R(s)λ′λR(s)

(
yu −Mt(s)

)
+ n× γ2(s) − γ4(s) n

∑
i=1

λ2
i

σ2(s) + γ2(s)
λ2

i

.

h(s) = E [yu − λv|yu] = Mt(s) + σ2(s){R(s)}−1
(

yu −Mt(s)
)

.

Internal M step:

σ2(s+1)
= v(s)

σ /n.

γ2(s+1)
= v(s)

γ /n.

t(s+1) =
[
M ′M

]−1 M ′h(s).

Given a non-negative user-specified threshold δ and a maximum number Nmax of iterations,
Internal E and M steps are alternated until

| log p
(

y, Z|X; θ(s)
)
− log p

(
y, Z|X; θ(s+1)

)
| < δ or s = Nmax.

The computational complexity of the M step is O
(

g3 + ngNmax
)
, thus not involving p.

Attracting and absorbing states

� Absorbing states. The SEM algorithm described above defines a Markov chain which
stationnary distribution is concentrated around values of θ corresponding to local
maxima of the likelihood function. This chain has absorbing states in values of θ such
as σ2 = 0 or γ2 = 0. In fact, the internal M step reveals that updated values for σ2

and γ2 are proportional to previous values of those parameters.
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� Attracting states. We empirically observed that attraction around σ2 = 0 was quite
frequent when using the MCEM algorithm, especially when p > n and when the number
M of draws was small. We therefore advocate to use at least 5 draws (M ≥ 5 using
option nsamp= in the function fitClere).

Model selection

Once the MLE θ̂ is calculated (using one or the other algorithm), the maximum log-likelihood

and the posterior clustering matrix E
[

Z|y, X; θ̂
]

are approximated using MC simulations based on

Equations (9) and (10). The approximated maximum log-likelihood l̂, is then utilized to calculate
AIC [Akaike (1974)] and BIC [Schwarz (1978)] criteria for model selection. In model (1), those
criteria can be written as

BIC = −2l̂ + 2(g + 1) log(n) and AIC = −2l̂ + 4(g + 1). (12)

An additional criterion for model selection, namely the ICL criterion [Biernacki et al. (2000)] is also
implemented in the R package clere. The latter criterion can be written

ICL = BIC−
p

∑
j=1

g

∑
k=1

πjk log(πjk), (13)

where πjk = E
[
zjk|y, X; θ̂

]
.

Interpretation of the special group of variables associated with b1 = 0

The constraint b1 = 0 is mainly driven by an interpretation purpose. The meaning of this group
depends on both the total number g of groups and the estimated value of parameter γ2. In fact, when
g > 1 and γ2 is small, covariates assigned to that group are likely less relevant to explain the response.
Determining whether γ2 is small enough is not straightforward. However, when this property holds,
we may expect the groups of covariates to be separated. This would for example translate in the
posterior probabilities πj1 being larger than 0.7. In addition to the benefit in interpretation, the
constraint b1 = 0, reduces the number of parameters to be estimated and consequently the variance
of the predictions performed using the model.

Package functionalities

The R package clere mainly implements a function for parameter estimation and model selection:
the function fitClere(). Four additional functions for graphical representation plot(), summarizing
the results summary(), for getting the predicted clusters of variables clusters() and for making
predictions from new design matrices predict() are also implemented in the package. Examples of
calls for the functions presented in this section are given in the next Section.

The main function fitClere()

The main function fitClere() has only three mandatory arguments: the vector of response y (size
n), the matrix of explanatory variable x (size n × p) and the number g of groups of regression
coefficients which is expected. The optional parameter analysis, when it takes the value aic, bic
or icl, allows to test all the possible number of groups between 1 and g. The choice between the
two proposed algorithms is possible thanks to the parameter algorithm, but we encourage the users
to use the default value, the SEM algorithm, which generally overperforms the MCEM algorithm
(see the first experiment of the next section).
Several other parameters allow to tune the different numbers of iterations of the estimation algorithm.
Generally, higher are these parameters values, better is the quality of the estimation but heavier
is the computing time. What we advice is to use the default values, and to graphically check the
quality of the estimation with plots as in Figure 2: if the values of the model parameters are quite
stable for a sufficient large part of the iterations, it is ok. If the stability is not reached sufficiently
early before the end of the iterations, higher numbers of iterations should be chosen.
Finally, among the remaining parameters (the complete list can be obtained with help(fitClere)),
two are especially important: parallel allows to run parallel computations (if compatible with the
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user’s computer) and sparse allows to impose that one of the regression parameter is equal to 0 and
thus to introduce a cluster of not significant explanatory variables.

Secondary methods summary(), plot(), clusters() and predict()

The summary() function prints an overview of the estimated parameters and returns the estimated
likelihood and information based model selection criteria (AIC, BIC and ICL).

The call of function plot() is similar to the one of function summary(). The latter function
produces graphs such as ones presented in Figure 2.

The function clusters(), takes one argument of class Clere and a threshold argument. This
function assigns each variable to the group which associated conditional probability of membership
is larger than the given threshold. If conditional probabilities of membership are larger than the
specified threshold for more than one group, then the group having the largest probability is returned
and warning is printed. If moreover, there are ex-aequos on that largest probability then the group
with the smallest index is returned. When threshold = NULL, the maximum a posteriori (MAP)
strategy is used to infer the clusters.

The predict() function has two arguments, being a clere and a design matrix Xnew. Using
that new design matrix, the predict() function returns an approximation of E

[
Xnewβ|y, X; θ̂

]
.

Numerical experiments

This section presents two sets of numerical experiments. The first set of experiments aims at
comparing the MCEM and SEM algorithms in terms of computational time and estimation or
prediction accuracy. The second set of experiments aimed at comparing CLERE to standard
dimension reduction techniques. The latter comparison is performed on both simulated and real
data.

SEM algorithm versus MCEM algorithm

Description of the simulation study

In this section, a comparison between the SEM algorithm and the MCEM algorithm is performed.
This comparison is performed using the four following performance indicators:

1. Computational time (CT) to run a pre-defined number of SEM/MCEM iterations. This
number was set to 2,000 in this simulation study.

2. Mean squared estimation error (MSEE) defined as

MSEEa = E
[
(θ− θ̂a)′(θ− θ̂a)

]
,

where a ∈ {"SEM","MCEM"} and θ̂a is an estimated value for parameter θ obtained with
algorithm a. Since θ is only known up to a permutation of the group labels, we chose the
permutation leading to the smallest MSEE value.

3. Mean squared prediction error (MSPE) defined as

MSPEa = E
[
(yv− Xvθ̂a)′(yv− Xvθ̂a)

]
,

where yv and Xv are respectively a vector of responses and a design matrix from a validation
dataset.

4. Maximum log-likelihood (ML) reached. This quantity was approximated using 1,000 samples
from p(Z|y; θ̂).

Three versions of the MCEM algorithm were proposed for comparison with the SEM algorithm,
depending on the number M (or nsamp) of Gibbs iterations used to approximate the E step. That
number was varied between 5, 25 and 125. We chose these iterations numbers so as to cover different
situations, from a situation in which the number of iterations is too small to a situation in which
that number seems sufficient to expect having reached the convergence of the simulated Markov
chain. Those versions were respectively denoted MCEM5, MCEM25 and MCEM125. The comparison
was performed using 200 simulated datasets. In order to consider high-dimensional situations with
sizes allowing to reproduce multiple simulations in a reasonable time, each training dataset consisted
of n = 25 individuals and p = 50 variables. Validation datasets used to calculate MSPE consisted
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of 1,000 individuals each. All covariates were simulated independently according to the standard
Gaussian distribution:

∀(i, j) xij ∼ N (0, 1).

Both training and validation datasets were simulated according to model (1) using β0 = 0, b =
(0, 3, 15)′, π = (0.64, 0.20, 0.16)′, σ2 = 1 and γ2 = 0. This is equivalent to simulate data according
to the standard linear regression model defined by:

yi ∼ N

 32

∑
j=1

0× xij +
42

∑
j=33

3× xij +
50

∑
j=43

15× xij, 1


All algorithms were run using 10 different random starting points. Estimates yielding the largest
likelihood were then used for the comparison.

Results of the comparison

Table 1 summarizes the results of the comparison between the algorithms. The MCEM5 algorithm
was 1.3-fold faster than the SEM algorithm however the latter algorithm poorly performed regarding
all other performance criteria (estimation quality, prediction error, likelihood maximization). This
observation illustrates the importance of setting a large number M of draws to improve the estimation.
Indeed, when increasing this number to 25 or 125, we observed an improvement in the estimation
accuracy but no noticeable improvement in the likehood. In turn, the SEM algorithm was quite
efficient compared to MCEM25 and MCEM125 algorithms. This algorithm not only ran faster
(between 3 and 13-fold faster than MCEM25 and MCEM125 - see Table 1) but also reached predictive
performances close to the oracle (i.e. using the true parameter). Those good performances were
mainly explained by the fact that the SEM algorithm most of the time (66.5% of the time) reached
a better likelihood than the other algorithms.
The results of this simulation study were made available as an internal dataset named algoComp in
the R package clere. More details can be obtained using the command help(algoComp).

% of times Median
Performance indicators Algorithms the algorithm was best (Std. Err.)

CT (seconds) SEM 1 2.5 ( 0.054 )
MCEM5 99 1.9 ( 0.017 )
MCEM25 0 7.1 ( 0.027 )
MCEM125 0 32.8 ( 0.119 )

MSEE SEM 58 0.31 ( 10.4 )
MCEM5 12 20.14 ( 2843.3 )
MCEM25 16.5 8.86 ( 3107.5 )
MCEM125 13.5 4.02 ( 5664.2 )

MSPE SEM 51.5 1.3 ( 46.1 )
MCEM5 12 75.7 ( 64.3 )
MCEM25 15.5 58.7 ( 55.2 )
MCEM125 21 51.6 ( 51.1 )
True parameter — 1.1 ( 0.013 )

ML SEM 66.5 -79.3 ( 1.2 )
MCEM5 11.5 -110.7 ( 2.0 )
MCEM25 14.5 -111.6 ( 1.9 )
MCEM125 7.5 -116.2 ( 1.7 )
True parameter — -77.6 ( 0.34 )

Table 1: Performance indicators used to compare SEM and MCEM algorithms. Computational
Time (CT) was measured on a Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz processor. The best
algorithm is defined as the one that either reached the largest log-likelihood (ML) or the lowest CT,
Mean Squared Prediction Error (MSPE) and Mean Squared Estimation Error (MSEE).
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Comparison with other methods

Description of the methods

In this section, we compare our model to standard dimension reduction approaches in terms of
MSPE. Although a more detailed comparison was proposed in [Yengo et al. (2014)], we propose
here a quick illustration of the relative predictive performance of our model. The comparison is
achieved using data simulated according to the scenario described above in Section Description
of the simulation study .The methods selected for comparison are the ridge regression [Hoerl and
Kennard (1970)], the elastic net [Zou and Hastie (2005)], the LASSO [Tibshirani (1996)], PACS
[Sharma et al. (2013)], the method of Park and colleagues [Park et al. (2007)] (subsequently denoted
AVG) and the spike and slab model [Ishwaran and Rao (2005)] (subsequently denoted SS). The first
three methods are implemented in the freely available R package glmnet. With the latter package,
the tuning parameter lambda was selected using the function cv.glm aiming at minimizing the mean
squarred error (option type="mse"). In particular for the Elastic net, the second tuning parameter
alpha (measuring of the amount of mixture between the L1 and L2 penalty) was jointly selected
with lambda to minimize the mean squarred error. The R package glmnet proposes a procedure
for automatically selecting values for lambda. We therefore used this default procedure while we
selected alpha among {0, 0.1, 0.2, . . . , 0.9, 1}.
PACS methodology proposes to estimate the regression coefficients by solving a penalized least
squares problem. It imposes a constraint on β that is a weighted combination of the L1 norm and
the pairwise L∞ norm. Upper-bounding the pairwise L∞ norm enforces the covariates to have close
coefficients. When the constraint is strong enough, closeness translates into equality achieving thus a
grouping property. For PACS, no software was available. Only an R script was released on Bondell’s
webpage1.
Since this R script was running very slowly, we decided to reimplement it in C++ and observed a
30-fold speed-up of computational time. Similarly to Bondell’s R script, our implementation uses
two parameters lambda and betawt. Our reimplementation of Bondell’s script was included in the R
package clere under the function fitPacs(). In [Sharma et al. (2013)], the authors suggest assigning
betawt with the coefficients obtained from a ridge regression model after the tuning parameter was
selected using AIC. In this simulation study we used the same strategy; however the ridge parameter
was selected via 5-fold cross validation. 5-fold CV was preferred to AIC since selecting the ridge
parameter using AIC always led to estimated coefficients equal to zero. Once betawt was selected,
lambda was chosen via 5-fold cross validation among the following values: 0.01, 0.02, 0.05, 0.1, 0.2,
0.5, 1, 2, 5, 10, 20, 50, 100, 200 and 500. All other default parameters of their script were unchanged.
The AVG method is a two-step approach. The first step uses hierarchical clustering of covariates
to create surrogate covariates by averaging the variables within each group. Those new predictors
are afterwards included in a linear regression model, replacing the primary variables. A variable
selection algorithm is then applied to select the most predictive groups of covariates. To implement
this method, we followed the algorithm described in [Park et al. (2007)] and programmed it in R.
The spike and slab model is a Bayesian approach for variable selection. It is based on the assumption
that the regression coefficients are distributed according to a mixture of two centered Gaussian
distributions with different variances. One component of the mixture (the spike) is chosen to have a
small variance, while the other component (the slab) is allowed to have a large variance. Variables
assigned to the spike are dropped from the model. We used the R package spikeslab to run the
spike and slab models. Especially, we used the function spikeslab from that package to detect
influential variables. The number of iterations used to run the function spikeslab was 2,000 (1,000
discarded).
When running fitClere(), the number nItEM of SEM iterations was set to 2,000. The number g of
groups for CLERE was chosen between 1 and 5 using AIC (option analysis="aic"). Two versions
of CLERE were considered: the one with all parameters estimated and the one with b1 set to 0. The
latter approach is subsequently denoted CLERE0 (option sparse=TRUE).

Results of the comparison

Figure 1, summarizes the comparison between the methods. In this simulated scenario, CLERE
outperformed the other methods in terms of prediction error. Those good performances were
improved when parameter b1 was set to 0. CLERE was also the most parsimonous approach with an
averaged number of estimated parameters equal to 7.7 (6.9 when b1 = 0). The second best approach
was PACS which also led to parsimonous models. The superiority of such methods could be expected

1http://www4.stat.ncsu.edu/~bondell/Software/PACS/PACS.R.r
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since in the simulation model the regression coefficients are gathered in three groups. Variable
selection approaches as whole yielded the largest prediction error in this simulation. CLERE, PACS
and Spike and Slab had the largest computational times (CT). For CLERE and PACS this loss in
CT were compensated by a a strong improvement in prediction error as explained above, while Spike
and Slab yielded the worst prediction error in addition of being the slowest approach in this example.
The results of this simulation study were made available as an internal dataset named numExpSimData

in the R package clere. More details can be obtained using the command help(numExpSimData).

Figure 1: Comparison between CLERE and some standard dimension reduction approaches. The
number of estimated parameters (df: +/- standard error) is given in the right along with the name
of the method utilized. The average computational time with its corresponding standard error (given
in parenthesis) is also provided in each situation.

Real datasets analysis

Description of the datasets

We used in this section the real datasets Prostate and eyedata from the R packages lasso2 and
flare respectively. The Prostate dataset comes from a study that examined the correlation between
the level of prostate specific antigen and a number of clinical measures in n = 97 men who were
about to receive a radical prostatectomy. This dataset is a benchmark dataset used in multiple
publications about high-dimensional regression model, including [Tibshirani (1996)] and was chosen
here in order to illustrate the performances of CLERE in comparaison of the competitor methods.
We used the prostate specific antigen (variable lpsa) as response variable and the p = 8 other
measurements as covariates. The eyedata dataset is extracted from the published study of [Scheetz
(2006)]. This dataset consists in gene expression levels measured at p = 200 probes in n = 120 rats.
The response variable utilized was the expression of the TRIM32 gene which is a biomarker of the
Bardet-Bidel Syndrome (BBS). We chose this dataset to illustrate the performances of CLERE on
a (manageable) high-dimensional problem which is the actual context for which this method was
developped [Yengo et al. (2014)].

Those two datasets was utilized to compare CLERE to the same methods used above in the
Section presenting the simulation stydy. All methods were compared in term of out-of-sample
prediction error estimated using 5-fold cross-validation (CV). Those CV statistics were then averaged
and compared across the methods in Table 2.

Running the analysis

Before presenting the results of the comparison between CLERE and its competitors, we illustrate
the command lines to run the analysis of the Prostate dataset. The dataset is loaded by typing:

> library(clere)

> data(Prostate, package = "lasso2")

> y <- Prostate[, "lpsa"]

> x <- as.matrix(Prostate[, -which(colnames(Prostate) == "lpsa")])

Possible training (xt and yt) and validation (xv and yv) sets are generated as follows:

> itraining <- 1:(0.8 * nrow(x))

> xt <- x[ itraining, ]

> yt <- y[ itraining]

> xv <- x[-itraining, ]

> yv <- y[-itraining]

The fitClere() function is run using AIC criterion to select the number of groups between 1 and 5.
To lessen the impact of local minima in the model selection, 5 random starting points are used. This
can be implemented as written below

> Seed <- 1234

> mod <- fitClere(

+ y = yt, x = xt, g = 5, analysis = "aic", parallel = FALSE, nstart = 5,

+ sparse = TRUE, nItEM = 2000, nBurn = 1000, nItMC = 10, dp = 5, nsamp = 1000,

+ seed = Seed

+ )

> summary(mod)
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-------------------------------

| CLERE | Yengo et al. (2016) |

-------------------------------

Model object for 2 groups of variables ( Selected using AIC criterion )

---

Estimated parameters using SEM algorithm are

intercept = -0.1339

b = 0.0000 0.4722

pi = 0.7153 0.2848

sigma2 = 0.395

gamma2 = 4.065e-08

---

Log-likelihood = -78.31

Entropy = 0.54643

AIC = 168.63

BIC = 182.69

ICL = 183.23

Figure 2: Values of the model parameters in view of SEM algorithm iterations. The vertical grey
line in each of the four plots, represents the number nBurn of iterations discarded before calculating
maximum likelihood estimates.

Running the command plot(mod) generates the plot given in Figure 2. We can also access the
cluster membership by running the command clusters(). For example, running the command
clusters(mod,threshold=0.7) yields

> clusters(mod, thresold = 0.7)

lcavol lweight age lbph svi lcp gleason pgg45

2 2 1 1 1 1 1 1

In the example above 2 variables, being the cancer volume (lcavol) and the prostate weight
(lweight), were assigned to group 2 (b2 = 0.4737). The other 6 variables were assigned to group 1
(b1 = 0). Posterior probabilities of membership are available through the slot P in object of class
Clere.

> mod@P

Group 1 Group 2

lcavol 0.000 1.000

lweight 0.000 1.000

age 1.000 0.000

lbph 1.000 0.000

svi 0.764 0.236

lcp 1.000 0.000

gleason 1.000 0.000

pgg45 1.000 0.000

The covariates were respectively assigned to their group with a probability larger than 0.7. Moreover,

given that parameter γ2 had very small value (γ̂2 = 4.065× 10−8), we can argue that cancer volume
and prostate weight are the only relevant explanatory covariates. To assess the prediction error
associated with the model we can run the command predict() as follows:

> error <- mean((yv - predict(mod, xv))^2)

> error

[1] 1.543122

Results of the analysis

Table 2 summarizes the prediction errors and the number of parameters obtained for all the methods.
CLERE0 had the lowest prediction error in the analysis of the Prostate dataset and the second
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best performance with the eyedata dataset. The AVG method was also very competitive compared
to variable selection approaches stressing thus the relevance of creating groups of variables to reduce
the dimensionality (especially in the eyedata dataset). It is worth noting that in both datasets,
imposing the constraint b1 = 0 improved the predictive performance of CLERE.

In the Prostate dataset, CLERE robustly identified two groups of variables representing in-
fluential (b2 > 0) and not relevant variables (b1 = 0). In the eyedata dataset in turn, AIC led to
select only one group of variables. However, this did not lessened the predictive performance of
the model since CLERE0 was second best after AVG, while needing significantly less parameters.
PACS low performed in both datasets. The Elastic net showed good predictive performances
compared to the variable selection methods like LASSO or spike and slab model. Ridge regression
and Elastic net had comparable results in both datasets. In line with the results of the simulation
study, we observed that despite the a larger computational time (CT), CLERE and CLERE0 had
a reduced mean squarred error compared to the fastest methods. However, this improvement was
less substantial than observed in the simulation study given the differences in CT. This increased
CT may be explained by the fact that no simple stopping rule is proposed when fitting CLERE.
We may therefore consider that a smaller number of SEM iterations could have been used to yield
a similar prediction error. Indeed, when looking at Figure 2, we see that the convergence was
achieved almost from the first 10 iterations. Still, the observed CT for CLERE being around 22s
for the eyedata dataset and around 3s for the Prostate dataset remains affordable in these examples.

The results of this analysis on real data were made available as an internal dataset named
numExpRealData in the R package clere. More details can be obtained using the command
help(numExpRealData).

100×Averaged CV-statistic Number of parameters CT (seconds)
(Std. Error) (Std. Error) (Std. Error)

Prostate dataset

LASSO 90.2 ( 29 ) 5.6 ( 0.7 ) 0.078 ( 0.01 )
RIDGE 86.8 ( 24 ) 8.0 ( 0 ) 0.064 ( 0.001 )
Elastic net 90.3 ( 24 ) 8.0 ( 0 ) 0.064 ( 0.001 )
STEP 442.4 ( 137 ) 8.0 ( 0 ) 0.005 ( 8e-04 )
CLERE 82.4 ( 25 ) 6.0 ( 0 ) 1.2 ( 0.1 )
CLERE0 74.5 ( 26 ) 5.0 ( 0 ) 2.6 ( 0.8 )
Spike and Slab 85.6 ( 26 ) 5.6 ( 0.7 ) 4.2 ( 0.1 )
AVG 90.6 ( 28 ) 6.0 ( 0.3 ) 0.43 ( 0.06 )
PACS 91.3 ( 34 ) 6.4 ( 0.5 ) 0.062 ( 0.002 )

eyedata

LASSO 0.73 ( 0.1 ) 21.2 ( 2 ) 0.17 ( 0.01 )
RIDGE 0.74 ( 0.1 ) 200.0 ( 0 ) 0.23 ( 0.003 )
Elastic net 0.74 ( 0.1 ) 200.0 ( 0 ) 0.23 ( 0.003 )
STEP 1142.6 ( 736 ) 95.0 ( 0 ) 0.079 ( 0.004 )
CLERE 0.73 ( 0.1 ) 4.0 ( 0 ) 21.3 ( 0.3 )
CLERE0 0.72 ( 0.1 ) 3.0 ( 0 ) 21.1 ( 0.08 )
Spike and Slab 0.81 ( 0.2 ) 12.4 ( 0.9 ) 10.6 ( 0.1 )
AVG 0.79 ( 0.2 ) 12.6 ( 2 ) 10.5 ( 0.2 )
PACS 2.1 ( 0.9 ) 2.8 ( 0.5 ) 106.7 ( 34 )

Table 2: Real data analysis. Out-of-sample prediction error (averaged CV-statistic) was esti-
mated using cross-validation in 100 splitted datasets. The number of parameters reported for
CLERE/CLERE0 was selected using AIC. CT stands for the average Computational Time.

Conclusions

We presented in this paper the R package clere. This package implements two efficient algorithms
for fitting the CLusterwise Effect REgression model: the MCEM and the SEM algorithms. If the
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MCEM algorithm is to be preferred when p < n, the SEM algorithm is more efficient for high
dimensional datasets (n < p). The good performances of SEM over MCEM could have been expected
regarding the computational complexities of the two algorithms that are O

(
npg + g3 + Nmaxng

)
and

O
(

M(p2 + pg)
)

respectively. In fact, as long as p > n, the SEM algorithm has a lower complexity.
However, the computational time to run our SEM algorithm is more variable compared to MCEM
as its M step does not have a closed form. We finally advocate the use the MCEM algorithm only
when p� n. Another important feature for model interpretation is proposed by constraining the
model parameter b1 to equal 0, which leads to carry out variable selection. Such constraint may
also lead to a reduced prediction error. We illustrated on a real dataset, how to run an analysis
using a detailed R script. Although our numerical experiments showed that the CLERE method
tended to be slower than variable selection methods, it still had better or competitive predictive
performances. In addition, the CLERE model was often more parsimonious than other models and
was easily interpretable since groups of regression coefficients/variables could be summarized using a
single parameter.
Our model can easily be extended to the analysis of binary responses. This extension will be proposed
in forthcoming version of the package. Another direction for future research will be to develop an
efficient stoping rule for the proposed SEM algorithm, specific to our context. Such a criterion is
expected to improve the computational performances of our estimation algorithm.
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University Lille I
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