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Abstract
Cronbach’s coefficient alpha is a widely used reliability measure in social,
behavioral and education sciences. It is reported in nearly every study
that involves measuring a construct through multiple items. For non-tau-
equivalent test, McDonald’s omega has been used as a popular alternative to
alpha in the literature. Traditional estimation methods for alpha and omega
often implicitly assume that data are complete and normally distributed.
This study proposes robust procedures to estimate alpha and omega as well
as corresponding standard errors and confidence intervals from samples that
may contain potential outlying observations and missing values. The in-
fluence of outlying observations and missing data on alpha and omega is
investigated through two simulation studies. The simulation results show
that the newly developed robust method yields substantially improved al-
pha and omega estimates as well as coverage rates of confidence intervals
than the conventional non-robust method. An R package coefficientalpha is
developed and demonstrated to estimate both robust alpha and omega.
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Introduction

Coefficient alpha (α, also referred to as Cronbach’s alpha, Cronbach, 1951, 1988; Cronbach
& Shavelson, 2004) is a widely used measure of reliability in social, behavioral and education
research although there are oppositions to the use of it (e.g., Green & Yang, 2009a; Sijtsm, 2009).
Sample coefficient alpha is reported in nearly every study involving the measure of a construct
through multiple items in psychological research because of its historical popularity, ease of
calculation, and availability in statistical software. For tau-equivalent test, sample coefficient
alpha is a consistent estimator of the reliability of the test; otherwise, sample coefficient alpha
typically underestimates the reliability (e.g., Maydeu-Olivares et al., 2010; Raykov, 1997, 2001).
When measurements are not tau-equivalent, McDonald’s omega (ω) has been recommended to
measure reliability for homogeneous items (McDonald, 1999).

In addition to reporting the sample coefficient alpha and omega, many researchers strongly
recommended reporting corresponding standard errors (SE) and/or confidence intervals (CIs, e.g.,
Fan & Thompson, 2001; Iacobucci & Duhachek, 2003; Raykov & Shrout, 2002). There also exist
developments regarding the SEs or the sampling distributions of the sample coefficient alpha and
omega under various conditions. For example, under the assumption of parallel items and normal
data, Kristof (1963) and Feldt (1965) showed that a transformation of the sample coefficient alpha
follows an F distribution. Under the multivariate normal assumption, van Zyl, Neudecker, and
Nel (2000) showed that the sample coefficient alpha asymptotically follows a normal distribution
without assuming compound symmetry. Yuan and Bentler (2002) further found that the
asymptotic distribution given by van Zyl et al. can still be valid for a large class of nonnormal
distributions. Maydeu-Olivares et al. (2007) and Yuan et al. (2003) studied the distributional
properties of sample coefficient alpha, and their results are asymptotically valid for all
populations with finite fourth-order moments. There are fewer studies on the sampling
distribution of omega in the literature (Cheung, 2009; Raykov, 2002; Yuan & Bentler, 2002). For
example, Raykov (2002) proposed an analytical procedure that can estimate the standard error of
sample omega. Yuan and Bentler (2002) developed a method that yields the robust standard error
for sample omega when data are non-normal.

However, previous development on the estimation of alpha and omega as well as
corresponding standard errors and confidence intervals rarely considers the influence of outlying
observations and missing data. The estimation of alpha and omega is typically based on the
sample covariance matrix, which is extremely sensitive to outlying observations. Therefore, it is
expected that alpha and omega are equally influenced by outlying observations. In fact, previous
literature has shown that the sample coefficient alpha can be biased or very inefficient with the
presence of outlying observations and non-normal data (e.g., Liu & Zumbo, 2007; Liu, Wu &
Zumbo, 2010; Sheng & Sheng, 2013). Enders (2004) showed that ignoring missing data in the
sample might lead to biased and less accurate estimate of coefficient alpha and proposed an
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expectation-maximization algorithm to deal with missing data for estimating reliability (see also,
Enders, 2003). Headrick and Sheng (2013) proposed to estimate alpha based on the L-moment to
handle non-normal data. However, methods to deal with both outlying observations and missing
data in estimating alpha, especially omega, are desired.

The purpose of this study is two-folded. The first is to propose robust M-estimators of alpha
and omega. We will obtain the robust estimators as well as their standard errors and CIs for alpha
and omega to deal with both outlying observations and missing data. The second is to develop
easy to use software (R package coefficientalpha) that yields robust estimates of alpha and omega
as well as the corresponding confidence intervals. The robustness of the developed procedure
relies on the fact that outlying cases are downweighted in the estimation process. Missing data are
handled by an expectation-robust (ER) algorithm (Yuan, Chan & Tian, 2015), which is a
generalization of the EM-algorithm based on a multivariate t-distribution (Little, 1988). In the
development, we assume that data are either missing completely at random (MCAR) or missing at
random (MAR; e.g., Little & Rubin, 2002). As we shall see, the software not only provides the
calculation of robust coefficient alpha and omega and their consistent standard errors, it also
provides diagnostic plots for visually examining cases that are influential to the estimation of
alpha and omega. Other desirable features of the software include being free, and being able to
run either locally on a personal computer within the statistical software R or remotely on a web
server. In particular, our user-friendly web interface does not require researchers to be familiar
with R to use the software.

In the next section, we first distinguish two types of outlying observations and show their
influence on coefficient alpha. Then, we describe how to obtain robust coefficient alpha and the
corresponding CI. Next, we show how to apply the robust procedure to estimate omega and its
confidence intervals. After that, we illustrate the influence of outlying observations and missing
data on alpha and omega through two simulation studies. Through the simulation studies, we also
show that the newly developed robust method yields substantially improved alpha and omega
estimates as well as coverage rates of confidence intervals than the conventional non-robust
method. Finally, we demonstrate the use of our software through an example. Some technical
details are provided in the appendix.

Outlying Observations and Their Influence

We first illustrate the influence of outlying observations on coefficient alpha through an
example. Using the example, we also explain the concept of outlying observations. The influence
of outlying observations on omega is similar as we will show in our simulation studies.

Let y be a vector that denotes a p-variate population with mean µ and covariance matrix
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Σ = (σij). The population coefficient alpha for the summation of the scores in y is defined as

α = p

p− 1

(
1−

∑p
i=1 σii∑p

i=1
∑p

j=1 σij

)
. (1)

Let y1, . . . ,yn be a random sample of y and S = (sij) be the sample covariance matrix. Then the
sample coefficient alpha is given by

α̂ = p

p− 1

(
1−

∑p
i=1 sii∑p

i=1
∑p

j=1 sij

)
. (2)

The influence of outlying observations on sample coefficient alpha can be clearly illustrated
through the analysis of two items. Here, we demonstrate the influence numerically through an
example.

Figure 1 displays a data set of 13 observations on two items y1 and y2 with different types
of outlying observations. The coordinates of the 9 regular observations are given by

y1 1 1 2 2 3 4 4 5 5
y2 1 2 1 2 3 4 5 4 5.

The coordinates of the 4 additional observations are A= (1, 5), B= (5, 1), C= (9, 9) and
D= (9, 4). Figure 1 also contains the values of coefficient alpha when different combinations of
A, B, C, and D are pooled with the 9 regular observations. It follows from the geometry of the 9
regular observations that A, B, C, and D are outlying observations. The 4 observations can then
be classified according to their locations or geometry relative to the other cases.

We first distinguish between inadmissible outlying observations and admissible outlying
observations. Inadmissible outlying observations are typically erroneous observations that do not
represent the underlying phenomena to be measured. The scores for inadmissible outlying
observations can be either within or out of the permissible range of a test. Data recording and
input error is the most common cause of inadmissible outlying observations. For example,
suppose that y1 and y2 are 5-point Likert items. Then, C and D in Figure 1 are obviously
erroneous observations because they have scores larger than 5. Generally speaking, our robust
procedure can be used to effectively detect inadmissible observations but does not automatically
remove them. Once such observations are detected, special treatment should be taken by
substantive researchers before conducting any serious data analysis, including the estimation of
reliability measures.

Admissible outlying observations are different from the majority of the data but carry valid
and useful information and truly represent the underlying phenomena. For example, suppose both
y1 and y2 are continuous measures of mathematics ability with the maximum possible score 10.
For illustration purpose, we further assume that y1 is a measure of addition and y2 is a measure of
multiplication. Reasonably, a theory can be hypothesized that the two items are determined by the
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Figure 1. Diferent types of outlying observations and their influence on coefficient alpha
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same unidimensional underlying mathematical ability and should be positively correlated. In this
case, the four observations A, B, C, and D do have valid scores but they also appear different
(outlying) from the rest of the observations.

For the four outlying observations, each of them represents a different pattern. First, the
observation C has extreme scores on both y1 and y2 but within the limit of maximum scores.
Furthermore, the two scores are extreme in the same direction and therefore consistent with the
hypothesized theory. The observation is outlying mostly likely because of the participant’s talent
in mathematics that leads to large scores for y1 and y2. In this study, we refer to such outlying
observations that are consistent with the hypothesized theory as leverage observations (Yuan &
Zhong, 2008). In general, leverage observations are "good" in the sense that they lead to enlarged
coefficient alpha. For example, when the 9 regular observations are considered, the coefficient
alpha is 0.95. With C being included, the alpha increases from 0.95 to 0.98.

The observations A, B, and D are also outlying but geometrically different from C. For
example, for A, it has a large score on y2 but a small score on y1. In other words, the observation
shows high ability in terms of multiplication but low ability on addition. This is inconsistent with
the hypothesized theory on the unidimensional mathematical ability. The pattern of the
observation B is the other way around. Although D has a relative large score on y1, its value is a
lot smaller compared to that of y2. In this study, we refer to such outlying observations that are
inconsistent with the hypothesized theory as outliers (Yuan & Zhong, 2008). Outliers typically
reduce the value of coefficient alpha. For example, with A or B being included, the coefficient
alpha changes from 0.95 to 0.75 and with D being included, the alpha changes to 0.78.

In practice, a data set may contain both outliers and leverage observations; whether the
estimated coefficient alpha becomes smaller or larger depends on their combined effects. For
example, with all three outliers A, B, and D, the estimated coefficient alpha changes from the
original 0.95 to 0.51. With outlier A and leverage observation C, the estimated coefficient alpha
has a small decrease to about 0.91. However, in general, we may not want the estimated
coefficient alpha to be determined by a few outlying observations, regardless of outliers or
leverage observations. This motivates our development of a robust estimator of coefficient alpha.

Although the scatterplot is useful in identifying outlying observations with two items, it can
be difficult to use when there are more than 2 items. Instead, a profile plot can be used to
visualize possible outlying observations (e.g., Yuan & Zhang, 2012b). For example, the profile
plot in Figure 1b displays the same data as in the scatterplot. It also shows the difference between
the regular and outlying observations as well as that between outliers and leverage observations.
First, the outlying observations distinguish themselves from the regular observations because their
profiles do not mingle together with those of regular observations. Second, for outliers, their
profiles usually show atypical patterns. For example, the profiles of A and B show more change
than regular ones by having high score on one item but low score on the other item. Third, for
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leverage observations, all items may have scores noticeably smaller or larger than those in other
cases, and their profiles, such as observation C, separate themselves from the profiles of the rest
of cases. Note that the profile of D exhibits patterns of both outliers and leverage observations.

Robust Coefficient Alpha

In this section we will first review robust estimation of covariance matrix with complete
data, and then describe the idea of robust estimation with incomplete data. Robust estimate of the
coefficient alpha will be defined next. We will also discuss how to choose a robust estimator.

The idea of robust covariance matrix is to use a formula in which cases that are unusually
far from the center of the majority of observations get smaller weights and, therefore, contribute
less to the covariance estimates. For complete data, a robust covariance matrix can be estimated
according to

Σ̂ = 1
n

n∑
i=1

wi2(yi − µ̂)(yi − µ̂)′, (3)

where

µ̂ = 1∑n
i=1 wi1

n∑
i=1

wi1yi (4)

is the corresponding robust mean estimate; wi1 and wi2 are weights that are inversely proportional
to the deviation between yi and µ̂, as measured by the Mahalanobis distance (M-distance; see
Yuan & Zhang, 2012b). Because a larger distance corresponds to a smaller weight, cases that are
far from the center of the majority of observations (represented by µ̂) will have a small or tiny
contribution to the estimator Σ̂ in Equation 3. Thus, the effect of outlying observations on Σ̂ is
limited. Notice that, Equation 3 yields the sample covariance matrix S when wi1 = wi2 = 1 for all
i. Because outlying cases are treated equally as regular cases in the formulation of S, outlying
observations have unlimited influences on S and consequently on the resulting coefficient alpha.

Both outliers and leverage observations will deviate more from the center of the majority of
data than other typical observations. Their effect on Σ̂ can be controlled when wi1 and wi2 are
properly chosen. Many candidates of weights have been suggested in the robust statistical
literature. The Huber-type weights are widely used and are therefore employed in the current
study (e.g., Yuan & Zhang, 2012a).1 In Huber-type weights, a tuning parameter ϕ (0 ≤ ϕ < 1) is
used to practically control the percentage of data to be downweighted. For example, the tuning
parameter is used to determine a threshold for the calculation of the weights. If the distance of a
case from µ̂ is less than the threshold, the case is not downweighted; and otherwise, the case will
be assigned a weight that is smaller than 1 in Equation (3) and its value is inversely proportional
to the distance. When ϕ = 0, no case is downweighted. With the increase of ϕ, more cases will

1The Huber-type weights also rescale the resulting Σ̂ to be unbiased under normality. But the rescale factor does
not affect the estimated alpha and omega.
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be downweighted and cases are also more heavily downweighted. A larger ϕ would make alpha
more resistant to outliers but could also lose efficiency when a substantial proportion of the
observations that truly represent the population are downweighted. In practice, a weight between
0.01 and 0.1 would work well in controlling the effect of outlying observations on the estimate of
coefficient alpha. We will discuss how to choose a proper ϕ with graphs and examples shortly.

The idea of robust estimation with missing values is the same as robust estimation with
complete data. The algorithm for calculating the robust estimates of means and covariance matrix
is called the expectation robust (ER) algorithm. In the E-step, terms involving missing values in
Equation 3 are replaced by their conditional expectations, and the R-step parallels to that in
Equation 3, where cases that sit far from the center of the majority of observations will be
downweighted. In our software, the implementation of the ER-algorithm with the Huber-type
weights is based on Yuan et al. (2015).

With the robust covariance matrix Σ̂ = (σ̂ij), the robust alpha estimate is

α̂ = p

p− 1

(
1−

∑p
j=1 σ̂jj∑p

i=1
∑p

j=1 σ̂ij

)
. (5)

In addition to the point estimator α̂, the output of the software also contains the SE of α̂ and the
corresponding CI for alpha. The SE is based on the sandwich-type covariance matrix for the
robust estimate Σ̂, and is consistent regardless of the data distribution (Yuan et al., 2015). It can
also provide us the information on the efficiency of the robust method. The details of the
ER-algorithm and the sandwich-type covariance matrix for Σ̂ are not the focus of the study, and
are referred to Yuan et al. (2015) and Yuan and Zhang (2012a). The SE for α̂ based on the
sandwich-type covariance matrix of Σ̂ is provided in Appendix A.

Because the robustness is determined by the tuning parameter ϕ, we next describe three
graphs to facilitate its choice and display its effect.

The first one is termed as a diagnostic plot that displays the values of coefficient alpha
against different values of ϕ. For a given data set, alpha will generally change when ϕ varies. For
example, if there are outliers, alpha would first increase quickly and then flatten out with the
increase of ϕ. If there are leverage observations, alpha will decline as ϕ increases. When only
outliers exist, one may choose an “optimal” ϕ according to the maximum value of alpha or at the
place where alpha shows the largest changes. When only leverage observations exist, one may
choose the tuning parameter ϕ that corresponds to the first substantial drop of alpha to control the
effect of leverage observations. When leverage observations and outliers coexist, one may slowly
increase the tuning parameter ϕ to choose its value so that alpha becomes stabilized.

The second graph is termed as a weight plot where case-level weights wi2 against case ID
are plotted. We do not include the plot of wi1 because it contains the same information as the plot
of wi2. In the plot, cases with smallest weights are identified by case numbers. The plot provides
the information on which cases are outlying and how heavily they are downweighted.
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The third graph is a profile plot in which centered observations (yij − µ̂j) for cases with
smallest weights are plotted against the order of the variable j. With such a plot, one can visually
examine how the profile of each outlying case is different from the average profile and therefore,
why a case is downweighted. The profile plot also provides information on whether an outlying
case is an outlier or a leverage observation.

In summary, the three plots together will allow us to select a proper ϕ according to the
distribution shape of the data. They also facilitate us to see how coefficient alpha change when
controlling the effect of outliers and/or leverage observations. We will illustrate how to use the
graphs in practice later on in an example when introducing our software.

Robust Coefficient Omega

The procedure for obtaining robust coefficient alpha can be readily extended to omega for
homogenous items. Suppose that p measurements follow a 1-factor model

yij = µj + λjfi + eij

where yij denotes a score for participant i on item j, µj is the intercept for item j, fi is the
common factor score for participant i, λj is the factor loading for item j, and eij is the
independent unique factor score with variance ψjj . The variance of fi is fixed at 1.0 for model
identification. The population omega (ω) is defined as (McDonald, 1999, Equation 6.20b),

ω = (∑p
k=1 λj)2

(∑p
k=1 λj)2 + (∑p

k=1 ψjj)
.

To estimate ω, the factor model is typically estimated from the sample covariance matrix of y.
Therefore, the sample omega, denoted by ω̂, is similarly influenced by outlying observations as
the sample coefficient alpha. Actually, except in rare cases, the difference between ω̂ and α̂ is
small for complete and normally distributed data (e.g., Maydeu-Olivares et al., 2010; Raykov,
1997). Outliers and leverage observations can also be distinguished using the factor model (see
Yuan & Zhang, 2012b). Generally speaking, cases with extreme common factor scores are
leverage observations and data contamination leads to cases with large unique factor scores or
outliers.

The robust ω̂ can be calculated through a multi-stage procedure. First, a robust covariance
matrix Σ̂ as in the estimation of robust alpha can be obtained considering both outlying
observations and missing data. Second, the factor model can be estimated by any SEM software
based on the robust Σ̂ to get λ̂j and ψ̂jj . Third, the robust ω̂ is calculated as

ω̂ = (∑p
k=1 λ̂j)2

(∑p
k=1 λ̂j)2 + (∑p

k=1 ψ̂jj)
.
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In order to get the robust standard error or confidence interval for omega, one first obtains the
covariance matrix for θ̂ = (λ̂1, . . . , λ̂p, ψ̂11, . . . , ψ̂pp) and then uses the delta method to get the
standard error for ω̂. Both the standard error of ω̂ and confidence interval of omega are available
in our R packages and therefore the technical details are omitted here for the sake of space. The
robustness of omega is related to the tuning parameter ϕ as for alpha. The same method for
determining ϕ for alpha can be applied here.

Simulation Studies

In this section, we present two simulation studies to show the influence of outlying
observations and missing data on the estimates of alpha and omega. For the sake of space, we
only report the results of a few conditions.

Simulation Study 1: Influence of Outlying Observations

The aim of the study is to demonstrate the influence of outlying observations on the
estimates of alpha and omega through simulated data. Consider the one-factor model

yij = µj + λjfi + eij, i = 1, . . . , n, j = 1, . . . , p.

Two sets of population parameters are used in this study. One satisfies tau-equivalence with
λj =

√
0.6 and ψjj = 0.4 for j = 1, . . . , p and p = 6. Thus, the population alpha and omega are

the same and equal to 0.9. Another does not conform to tau-equivalence with λj =
√

0.2 and
ψjj = 0.8 for j = 1, 2, 3 and λj =

√
0.6 and ψjj = 0.4 for j = 4, 5, 6. The intercept µj is set to 0

without losing generalization. Under this setting, the population alpha is 0.777 and the population
omega is 0.789. The alpha is smaller than omega as expected (e.g., McDonald, 1999) but the
difference is not substantial.

Data are generated as following. First, 1000 sets of normal data with sample size n = 100
are generated from both tau-equivalent and non-tau-equivalent models, respectively. Second, for
each normal data set, a new set of data with outliers is created by letting yij = yij − 4 for
j = 1, 2, 3 and yij = yij + 4 for j = 4, 5, 6 with i = 96, 97, 98, 99, 100. Therefore, each new data
set has 5% of outliers. Third, for each normal data set, another new set of data with leverage
observations is created by letting yij = yij − 6 for j = 1, . . . , 6 with i = 96, 97, 98, 99, 100.
Therefore, each new data set has 5% of leverage observations.

Both alpha and omega are then estimated from the generated data with three different levels
of downweighting rate ϕ = 0, 0.05, 0.1. Note that when ϕ = 0, no data are downweighted and
therefore both alpha and omega are estimated by the commonly used non-robust method. Table 1
presents the results as the average of the estimated alpha and omega as well as their empirical
standard errors and the coverage rates of the 95% confidence intervals.
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Table 1
Average alpha and omega and their empirical standard errors and coverage rates of 95% confi-
dence intervals for Study 1 under normal data (Normal), data with outliers (Outlier), and data
with leverage observations (Leverage). The population alpha and omega are both 0.9 for the tau-
equivalent model and for the non-tau-equivalent model, the population alpha is 0.777 and the
population omega is 0.789.

alpha omega
ϕ Est s.e. Coverate Est s.e. Coverage

ta
u-

eq
ui

va
le

nt

Normal
0 .898 .015 .934 .899 .016 .939

0.05 .898 .016 .942 .899 .016 .944
0.1 .898 .016 .950 .899 .016 .946

Outlier
0 .663 .109 .115 .600 .101 0

0.05 .863 .047 1 .862 .049 1
0.1 .872 .033 .991 .873 .033 .995

Leverage
0 .952 .016 1 .952 .016 1

0.05 .901 .057 .928 .903 .055 .923
0.1 .885 .053 .900 .888 .050 .899

no
n-

ta
u-

eq
ui

va
le

nt

Normal
0 .772 .034 .934 .786 .033 .933

0.05 .772 .035 .937 .786 .034 .935
0.1 .772 .036 .939 .786 .034 .930

Outlier
0 .437 .161 .313 .456 .112 .025

0.05 .691 .100 1.00 .691 .102 .988
0.1 .712 .073 .989 .716 .075 .980

Leverage
0 .914 .024 .861 .916 .024 .996

0.05 .886 .047 .933 .890 .045 .955
0.1 .874 .045 .917 .878 .043 .930

Note. Est: estimate; s.e.: Standard error; Coverage: coverage rate of 95% confidence intervals.
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Results for the analysis of data from the tau-equivalent model are presented in the
upper-panel of Table 1. The following can be concluded from the results. First, for the normal
data, the average of the estimated alpha and omega are extremely close, with a difference about
0.001, and are almost the same as the population value. Furthermore, downweighting the normal
data does not cause noticeable difference in alpha and omega from the undownweighted ones. In
addition, the coverage rates are close to the nominal level 0.95 for both alpha and omega. Second,
for the data with outliers, the estimated non-robust alpha is 0.663 and the estimated non-robust
omega is 0.600, both of which largely underestimate their population values. It seems that omega
is influenced even more by outliers than alpha. The coverage rate for alpha is 0.115 and for
omega is 0, both of which largely deviate from the nominal level 0.95. After downweighting, the
resulting robust alpha and omega become much more closer to their population values and the
estimated standard errors become substantially smaller than their non-robust counterparts. The
estimated robust alpha and omega are almost identical to each other. Although the coverage rates
are larger than the nominal level 0.95, they are much better than those from the non-robust
method. Third, for the data with leverage observations, the non-robust alpha and omega
overestimate their population values. After downweighting, the robust alpha and omega become
closer to but are still above the population values. However, their standard errors become notably
larger. This is because the leverage observations tend to yield more efficient parameter estimates
(Yuan & Zhong, 2008) and downweighting minimizes the effect. Before downweighting, the
coverage rates are 1, larger than 0.95 and after downweighting, they are smaller than 0.95.

The lower-panel of Table 1 contains the results for the analysis of data from the
non-tau-equivalent model, from which we can conclude the following. First, for the normal data,
the average of the estimated omega is slightly larger than the average of the estimated alpha, both
are very close to their population values. The same phenomenon as for the data from the
tau-equivalent model is observed, that is downweighting data does not play an influential role in
the estimated alpha and omega for normally distributed samples. Second, for the data with
outliers, the estimated non-robust alpha and omega are much smaller than their population values.
Although the robust alpha and omega are still smaller than their population values, the
improvement is substantial. Third, for data with leverage observations from the
non-tau-equivalent model, both non-robust and robust alpha and omega overestimate their
population values. The robust ones show substantial improvement over the non-robust ones. The
pattern of coverage rates is similar to that of tau-equivalent data.

Concluding Remarks. This simulation study shows that, for normally distributed data,
there is not substantial difference between alpha and omega regardless of whether the model is
tau-equivalent or not. Outliers cause underestimation of alpha and omega whereas leverage
observations cause their overestimation. Our robust procedure can effectively control the
influence of outlying observations although the procedure seems to work more effectively for
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outliers than for leverage observations. In particular, the confidence intervals from our robust
method have much improved coverage rates.

Simulation Study 2: Influence of Missing Data

This study aims to demonstrate the influence of missing data on alpha and omega through
simulated data. Complete normal data are generated from the tau-equivalent model and the
non-tau-equivalent model as in Study 1. Incomplete data are obtained in the following way. First,
there are no missing data in y1 and y4. Second, missing data in y5 and y6 are related to y1.
Specifically, an observation for y5 is missing if y1 ≤ q0.1(y1) and an observation for y6 is missing
if q0.1(y1) < y1 ≤ q0.2(y1) where qp(y) is the 100pth percentile of y. Third, missing data in y2 and
y3 are related to y4 so that an observation for y2 is missing if y4 ≥ q0.9(y4) and an observation for
y3 is missing if q0.8(y4) ≤ y4 < q0.9(y4). According to the definition of missing data mechanisms
(e.g., Little & Rubin, 2002), all the missing values are missing at random.

Both alpha and omega are estimated from the generated data with missing values using
either listwise deletion or the robust procedure developed in this paper that automatically takes
care of missing data. Table 2 presents the results as the average of the estimated alpha and omega
as well as their empirical standard errors and the coverage rates of the 95% confidence intervals.

First, it is clear that the sample alpha and omega following from listwise deletion
underestimate their population values for both tau-equivalent and non-tau-equivalent models.
Second, the estimated alpha and omega following the robust method are very close to their
population values. Third, it is evident that the standard errors of the estimated alpha and omega
from the robust method are much smaller than those based on listwise deletion. This is because
the robust method utilizes more information in the data. Fourth, when listwise deletion is used,
the coverage rates are largely smaller than the nominal level 0.95, especially for the
tau-equivalent data. Our robust method, on the other hand, yields coverage rates much closer to
0.95. To separate the influence of nonnormal data and missing data on the reliability estimates,
only normal data are investigated in this study. We also have evidences that for nonnormal data,
the influence of missing data is similar.

Software

To facilitate the calculation of robust alpha and omega, we developed an R package
coefficientalpha. The package is freely available at
http://cran.r-project.org/package=coefficientalpha. The package
calculates the robust alpha and omega, their standard errors, and confidence intervals for a given
data set. In addition, the package also generates the diagnostic plot, the weight plot and the profile
plot to assist the selection of the tuning parameter and to visualize outlying observations. To
accommodate the users who are not familiar with R, an online interface is also developed. The R
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Table 2
Average alpha and omega and their empirical standard errors and coverage rates of the 95%
confidence intervals for Study 2 under listwise deletion (Deletion) and maximum likelihood method
(ML). The population alpha and omega are both 0.9 for the tau-equivalent model and for the non-
tau-equivalent model, the population alpha is 0.777 and the population omega is 0.789.

alpha omega
ϕ Est s.e. Coverage Est s.e. Coverage

ta
u-

eq
ui

va
le

nt Deletion
0 .804 .036 .161 .812 .037 .289

0.05 .804 .038 .195 .812 .039 .335
0.1 .804 .039 .221 .812 .039 .354

ML
0 .898 .016 .938 .899 .016 .939

0.05 .898 .016 .941 .899 .016 .940
0.1 .898 .017 .945 .899 .017 .939

no
n-

ta
u-

eq
ui

va
le

nt

Deletion
0 .670 .062 .679 .695 .059 .733

0.05 .670 .065 .714 .694 .062 .764
0.1 .669 .067 .746 .693 .063 .778

ML
0 .772 .036 .935 .787 .034 .929

0.05 .772 .037 .938 .787 .035 .934
0.1 .771 .038 .938 .787 .036 .935

Note. Est: estimate; s.e.: Standard error; Coverage: coverage rate of 95% confidence intervals.

package includes an example data set with 100 cases and 10 variables. In this section, we
illustrate the use of the R package and its online interface using this data set so that users can
practice and replicate our analysis.

R Package coefficientalpha

To use the package within R, first install it using the command
install.pacakges('coefficientalpha') and then load it using the command
library(coefficientalpha). The R package also includes tests of tau-equivalence2 and
homogeneity of items.3 Both tests are based on the robust F statistic studied in Tong et al. (2014)
and proposed by Yuan and Zhang (2012). The R input and output for the tests are given in Figure
2. Note that the numbers on the right of the figure are the line numbers to facilitate the
explanation of the R code, not a part of the code itself. The code on Line 2 loads the example data
into R for use. On Line 3, the function tau.test is used to carry out the tests. The output of the
analysis is given from Line 6 to Line 12. First, the robust F statistic for the test of tau-equivalence

2The tau-equivalent test evaluates whether a one-factor model with equal factor loadings adequately fits the data.
3The test of homogeneity evaluates whether a one-factor model with freely estimated factor loadings adequately

fits the data.



ROBUST ALPHA AND OMEGA 15

is 1.908 (Line 7) with a p-value 0.0114 (Line 8). Therefore, we have to reject the tau-equivalence
assumption. However, the F statistic for the test of homogeneity is 1.401 with a p-value 0.1196,
failing to reject the homogeneity assumption.

1### Input ###

2data(example)

3tau.test(example)

4
5### Output ###

6Test of tau equivalent

7The robust F statistic is 1.908

8with a p-value 0.0114

9
10Test of homogeneous items

11The robust F statistic is 1.401

12with a p-value 0.1196

Figure 2. Testing tau-equivalence and homogeneity of items

Because we rejected the tau-equivalence but failed to reject the homogeneity assumption,
we proceed with estimating the robust omega in the following. The same procedure works for the
estimation of robust alpha. The R code for the analysis as well as the output are given in Figure 3.

In Figure 3, Line 2 uses the function omega to initially obtain the robust estimate of
coefficient omega corresponding to the downweighting rate varphi=.1. Note that if the
downweighting rate is set at 0, the conventional non-robust omega will be calculated. The initial
calculation is used for the diagnostic purpose and a relative large downweighting rate is usually
specified. Line 3 uses the plot function to generate the diagnostic plot by specifying the plot
type through type='d'. For the example data, the diagnostic plot is shown in Figure 4a, which
plots the estimated omega corresponding to ϕ from 0 to 0.1 with an interval of 0.01. As ϕ
increases, the estimate of omega first increases and then flattens out when ϕ = 0.02.4 This
indicates that 0.02 is a good choice for the downweighting rate. Therefore, for the rest of the
analysis of the data, we let ϕ = 0.02. Line 4 calculates the robust omega by setting ϕ = 0.02. The
standard error is requested by setting se=TRUE. The output on Lines 11-12 shows that the
estimated robust omega is 0.921 with a robust standard error 0.020. Note that when ϕ = 0, the
non-robust omega is 0.779. To get the 95% confidence interval for omega, the summary function
on Line 5 is used with prob=.95. The output on Line 19 gives the confidence interval [0.882,
960].

4One can also use ϕ = 0.01 here. We use ϕ = 0.02 because the weight plot shows an additional possible outlying
observation (Case 94).
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1### Input ###

2omega.est<-omega(example, varphi=.1)

3plot(omega.est, type='d')

4omega.res<-omega(example, varphi=.02, se=TRUE)

5summary(omega.res, prob=.95)

6plot(omega.res, type='w', profile=6)

7plot(omega.res, type='p', profile=6)

8
9### Output ###

10> omega.res<-omega(example, varphi=.02, se=TRUE)

11The omega is 0.9207303 with the standard error 0.01994788.

12About 6% of cases were downweighted.

13> summary(omega.res, prob=.95)

14
15The estimated omega is

16omega 0.921

17se 0.020

18p-value (omega>0) 0.000

19Confidence interval 0.882 0.960

Figure 3. R code and output for robust omega estimation

Lines 6 and 7 generate the weight plot (Figure 4b) and profile plot (Figure 4c), respectively.
The option, profile=6 is used to ask the software to label 6 cases because by default the
software only identifies the 5 most influential cases. According to the weight plot in Figure 4b, 6
cases with ID 4, 7, 35, 93, 94, and 98 are downweighted. Except for Case 94, whose weight is
about 0.9, each of the other 5 cases has a weight smaller than 0.4, indicating that these 5 cases
would have the greatest influence in estimating coefficients omega when using the conventional
non-robust method. In Figure 4c of the profile plot, each variable is centered at the robust
estimate of the corresponding mean and plotted against the order of the variable. The profile plot
suggests that, for Case 94, it has smaller values than average on all items. Therefore, Case 94 can
be viewed as a leverage observation. For Cases 4, 7, 35, 93, and 98, they show the similar pattern
where some items have values much larger than average while other items much smaller than
average. Therefore, those cases can be viewed as outliers. Note the plot function clearly
identifies outlier and leverage observation in the plot by using different legends.
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Figure 4. The diagnostic, weight, and profile plots for estimating robust omega. Note O in the
legend indicates an outlier. L+ indicates a leverage observation above average and L- indicates a
leverage observation below average.
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Cronbach's alpha and McDonald's omega

Coefficient  Cronbach's alpha  

Data File: 
    Upload a new file:  No file chosenChoose File  
    Variable names  No  
    Drop cases   

Missing data  Robust method  

Downweight rate 0.1  

Standard error  No  

Plot 
    Type of plot  No plot  
    Profile 5  

Calculate alpha   Documentation

Figure 5. The online interface of the software coefficientalpha

Use the Online Software

For researchers who may not be familiar with R, a self-explanatory online interface is also
developed to estimate robust alpha and omega. In particular, the use of the online interface does
not require previous knowledge of R. To use the online interface, open the web page
http://psychstat.org/alpha in a web browser. Figure 5 is a display of the online
software interface. To use it, one first uploads a data file in free format (a text file with
observations separated by space) with missing data denoted by "NA". Each column of the data
file represents an item. Variable names can be specified in the first line of the data file. If a user
prefers to remove certain cases instead of downweighting them, the case numbers can be
provided. A user can choose to deal with missing data using our robust algorithm or just
removing missing data through listwise deletion. The default value for the tuning parameter ϕ is
0.1, which can be modified. If setting ϕ = 0, then coefficient alpha will be estimated using the
normal-based-ML (NML). A user can choose whether or not to estimate standard error for alpha.
It is recommended but can be slow for large data sets. Finally, a user can choose to generate the
three plots discussed in the paper. For the weight and profile plots, a user can specify how many
cases to be labeled and highlighted and the default is 5.

Discussion

In using a test or scale, its reliability is always a primary concern. Cronbach’s alpha is a
widely used measure of reliability in the literature. When items are non-tau-equivalent, coefficient
omega has been proposed and recommended. Methods for estimating the coefficient alpha and
omega are commonly based on the sample covariance matrices or the NML estimates of Σ and,
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therefore, are not robust to outlying observations. In this study, we proposed a robust procedure to
estimate alpha and omega as well as their confidence intervals. An R package coefficientalpha
together with an online interface is also developed to carry out the proposed procedure.

With outlying observations, alpha and omega can be overestimated or underestimated. Our
purpose is not to obtain a larger estimate but one that is closer to the population value without
being overwhelmingly affected by a few influential observations. Because alpha and omega
commonly estimated using NML are unduly affected by outlying observations, they tend to
perform poorly when validating scales across groups (e.g, gender, race, culture). In contrast,
robust estimates of alpha or omega will still perform well even if small percentages of the
participants in different groups endorse the items differently. Even if the majority of the
participants in different groups endorse the scale differently, the robust alpha and omega can still
tell the difference, since they are decided by the majority of the observations as reflected by
Equation 3, where only a small percentage of cases lying far from the center are downweighted.

In practice, the mechanisms that lead to outlying observations can be more complex than
discussed in the current study. For example, outlying observations can result from different
understanding of a scale. It is well known that cultural differences exist between Americans and
Chinese in the circumstances evoking pride, shame, and guilt (e.g., Stipek, 1998). Chinese may
view expressing pride in public as an improper or unacceptable behavior, contrary to most
Americans. Consequently, the recorded data for a Chinese participant in a study with a majority
of American participants may be identified as outlying. Although such data might not be viewed
as admissible anymore, our robust method can still be applied to identify the participant as
outlying and further action, e.g., removing such observations, can be taken by a researcher with
substantial knowledge of the study. For this purpose, our R package facilitates the identification
of peculiar observations and allows a user to drop potentially erroneous ones. On the other hand,
if a large number of participants show such a cultural difference, the population cannot be viewed
as homogeneous any more. Then, multiple group models or mixture models might be needed for
better analysis. Our robust method can be applied as a diagnostic tool to explore such
heterogeneous samples.

There are also situations where non-normality is expected and one would not want to
downweight the outlying observations. For example, data on abnormal behaviors in clinical
research tend to be skewed and extreme scores in such data are often what a researcher is
interested in. In this situation, one can opt not to downweight the extreme scores by setting ϕ = 0
in our R package. However, even for skewed data with heavy tails, robust estimate of alpha and
omega may still be more accurate than the traditional ones based on the sample covariance
matrix. In particular, the graphs of the R package allow users to identify the extreme observations
and to examine their profiles as well as to explore how their inclusion or removal affects the
evaluation of reliability.
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In summary, practical data are often nonnormally distributed. When the mechanism of
nonnormality is not clear, it is always a safer bet to utilize the robust reliability measures than
their non-robust counterparts. At the same time, once outlying observations are identified, special
attention might be paid.

In addition to coefficients alpha and omega, other reliability measures have also been
proposed in the literature. They include, among others, coefficient β (Revelle & Zinbarg, 2009;
Zinbarg et al., 2005), dimension-free and model-based internal consistency reliability (Bentler,
2009, 2010), and model-based reliability that allows nonlinear relationship (Green & Yang,
2009b; Yang & Green, 2010). In assessing inter-rater agreement, reliability coefficients can also
be formulated as a form of intraclass correlation coefficients (Shrout & Fleiss, 1979). Under
certain conditions, these alternative measures can be better estimates of reliability than alpha and
omega. However, these reliability measures, typically calculated as functions of the sample
covariance matrix, are also influenced by non-normal and missing data. Future study can
investigate how to extend our robust procedure to these reliability measures. Furthermore, we will
compare our robust method with the existing methods such as the bootstrap method and the
L-moment method in the future.

Appendix A. Standard Error of α̂

Notice that Σ̂ is a symmetric matrix. Let σ̂ be the vector of nonduplicated elements of Σ̂.
Then, under a set of regularity conditions, σ̂ is asymptotically normally distributed, which can be
written as

√
n(σ̂ − σ) L→ N(0,Γ), (6)

where σ is the population counterpart of σ̂, Γ is the asymptotic covariance matrix of
√
nσ̂, and

can be consistently estimated by a sandwich-type covariance matrix Γ̂ (see Yuan & Zhang,
2012a). Since α is a function of σ, it follows from the delta method that

√
n(α̂− α) L→ N(0, ω2), (7)

where ω2 can be consistently estimated by

ω̂2 = ∂α̂

∂σ̂′ Γ̂
∂α̂

∂σ̂
. (8)

It follows from Equation 1 that the elements of the vector ∂α̂/∂σ̂ of partial derivatives can be
evaluated according to

∂α

∂σij

=


− p

p− 1

[
1∑p

i=1
∑p

j=1 σij

−
∑p

i=1 σii

(∑p
i=1

∑p
j=1 σij)2

]
, i = j

2p
p− 1

[ ∑p
i=1 σii

(∑p
i=1

∑p
j=1 σij)2

]
, i 6= j

. (9)
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SE for α̂ and the corresponding CI as implemented in the package coefficientalpha are calculated
according to the asymptotic distribution in Equation 7 and the variance estimate in Equation 8.
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