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1. Introduction 

1.1  Why dQTG.seq? 

dQTG.seq is an R package for quickly detecting quantitative trait gene (QTG), especially, 

dQTG.seq2 may be used to identify extremely over-dominant and small-effect genes in F2. At 

present this software package (v1.0) includes six methods: dQTG-seq1, dQTG-seq2, smoothLOD, 

G’, ΔSNP index and ED. dQTG.seq v1.0 is able to work on the Windows, Linux (desktop), and 

MacOS platforms. 

 

1.2  Getting started 

dQTG.seq is a package that runs in the R software environment, which can be freely downloaded 

from https://cran.r-project.org/web/packages/dQTG.seq/index.html, or requested from maintainer, 

Dr Yuan-Ming Zhang at College of Plant Science and Technology of Huazhong Agricultural 

University (soyzhang@mail.hzau.edu.cn). 

1.2.1  One-Click installation 

Within R environment, the dQTG.seq software can be installed directly using the below 

command: 

install.packages("dQTG.seq") 

1.2.2  Step-by-step installation 

1.2.2.1  Install the add-on packages 

First, users download seven R packages, including “data.table”, “BB”, “doParallel”, “openxlsx”, 

“qtl”, “stringr” and “writexl” from CRAN (https://cran.r-project.org/), github (https://github.com/), 

or google search. 

Under the R environment, then, users find “Packages”—“Install package(s) from local files…”, 

select all the above seven packages, and install them offline. 

1.2.2.2  Install dQTGseq 

Open R GUI, select “Packages”—“Install package(s) from local files…” and then find the 

dQTG.seq package which you have downloaded on your desktop. Within R environment, launch 

the dQTGseq by command: 

library (dQTG.seq) 

 
User Manual file     Users can decompress the dQTG.seq package and find the User Manual 

file (name: Instruction.pdf) in the folder of “…/dQTG.seq/inst/doc”. 

 

1.2.3  Run dQTGseq 
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Once the software dQTG.seq is installed, users may run it using two commands: 

library(dQTG.seq)  

dQTG.seq(***)               (***: please see § 2.1.2 Example) 

If users re-use the dQTG.seq software, users use the above two commands as well. 

 
User Manual file    Users can decompress the dQTG.seq package and find the User Manual file 

(name: Instruction.pdf) in the folder of “…/ dQTG.seq /inst/doc”. 

2.  Function 

2.1  Function dQTG.seq() 

2.1.1  Parameter settings 

Table 1. Main parameters and their settings in the R function dQTG.seq() 

Parameter Meaning 

dir Path of inputting and outputting files in your computer: dir="D:/users" 

filegen The name of input data file.  filegen="D:/users/BSA.csv" 

chr 
chr="all":   to output the results of all the chromosomes; 
chr=c(7,8):  to output the results of chromosomes 7 and 8. 

color color=c("blue","red"):  the blue and red points of smooth values in adjacent chromosomes. 

CLO 
The number of CPU occupied by running. The default is the number of CPUs on the computer minus 1, and 
doesn’t exceed 10, CLO=NULL; Users can set own parameters, if CLO is greater than 10, the value is 10, 
CLO=2. 

2.1.2  Example 

In Windows platform: 

dQTG.seq(dir="D:/users", filegen=" D:/users/BSA.csv", chr="all", color = c("blue","red"), 

CLO=NULL) 

In server: 

dQTG.seq(dir="/home", filegen="/home/BSA.csv", chr="all", color=c("blue","red"), 

CLO=NULL) 

In server platform, at present the *.tiff format of plot file is not available. 

2.2  Dataset format 

2.2.1  Parameter settings 
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Table 2. Main parameters and their settings in dataset file 

Parameter Meaning 

Species 
The transformation between genetic distance (cM) and genome length (Mb) varies across species, at present fifteen species are directly 
available once users input the name of species, e.g., Rice. Please see 2.2.2 section. 

Data-file-format Five dataset file formats are available: BSA, Extreme individuals, CIM, ICIM, and GCIM. Please see 2.2.3 section. 

Sample-size The number of individuals in F2 population, e.g., 1000. 

Population-type Four population types are available: F2, BC (backcross), DH (doubled haploid), and RIL (recombinant inbred line). 

Sampling-fraction (%) The proportion of extreme low and high individuals, e.g., 20%. 

Smooth-method 

Four smoothing methods are available: None, AIC, Window size, and Block, while the default is AIC. Please see 2.2.4 section. 
If users want to change the default value of window size or Block, users may use “smooth-method=Window size, 0.5” or 
“smooth-method=Block, 30”. In detail, smoothing method is Window size or Block, and the window size is changed into 0.5 or 30 
(the number of markers in a block) (see Table 4). The default number of markers in Block is 20 (see Table 5). 

No. of permutations The number of permutation experiments when determining the threshold of significant QTN, and the default is 300. Please see Table 4. 

Figure Figure=False: no figure output; Figure=True: the output of figures from different methods. The default is True. Please see Table 4. 

Figure-resolution 
Figure-resolution=Low: the figure with low resolution; Figure-resolution=High: the figure with high resolution. The default is High. 
Please see Table 4. 

Figure-file-format Figure-file-format= jpeg, png, tiff, or pdf.  jpeg indicates the *.jpeg format of figure file. Please see Table 4. 

2.2.2  Species and window size 

The transformation between genetic distance (cM) and genome length (Mb) varies across species. 

In this software, the genome lengths (Mb) per genetic distance (cM) in fifteen species are listed in 

the below table, and can be directly available once users input the name of species. This value is 

regarded as window size in BSA. For example, in Arabidopsis, 1 cM is approximately equivalent 

to 0.2083 Mb on average, so its default of the window size is 0.2083 Mb. 

Table 3. Total linkage genetic distances (cM), genome sizes and their relationships in fifteen species 

No. Species Total genetic distance (cM) Total genome length (Mb) Mb/cM 

1 Arabidopsis 600 (Meinke et al., 2003) 125 (Arabidopsis genome Initiative., 2000) 0.2083 

2 Cucumber 1384 (Zhou et al., 2015) 350 (Huang et al., 2009)  0.2529 

3 Maize 1879 (Pan et al., 2016) 2106 (Jiao et al., 2017) 1.1208 

4 Brassica juncea 2515 (Raman et al., 2014) 955 (Yang et al., 2016) 0.3797 

5 Brassica napus 2515 (Raman et al., 2014) 850 (Chalhoub et al., 2014) 0.3380 

6 Rice 2840 (Jiang et al., 2020) 390 (Zhang et al., 2018) 0.1373 

7 Tobacco 3270 (Bindler et al., 2011) 2700 (Sierro et al., 2014) 0.8257 

8 Tomato 1467 (Shirasawa et al., 210) 1200 (Bolger et al., 2014) 0.8180 

9 Wheat 2780 (Yang et al., 2018) 17000 (Brenchley et al., 2012) 6.1151 

10 Yeast 4900 (Bloom et al., 2015) 12 (Foury et al., 1998) 0.0024 

11 Glycine soja 2623 (Lee et al., 2020) 939 (Kim et al., 2010) 0.3580 

12 Glycine max 2524 (Zuo et al., 2019) 1100 (Schmutz et al., 2010) 0.4358 

13 Gossypium hirsutum L 3854 (Huang et al., 2017) 2186 (Huang et al., 2017) 0.5672 

14 Gossypium barbadense 2727 (Chang et al., 2008) 2120 (Wang., et al 2019) 0.7774 

15 Brassica pekinensis 1688 (Liu et al., 2019) 529 (Wang., et al 2011) 0.3134 
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In the parameter setup of smoothing method, if users select “Window size” or “Block”, the default 

value of the window size in Arabidopsis is 0.2083. Of course, other values may be set up, e.g., 

0.50. 

2.2.3  dataset formats 

BSA format for the dataset file (filegen; Table 4)    The parameters in lines 1 to 10 can be 

found in Table 4 (2.2.1 section). In line 11, the first column, named “Marker”, presents marker 

name; the second column, “Chromosome” presents chromosome number (number) of the marker; 

the third column, named “Position (bp)”, stands for the positions (bp) of markers on its 

chromosome; the fourth to seventh column, named “AL”, “aL”, “AH” and “aH”, stands for the 

numbers of alleles A and a in low (L) and high (H) pools, respectively. Details can be found in the 

BSA.csv file in the folder of “…/dQTGseq/inst/extdata” or Table 4. The alleles of parent P1 or 

reference genome are defined as A in our software. 

Table 4. The BSA format of dataset file to be input 

Species Maize      

Data-file-format BSA      

Sample-size 3120      

Population-type F2      

Sampling-fraction (%) 20      

Smooth-method Window size, 0.5      

No. of permutations 300      

Figure TRUE      

Figure-resolution High      

Figure-file-format png      

Marker Chromosome Position (bp) AL aL AH aH 

1 1 35496 105 73 63 97 

2 1 55610 110 66 51 122 

3 1 118174 108 67 57 94 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

4 20 150980515 120 69 75 118 

Extreme individuals format for the dataset file (filegen; Table 5)    The parameters in lines 1 

to 10 can be found in Table 5 (2.2.1 section). In line 11, the first column, named “Marker”, 

presents marker name; the second column, “Chromosome” presents chromosome number of the 
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marker; the third column, named “Position (bp)”, stands for the positions (bp) of markers on its 

chromosome; the fourth column to the end are individual names, where the numbers 2, 1, and 0 

stand for the genotypes AA, Aa and aa in the extreme low and high pools, respectively; “-” 

indicates the missing or unknown genotypes. The phenotypic values are located on the trait row, 

and each trait is presented on one row. On each row, the first and second columns are empty, 

followed by “trait”, phenotypic values for all the individuals. Details can be found in the Extreme 

individuals.csv file in the folder of “…/dQTGseq/inst/extdata” or Table 5. 

Table 5. The Extreme individual format of dataset file to be input 

Species Rice         

Data-file-format Extreme individuals         

Sample-size 246         

Population-type F2         

Sampling-fraction (%) 20         

Smooth-method Block 30         

No. of permutations 300         

Figure TRUE         

Figure-resolution High         

Figure-file-format png         

Marker Chromosome Position (bp) Low1 Low2 Low3 ··· High47 High48 High49 

Bin1 1 0 1 2 0 ··· 1 1 1 

Bin2 1 565000 1 2 0 ··· 1 1 1 

Bin3 1 599000 1 2 - ··· 1 1 1 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

Bin4 12 27016000 1 2 1 ··· 1 1 0 

  trait 45.170 62.730 67.373 ··· 146.102 150.858 152.878 

CIM format for the dataset file (filegen; Table 6)    If users have adopted composite interval 

mapping (CIM) to identify QTLs for quantitative traits in F2 via the WinQTLCart software, its 

dataset file with the *.csv format and minor modifications is available in our software, and the 

details can be found in Table 6. In details, the information of main parameters in lines 1 to 9 

should be added, which can be found in Table 6 or 2.2.1 section. The line 10, named “Marker”, 

presents marker names; the line 11, named “Position(bp)”, stands for the positions (bp) of markers 

on chromosome; the line 12, “Chromosome” presents chromosome number for markers; in the 

line 13, the first column is the individual name, the other columns present marker genotypes AA, 

Aa, and aa in low and high pools, in which their numbers are 2, 1, and 0, respectively. The 

phenotypic values are located on the rightmost columns, and each trait is presented on one column. 

In each trait column, the first row is “trait”, which is in the same row of “Chromosome”, the 

second to last rows are phenotypic values of quantitative trait, such as 3.9308. Here missing 

marker genotypes are indicated by “-1”, while missing trait values are indicated by “.” (dot). 

Details can be found in the CIM_Format_F2.csv file in the folder of “…/dQTGseq/inst/extdata” or 

Table 6. 
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ICIM format for the dataset file (filegen; Table 7)    If users have adopted inclusive 

composite interval mapping (ICIM) to identify QTLs for quantitative traits in F2 via the QTL 

IciMapping software, its dataset file with the *.xlsx format and minor modifications is available in 

our software, and the details can be found in Table 7. In this table, there are four sheets: 

“GeneralInfo”, “LinkageMap”, “Genotype”, and “Phenotype”. In the first sheet (Table 7.1), origin 

information has been deleted, and new information, such as main parameters in lines 1 to 9, need 

to be added, which can be found in Table 7.1. 

Table 6. The CIM format of dataset file to be input 

Species Rice         

Data-file-format CIM         

Population-type F2         

Sampling-fraction (%) 20         

Smooth-method AIC         

No. of permutations 300         

Figure TRUE         

Figure-resolution High         

Figure-file-format png         

Marker Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 ··· Bin1619  

Position(bp) 0 565000 599000 922000 1075000 1147000 ··· 27016000  

Chromosome 1 1 1 1 1 1 ··· 12 trait 

F001 2 2 2 -1 2 2 ··· 1 3.9308 

F002 0 0 0 0 0 0 ··· 0 -0.9122 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

F360 1 1 2 2 2 2 ··· 1 . 

 

Table 7.1. The first sheet of ICIM dataset to be input 

Species Rice 

Data-file-format ICIM 

Population-type F2 

Sampling-fraction (%) 20 

Smooth-method AIC 

No. of permutations 300 

Figure TRUE 

Figure-resolution High 

Figure-file-format png 

In the second sheet “LinkageMap”, the details are listed in Table 7.2. The first column, named 

“Marker”, presents marker names; the second column, named “Chromosome” presents 

chromosome number of markers; the third column, named “Position(bp)”, stands for the physical 

positions (bp) of markers on genome. 
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In the third sheet “Genotype”, the details are listed in Table 7.3. The first column, named 

“Marker” (the first row), presents marker names (other rows); the second to last columns, are 

individual’s genotypes, the first row is individual’s names, such as “F001”, the other rows are 

individual’s genotypes, the numbers 2, 1, 0 stand for genotypes AA, Aa, and aa, respectively, and 

missing marker genotypes are indicated by “-1”. 

Table 7.2. The second sheet of ICIM dataset to be input 

Marker Chromosome Position(bp) 

Bin1 1 0 

Bin2 1 565000 

Bin3 1 599000 

⁝ ⁝ ⁝ 

Bin1619 12 27016000 

Table 7.3. The third sheet of ICIM dataset to be input 

Marker F001 F002 F003 F004 ··· F360 

Bin1 2 0 0 1 ··· 1 

Bin2 2 0 0 1 ··· 1 

Bin3 2 0 0 -1 ··· 2 

⁝ ⁝ ⁝ ⁝ ⁝ ··· ⁝ 

Bin5 2 0 0 1 ··· 2 

In the four sheet “Phenotype”, the details are listed in Table 7.4. Each trait is presented on one row. 

In each row, the first column is “trait”, the others are phenotypic values of quantitative trait, and 

“NA” specifies missing phenotypic value. 

Table 7.4. The fourth sheet of ICIM dataset to be input 

trait 118.97 101.33 109.5 NA ··· 97.494 

GCIM format for the dataset file (filegen; Table 8)    If users have adopted genome-wide 

composite interval mapping (GCIM) to identify QTLs for quantitative traits in F2 via the 

QTL.gCIMapping software, its dataset file with the *.csv format and minor modifications is 

available in our software, and the details can be found in Table 8. In details, the information of 

main parameters in lines 1 to 9 in the first and second columns should be added, which can be 

found in Table 8. The line 10 in the first column, named “Marker”, presents marker names; and the 

eleventh to last lined in the first column stand for marker names, such as “Bin1”. The tenth to last 

rows in the second column are chromosome information, the tenth row is “Chromosome”, and the 

others are chromosome number, such as “12”. The tenth to last rows in the third column are the 
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information of marker positions (bp) on genome, the tenth row is “Position(bp)”, the others except 

for the last one are marker positions (bp) on genome, such as “599000”, and the last one is “trait”. 

The tenth to last rows in the fourth to last columns are genotypic and phenotypic values of each 

individual, the tenth row is individual’s name, such as “F001”, the others, except for trait rows, are 

genotypic number, where the numbers 2, 1, 0 stands for genotypes AA, Aa, and aa, respectively, 

and the values in trait rows are phenotypic values. The missing or unknown genotypes are 

indicated by “-”, while missing phenotypic values are indicated by “NA”. Details can be found in 

Table 8 or the GCIM_Format_F2.csv file in “…/dQTGseq/inst/extdata” folder. 

Table 8. The GCIM format of GCIM dataset file to be input 

Species Rice        

FileFormat GCIM        

Population F2        

Sampling fraction (%) 20        

SmoothMethod AIC        

Permutation times 300        

DrawPlot TRUE        

Resolution High        

Plotformat png        

Marker Chromosome Position(bp) F001 F002 F003 F005 ··· F360 

Bin1 1 0 1 2 2 0 ··· 0 

Bin2 1 565000 1 2 - 0 ··· 0 

Bin3 1 599000 1 2 2 0 ··· 1 

Bin4 1 922000 1 2 2 0 ··· 1 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

Bin1619 12 27016000 0 2 0 0 ··· 0 

  trait 13.16 1.89 9.08 NA ··· NA 

2.2.4  Population 

The dQTG.seq package can analyze datasets in F2, BC, DH, and RIL populations. If the genotypes 

of extreme low and high individuals in F2 are unknown, the allelic datasets in low and high pools 

may be analyzed using dQTG-seq1, SmoothLOD, G’, ΔSNP, and ED methods. If the genotypes of 

extreme low and high individuals in F2 are known, such as QTL mapping in F2, the allelic and 

genotypic datasets can be analyzed using dQTG-seq2, SmoothLOD, G’, ΔSNP, and ED methods. 

In BC, DH, and RIL populations, the allelic datasets can be analyzed using SmoothLOD, G’, 

ΔSNP, and ED methods. 

2.2.5  Functions or methods in our dQTG.seq software 

In the dQTG.seq software package, there are six methods available, including dQTG-seq1, 
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dQTG-seq2, SmoothLOD, G’, ΔSNP, and ED, which are in details described as below. 

The dQTG-seq1 method 

The observed numbers of read counts of marker alleles (Q (j=1) and q (j=2)) in extreme low (i=1) 

and high (i=2) pools are used by the dQTGseq1 method to predict the numbers of read counts of 

marker genotypes (QQ (j=1), Qq (j=2), and qq (j=3)) in the two pools. Thus, the observed allele 

and predicted genotype numbers are used to calculate a new statistic Gw 

1 2
1 2

1 2 1 2
w

G G
G G G

G G G G
   

 
                           (1) 

where G1 and G2 are standard G statistic of Magwene et al. (2011), 
2 2

1
1 1

ln ( )Qij Qij Qij
i j

G n n E n
 

     

is from allelic read numbers nQij and their expectations ( )E  , and 
2 3

2
1 1

ln ( )Gij Gij Gij
i j

G n n E n
 

     is 

from genotypic read counts nGij and their expectations ( )E  . The Gw statistic is used to identify 

QTL for quantitative trait, where “d” indicates dominant effect of the QTL. In this method, the 

default smooth technique is the “Windowsize” method of Magwene et al. (2011). The file format 

of the dQTG-seq1 method is the BSA dataset format in Table 4 (see 2.2.3 section). 

For dQTG-seq2 method 

Although dQTG-seq1 has relatively higher power in QTL detection than existing BSA methods, it 

may fail in the detection of high degree of dominance and/or small effect QTLs. In other words, 

no loci are detected in secondary F2 and no ideal loci are detected in primary F2. In this case, the 

dQTG-seq2 method uses the observed numbers of marker alleles and genotypes in extreme low 

and high pools to calculate Gw. If the genotypes of each extreme phenotypic individual are known, 

the file format of the dQTG-seq2 method is Extreme individuals format in Table 5 (see 2.2.3 

section). In this method, the “Windowsize” method of Magwene et al. (2011) is recommended to 

smooth Gw. If the genotypes of all the F2 individuals are known, the file format of the dQTG-seq2 

method should be the CIM, ICIM, and GCIM formats (Tables 6-8; see 2.2.3 section). 

The SmoothLOD method 

The statistic “SmoothLOD” is proposed in Zhang et al. (2019). The symbols for the numbers of 

read counts of marker alleles “a” and “A” at low and high pools are defined in the dQTGseq1 

method of 2.2.5 section, let 11 12L Q Qn n n  , 11L̂ Q Lf n n , 21 22H Q Qn n n  , and 21Ĥ Q Hf n n . To 

test no QTL at the putative locus, L HH : f f . 0 05  and the LOD statistic is defined as 

       
 

11 12 21 22
11 21

11 21
10

1 1
log

1 2

Q Q Q Q
Q Q

L H

L HQ Q

L H

n n n nn n
n L L n H H

n nn n
n n

ˆ ˆ ˆ ˆC f f C f f
LOD
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                (2) 
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(Zhang et al. 2019), where Q

L

n L
n

Q Q

n !
C

n ! n !
11

11 12

 and Q

H

n H
n

Q Q

n !
C

n !n !
21

21 22

. In this method, the 

default smooth technique is the “Windowsize” method of Magwene et al. (2011). The file format 

of the SmoothLOD method is BSA format (Table 4; see 2.2.3 section). 

The G’ method 

Magwene et al. (2011) proposed the statistic G’ in BSA. The symbols for the numbers of read 

counts of marker alleles “a” and “A” at low and high pools has been defined in the dQTGseq1 

method (see 2.2.5 section). Thus, standard G statistic is defined as 

2 2

1 1

ln ( )Qij Qij Qij
i j

G n n E n
 

                                 (3) 

using allelic read numbers nQij and their expectations ( )E  . Using all the G statistic values in one 

window, smooth statistic G’ is calculated via the “Windowsize” method (Magwene et al. 2011). 

The file format of G’ method is BSA format (Table 4; see 2.2.3 section). 

The ΔSNP method 

The △SNP index method is presented in Abe et al. (2012) and Takagi et al. (2013). The statistic, 

∆(SNP-index), is allele frequency difference between low and high pools. Using this method, 

candidate genes for trait of interest may be located around the peaks on the curve of allele 

frequency difference on genome positions. In this method, the “Block” method is recommended 

by *** to smooth △SNP index. The dataset file format is BSA format (Table 4) or in 2.2.3 section. 

The ED method 

The Euclidean distance (ED) statistic is defined as 

       2 2 2 2

L H L H L H L HED A A C C G G T T                    (4) 

in mutation mapping analysis pipeline for pooled RNA-seq (MMAPPR) (Hill et al. 2013), where 

AL and AH are the frequencies of allele A (base of SNP) in extreme low and high pools, 

respectively, and the others have similar meanings. Here two key techniques should be noticed in 

real data analysis. One is to find the best index number of the ED statistic, and another is to 

conduct Loess regression analysis (see Smooth method). The dataset file format is BSA format 

(Table 4) or in 2.2.3 section. 

2.2.6  Smooth-method 

Once users calculate each statistic values in genome-wide scanning via the above-mentioned 

methods, the peaks of the curve may be not such obvious. In this case, it is necessary to conduct 

smoothing analysis. Actually, each BSA method has itself smooth technique, such as Loess 

regression + AIC for the ED method, “Block” for the △SNP index method, and “Windowsize” for 
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the G’, SmoothLOD and dQTG-seq (Gw) methods, which are the default for these methods. 

However, users may select other smooth approaches in real data analysis. Thus, in our software 

there are several options available. 

“None”: no smoothing. 

“Default”: the default smooth techniques described above. 

“AIC”: in the smoothing methods, Loess regression is first used, and then AICc is used to select 

the best model of optimizing Loess fit curves (Hurvich et al., 1998). 

 

“Window size”: The smooth statistic is calculated as below. 

Firstly, for the focal marker 0X , there is one window with the intervals  0 0 X x, X x  , where 

x  is obtained from Table 3. jD  for the jth marker in the window is a standardized distance, 

which is calculated from 

 0 0 0 j j jD X X x X X x, X x     …………………………….(5) 

Clearly, jD  is 0 at the position of focal marker, while jD  is 1 at the edge of the window. 

 
Based on Nadaraya-Watson kernel regression of Cleveland et al. (1979), secondly, the weight for 

the jth marker in the window, jk , is calculated from 

 331j j Wk D S                                     (6) 

where  331W j
j

S D  . 

Finally, smooth statistic (SmoothGw) value of the focal marker 0X  is a weighted average of 

original statistic (Gw) values for all the SNPs in the window, which is indicated by 

   0
 in a window

S jw X w j
j

moothG k G                            (7) 

(Cleveland et al. 1979). The same is true for statistics LOD, G, △SNP index, and EDk. 

 

In general, window size depends on the physical distance of a 1 cM long in the species, for 

example, 0.44 Mb/cM for Glycine max. 

 

“Block”: In a block with a certain number of markers, the default number of markers (n) is 20, the 

values of the statistic for n adjacent markers in the block are averaged. The number n varies across 

species (Pool et al. 2016). 

2.3  Permutation test 
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The critical values of various methods for significant QTLs at the 0.10 probability levels were 

determined by permutation experiments. Various population datasets (F2, BC, DH, and RIL) are 

simulated by the R package “qtl”, sample sizes and sampling fraction are obtained from raw data. 

2.4  Result 

The format of dataset to be output. Once the running of software dQTGseq ended, the “results” 

files would appear on the directory, which was set up by users before running the software. The 

results for each trait include three files: “all_result.csv”, “significant_result.csv”, and a plot. 

In the all_result.csv file, there are thirteen columns, as shown below. 

Marker: marker name. 

Chromosome: Chromosome, an integer number. 

Position: The position (bp) of markers on the chromosome. 

Gw: The value of statistic Gw calculated by the dQTGseq1 or dQTGseq2 method. 

Smooth_Gw: smooth Gw value of one marker via the windowsize method. 

LOD: The value of statistic LOD calculated by the smoothLOD method. 

Smooth_LOD: smooth LOD value of one marker via the windowsize method. 

G: The value of standard G statistic. 

G’: smooth G statistic value from all the markers in one window. 

deltaSNP: statistic deltaSNP value calculated by deltaSNP index method. 

Smooth_deltaSNP: smooth deltaSNP index value. 

ED: The ED statistic value calculated by the ED method. 

Smooth_ED: smooth ED statistic value. 

In the significant_result.csv file, there are five sheets, and each sheet lists the results for one 

method (see 2.2.4 section). In each sheet, there are sixth columns, including “Marker”, 

“Chromosome”, “Position(bp)”, the statistic values, smooth statistic values, and the critical value 

of significant QTL for the dQTGseq1 method. 

In the output plot, there are five sub-plots from five methods. In each sub-plot, users may modify 

some parameters, such as colors (see 2.1.2 section). The figure file format can be found in 2.2.1 

section. 
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Figure 1. Five sub-plots in an output figure file 
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