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Abstract

The Renext package has been specified by IRSN. The main goal is to implement the statistical
framework known as "méthode du renouvellement". This is similar to the Peaks Over Threshold (POT)
method but the distribution of the excesses over the threshold is not restricted to GPD. Data Over
Threshold can be completed by historical data. Some utility functions of the package are devoted to
event analysis or to graphical analysis.



Chapter 1

Introduction

This document was produced using Renext 3.1.3 with R 4.2.2. Function calls may have changed in

subsequent versions of the package. More information on the Renext project can found at the URL

https://gforge.irsn.fr/gf/project/renext.

Acknowledgments

We gratefully acknowledge the BEHRIG1 members for their major contribution to designing, document-
ing and testing programs or datasets: Claire-Marie Duluc, Lise Bardet, Laurent Guimier and Vincent
Rebour. We also gratefully acknowledge Yann Richet who encouraged this project from its beginning
and provided assistance and useful advice.

1.1 Goals

The Renext package has been specified and implemented by the french Institut de Radioprotection et
de Sûreté Nucléaire (IRSN). The main goal is to implement in the R environment (R Development Core
Team 2010) the statistical framework known within the community of french-speaking hydrologists as
Méthode du Renouvellement and partly devoted to Extreme Values (EV) problems. This methodology
appeared during the years 1980 and was well-accepted both by practitioners and researchers. The lack of
freely available software may have limited its applicability, but this method is still in use or referred to.
The book in french by Miquel (1984) is a frequently cited reference, while Parent and Bernier (2007) give
a more recent presentation. Although some connections exist with the theory of Renewal Processes (Cox
1962), it must be said that the standard application of the "Renouvellement" relies on the much simpler
Homogeneous Poisson Process (HPP) (Cox and Isham 1980), and is then similar to the famous Peaks
Over Threshold (POT) method (Davison and Smith 1990).

POT methods are widespread and are described e.g. in the book of Coles (2001) or that of Embrecht,
Klüppelberg, and Mikosch (1996). There are several nice R packages devoted to POT or extreme values:
extRemes (Gilleland, Katz, and Young 2004), ismev (Heffernan and Stephenson 2012), evd (Stephenson
2002), POT Ribatet (2009), evir Pfaff and McNeil (2012), evdbayes (Stephenson and Ribatet 2008)
among others. The package nsRFA (Viglione 2009) also contains useful functions for Extreme Values
modelling.

Yet Another POT package?

• Contrary to most POT packages, the distribution of the excesses over the threshold is not in
Renext restricted to be in the Generalised Pareto Distributions (GPD) family and can be chosen
within half a dozen of classical distributions including Weibull or gamma. Though theory says
that GPD will be adequate for large enough thresholds, this is not a counter indication to the
use of other distributions. Fitting e.g. Weibull or gamma excesses might seem preferable to some
practitioners and give good results for reasonably large return levels.

1IRSN Bureau d’Expertise Hydrogéologique, Risques d’inondation et géotechnique.
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Figure 1.1: Events and levels. The random variable. Wi = Ti − Ti−1 can be called interevent.

• The package allows the use of historical data as explained in section 3.4. Such data can have
considerable importance in practical contexts since fairly large periods can be concerned.

Unlike most R packages, Renext was not designed to implement innovative techniques arising from
recent research in statistics but rather well accepted ones, as used by practitioners. The present document
is not intended to be a manual of extreme values modelling but a presentation of the implemented tools
with a limited statistical description of these.

The general framework for estimation is Maximum Likelihood (ML) and a black-box maximisation
can be used with a quite arbitrary distribution of excesses. For the sake of generality, the inference
mainly relies on the approximate delta method. The present version does not allow the use of covari-
ables. The package allows extrapolation to fairly large return periods (centuries). Needless to say, such
extrapolations must be handled with great care.

1.2 Context and assumptions

1.2.1 Assumptions

The general context is the modelling of a marked point process [Ti, Xi]. Events (e.g. floods) occur at
successive random times Ti when a random variable "level" Xi is observed (e.g. flow). We assume that
only large values of the level X are of interest. Thus even if the data are recorded on a regular basis
(e.g. daily) the data can be soundly pruned to remove small or even moderately large values of X.

Under some general assumptions the times Ti corresponding to large enough levels Xi should be well
described by an Homogeneous Poisson Process. Recall that for HPP events the number N of events on
a time interval of length w has a Poisson distribution with mean µN = λ × w. Moreover the numbers
of Ti corresponding to disjoint intervals are independent. The parameter λ > 0 is called the rate and
has the physical dimension of an inverse time: it will generally be given in inverse years or events by
year. Another important property of the HPP is that the interevent random variables Wi = Ti − Ti−1

are independent with the same exponential distribution with mean 1/λ.
Unless explicitly stated otherwise, we will make the following assumptions about the marked process.

1. Events Ti occur according to a Homogeneous Poisson Process with rate λ.

2. Levels Xi form a sequence of independent identically distributed random variables with continuous
distribution function FX(x), survival function SX(x) = 1− FX(x) and density fX(x).

3. The levels sequence and events sequence are independent.

The distribution FX(x) will be chosen within a parametric family and depends on a vector of parameters
θX . This dependence can be enlightened using the notation FX(x; θX) when needed, the same convention
applying to the density and the survival functions. The survival function can often in POT be preferred
to the distribution function. The parameters of the whole model consist in λ and a vector θX .

2
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Figure 1.2: In POT, only the levels Xi with Xi > u are modeled through the excesses Yi = Xi−u. The
lower part x < u of the distribution FX(x) remains unknown.

1.2.2 Return period, return level

The return period of a given level x is the mean time between two events Ti with levels exceeding x, that
is with Xi > x. Under the assumptions above, it is given by

T (x) =
1

λSX(x)
. (1.1)

Indeed the probability of {Xi > x} is SX(x), and the events with level exceeding x also form an HPP2

(thinned HPP) with rate λSX(x). The mean interevent is the inverse rate.
Conversely, for a given period T > 0 the return level x(T ) is the level value x having the return

period T . It is given by

x(T ) = qX(p), p := 1− 1

λT
(1.2)

where qX is the quantile function. The period T must be greater than 1/λ. The limit of x(T ) for large
periods is the upper end-point of the distribution, which can be finite in some cases.

In practice, the interest is often focused only on large return levels or periods.

1.2.3 Peaks Over Threshold (POT)

The POT framework

In the POT approach, only the upper part of the distribution FX(x) is modelled. More precisely, the
interest is on the part X > u where u is a threshold. The steps are

• Fix a suitable threshold u,

• Consider only the observations with level Xi greater than u i.e. with Xi > u,

• Estimate the rate of the events Xi > u and fit a distribution for the excesses Yi = Xi − u.

The distribution of X conditional on X > u is deduced from that of the excess Y by translation.
The threshold will often be chosen above the mode of X, leading to a decreasing density for the

excess Y as suggested on figure 1.2. The distribution of Y typically has two parameters.

Generalised Pareto Distribution

The POT approach usually retains a GPD for the excess Y or equivalently a GPD for the level X
conditional on the exceedance X > u. This choice is supported for a large threshold u by the Pickands-
Balkema-de Haan theorem (see B.1.3) or by the related POT-stability property of the GPD (see B.3.2).
The family of GPDs with a given shape parameter ξ can be said to be POT-stable: if for a given threshold
u the distribution of X conditional on X > u is a GPD with shape ξ, then for any another threshold
v > u the distribution of X conditional on X > v is still a GPD with the same shape ξ. By selecting a

2The is due to the independence of the two sequences Xi and Ti.
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Figure 1.3: Block maxima for the marked process. If the marks Xi follow a GPD, then for a constant
block duration the block maxima Mb := Xib follow a GEV distribution (provided that they exist).

threshold v > u in POT, the estimation will use a smaller set of Xi but the underlying distribution of
X conditional on exceedance is the same in the two cases.

The choice of the threshold is a well-known difficulty in classical POT where only GPD excesses are
used (Davison and Smith 1990). The situation is much more complex with non-GPD excesses, because
POT stability no longer holds. For instance if the excesses over u are Weibull with shape α > 0 and
scale β = 1 i.e.

Pr {X > x | X > u} = exp {−(x− u)α} x > u

then the conditional distribution of the excess X − v | X > v is not Weibull; it is a shifted version of
the Left Truncated Weibull (LTW), see B.3.10.

1.2.4 Link with Block Maxima

Alternative approaches to POT for univariate Extreme Values modelling use time blocks of, say, one year
and related by-block data. Numerous observations of the variable of interest X are assumed to exist in
each block, and only the largest of them are retained in the analysis. Popular examples are

• block maxima: for each block, only the maximal value is used in the analysis.

• r largest: for each block the largest r observations (i.e. the r largest order statistics) are recorded.
The number r may vary across the blocks.

Block maxima is the special case of r largest for r = 1, and using r > 1 largest observations when
available leads to a better estimation. The r largest analysis is described in chap. 3 of the book of Coles
(2001). The distribution retained for the maxima or the r largest is based on asymptotic considerations.
The block maxima are usually assumed independent and to follow a Generalised Extreme Value (GEV)
distribution. From the Fisher-Tippett-Gnedenko theorem, this corresponds to the situation where n
independent and identically distributed Xi are found in each block, the number n being large – see
section B.1.

Interestingly, the assumptions concerning the marked point process as stated before in 1.2.1 provide
a framework to derive the distribution of the maxima or that of the r largest observations over non-
overlapping blocks, without any asymptotic consideration. Given B such blocks b = 1, 2, . . . , B with
known duration wb, the maximum Mb for block b is the maximum of Nb levels Xi with Ti falling in that
block, where Nb has a Poisson distribution with mean λwb. Moreover the maxima Mb are independent
across blocks. The distribution of the Mb can be related to the distribution of the marks: see appendix
page 50. Note however that the marked process can lead to blocks b with no observation, especially when
the block duration wb is not large relative to the mean interevent 1/λ. Similarly, the joint distribution
of the r largest in a block is easily derived, see section 3.4 later.

When the distribution of the marks Xi is assumed to be GPD and the blocks have the same duration
w1 (e.g. one year), the block maxima Mb are independent and follow a GEV distribution, as is usually

4



assumed for block maxima. It can be shown as well that the distribution of the r largest observations
Xi is then the distribution used in the r largest analysis Coles (Coles 2001, chap. 3), provided that at
least r observations Xi exist. The notion of return period for the blocks framework differs from the one
given above see discussion A.3 page 51. However, the difference between the two notions is confined to
the small return periods context.

To summarise: maxima or r largest observations can be viewed as partial observations of the marked
process, or as the result of a temporal aggregation of this process. When the result of such an aggregation
(i.e. maxima or r largest) is known for one or several blocks with large duration, say decades or centuries,
we may speak of historical data.

Although Renext primarily uses the original data [Ti, Xi] as described in 1.2.1 above, it is possible
to make use of supplementary block data in a quite flexible fashion. Maxima and r largest observations
within block(s) can also be used, as well as the marks exceeding some known auxiliary threshold as
sometimes called a perception threshold. A typical use of these possibilities is for historical data.

1.2.5 Declustering

Most of Extreme Values problems concern a continuous time process: discharge flow, temperature, sea
surge, etc. POT modelling most often requires a declustering step leading to independent events: floods,
heat or cold waves, storms, etc. Renext does not currently provide any declustering function, which
can be found in the other POT packages cited above.

1.3 Heterogeneous data

1.3.1 Remarks

Model fitting functions in R usually have a formal argument specifying data with a data frame object, the
model being typically given by a formula. Due to the presence of heterogeneous types of data within a
given “dataset”, the arguments of Renext functions will take a slightly more complex form. For instance,
it will generally be necessary to specify a duration or several block durations in complement to the vector
of levels, to specify where missing periods (gaps) occurred, etc.

Some of the package functions require the use of POSIX objects representing date and time. R base
package provides versatile functions to manage date/time or timestamps. See for instance the help of
the strptime function.

As most R packages do, Renext comes with a few datasets taken from relevant literature or from real
data examples. These datasets are given as lists objects with hopefully understandable element names.
Some datasets have an S3 class named "Rendata" and can as such be used as the first formal argument
of popular S3 methods: plot, summary and more.

1.3.2 OT data

The data used in POT will mainly consist in recorded levels Xi or levels exceeding a reasonably low
known threshold u⋆, with possibly u⋆ = −∞. Such data will be called OT data for “Over Threshold”.
The POT modelling will typically use a higher suitably chosen threshold u > u⋆.

The data Brest contain sea surge heights at high tide for the Brest gauging station. Only values
exceeding u⋆ = 30 cm are retained. More details about these data are provided in the package manual.
The data are provided as a list with several parts.

> library(Renext)

> names(Brest)

[1] "info" "describe" "OTinfo" "OTdata" "OTmissing"

As their names may suggest the list elements contain Over Threshold (OT) data and information.

> head(Brest$OTdata, n = 4)
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date Surge comment

1 1846-01-14 35.989

2 1846-01-21 59.987

3 1846-01-24 45.986

4 1846-01-28 39.985

> str(Brest$OTinfo)

List of 4

$ start : POSIXct[1:1], format: "1846-01-01"

$ end : POSIXct[1:1], format: "2009-01-01"

$ effDuration: num 148

$ threshold : num 30

The OTdata element is a data frame giving the Ti (in time order) and the corresponding levels Xi. Note
that the time part of the POSIX object may not be relevant. Here only the date part makes sense and
the time part is by convention "00:00" with the time zone set to "GMT" to use Coordinated Universal
Time (UTC). Of course, the observations were made at a different time.

The OTinfo list mentions an effective duration. This is less than the time range which can be
computed using the methods range and diff from the base package

> End <- Brest$OTinfo$end; Start <- Brest$OTinfo$start

> Dur <- as.numeric(difftime(End, Start, units = "days"))/365.25

> Dur

[1] 162.9979

> Dur - as.numeric(Brest$OTinfo$effDuration)

[1] 15.37795

The difference – more than 15 years – is due to gaps or missing periods. The missing periods are described
in the element OTmissing.

The Brest dataset has class "Rendata". This is an S3 class defined in Renext to describe objects
containing OTdata and possibly some extra information on missing periods or historical data. It has a
summary method

> class(Brest)

[1] "Rendata"

> summary(Brest)

o Dataset Surge Heights at Brest (France)

data 'Brest', variable 'Surge' (cm)

o OT data (main sample) from 1846-01-01 to 2009-01-01 (eff. dur. 147.62 years)

n Min. 1st Qu. Median Mean 3rd Qu. Max.

1289.00000 30.02200 33.64700 38.30600 41.76007 46.58100 143.94900

o missing 'OT' periods, total 15.38 years

n Min. 1st Qu. Median Mean 3rd Qu.

43.000000000 0.002737851 0.016427105 0.038329911 0.357639718 0.086242300

Max.

8.418891170

o no 'MAX' historical data

o no 'OTS' historical data

The displayed information concerns the levels in the main OT sample and the possible gaps in this
sample: number, duration (in years). A plot method also exists

> plot(Brest)

which produces the plot on the left of figure 1.4.

6



1.3.3 Missing periods or gaps

A common problem in POT modelling is the existence of gaps within the observation period. These can
result from many causes: damage or failure of the measurement system, human errors, strikes, wars, ...

Renext uses a natural description of the gaps within a dataset. They are stored as rows of a
data.frame with two POSIX columns start and end

> head(Brest$OTmissing, n = 4)

start end comment

1 1846-01-01 1846-01-04

2 1847-01-01 1847-01-21

3 1852-01-21 1852-02-08

4 1857-05-31 1859-11-24

Missing periods must be taken into account in the analysis. They should be displayed on timeplots
showing events, since it is important to make a distinction between periods with no events and gaps, see
figure 1.4. An important prerequisite to modelling is to ensure that the gaps occur independently from
measured variables. For instance, storms can damage gauging systems for wind or sea level thus leading
to endogenously missing observations forming an endogenous gap. This may be considered as a form of
censoring.

1.3.4 Aggregated (block) data

Motivation

In a Rendata object, the ordinary data provided in the OTdata element can be completed by some data
observed in blocks with known duration. This possibility is often required to use historical information.
Two types of block data are currently supported under the names "MAX" and "OTS" data. These can
be regarded as the two types of censored data: type I for OTS and type II for MAX, and are described
more precisely in section 3.4.1 page 25.

MAXdata

As a first possible complement to OTdata, we may have MAXdata that is: r largest observations over one
or several blocks. Such data require a complementary information: the block duration(s) which must be
given in years.

The dataset Garonne is taken from Miquel (1984) where it is described. The data concern the french
river La Garonne at the gauging station named Le Mas d’Agenais where many floods occurred during
the past centuries. The data consist in both OT data and historical data. The variable is the river
discharge flow in m3/s as estimated from the river level using a rating curve. The precision is limited
and many ties are present among the flow values. The OT data contain flow values over the threshold
u = 2500 m3/s.

The historical data in Garonne are simply the 12 largest flows for a period of about 143 years and
will be used later.

> names(Garonne)

[1] "info" "describe" "OTinfo" "OTdata" "OTmissing" "MAXinfo"

[7] "MAXdata"

> Garonne$MAXinfo

start end duration

1 1770-01-01 1913-01-01 143.09

> head(Garonne$MAXdata, n = 4)

block date Flow comment

1 1 <NA> 7500 1 (1875)

2 1 <NA> 7400 2 (1770)

3 1 <NA> 7000 3 (1783)

4 1 <NA> 7000 4 (1855)
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Figure 1.4: Graphics produced using the plot method of the "Rendata" class. On the left, the Brest

object contains missing periods that are shown. On the right, the Garonne dataset contains information
about an historical period, displayed as a green rectangle.

The Garonne dataset has class "Rendata". The plot method for this class

> plot(Garonne)

produces a graphic displaying the historical period as on the right panel of figure 1.4. Here the dates
of the historical events are not known exactly and thus are provided here as NA POSIXct objects. The
historical levels are thus displayed as horizontal segments, while vertical segments would be used for
known dates. The plot method for the class Rendata has a showHist logical formal argument telling
that historical periods should be shown (default value TRUE) or not.

Note that the function OT2MAX can be used to compute the r largest values in blocks of one year from
observations [Ti, Xi] of a marked process. This function can be used to compare a POT approach to
block maxima or r largest, see 4.3.

It can be remarked here that working with the original unit leads to observations with a quite large
order of magnitude. This can be a problem in some numerical evaluations such as the determination of
a hessian. Although the Renouv function used later internally scales the data, it could be preferable to
rescale the data e.g. by dividing them by 1000.

OTSdata

The other type of block data involves a number of B non-overlapping blocks. For each block b = 1, 2,
. . . , B the duration wb is assumed to be known as well as a threshold ub. We then assume to be given
all the observations with level Xi exceeding the threshold ub i.e. with Xi > ub. It is assumed that no
OTS threshold ub is smaller than the OT threshold u. In some cases the times Ti are known and can be
provided in the date column of the data frame OTSdata. Unlike with MAXdata, one block can be empty
because no level Xi exceeding ub was found. The block will then appear in the OTSinfo data frame but
not in OTSdata.

1.3.5 Overview

The general structure of a Rendata object is described in table 1.1.
The readXML function (still experimental) can be used to read such heterogeneous data from an

XML file and possibly linking to csv files. Some examples are shipped with the package, see help with
?readXML.
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element class content

info (⋆) list general information: variable name, units, ...
describe character optional description
OTinfo (⋆) list start, end, duration w, threshold u
OTdata (⋆) data frame date Ti, level Xi and comment

OTMissing data frame start, end, comment
MAXinfo data frame start, end, duration wb

MAXdata data frame block, date, level, comment
OTSinfo data frame start, end, duration wb, threshold ub
OTSdata data frame block, date, level, comment

Table 1.1: Structure of a Rendata object. The required elements are marked with a star (⋆). The
threshold in OTinfo can be set to -Inf, thus allowing the computations of the excesses X − u for any
threshold u.

1.3.6 Simulating heterogeneous data

Heterogeneous data generated by a Monte-Carlo simulation are of great help in POT-based analysis. For
instance, simulated data can be used to assess the bias of an estimate, or to compare several plotting
positions. It also helps in getting familiar with the random variations in the estimates or in the return
level plots. The rRendata function can be used to generate a RenData object with a specific design:
duration of the main sample, number and durations of MAX data or OTS blocks.

Suppose that we use a main sample of (default) duration 100 years and the default distribution the
standard exponential. We can enhance the data by adding three MAX blocks of say 40, 50 and 30 years.
By default, only the maximum observation will be kept in each block.

> set.seed(1234)

> RD1 <- rRendata(MAX.effDuration = c(40, 50, 30))

> plot(RD1)

See left of figure 1.5. The three MAX blocks are by convention located before the start of the main
sample since in practice such blocks often represent historical data. We can similarly add 3 OTS blocks
with 3 choosen durations and thresholds.

> RD2 <- rRendata(effDuration = 30,

distname.y = "GPD",

par.y = c(scale = 1, shape = 0.1),

OTS.effDuration = c(40, 50, 30), OTS.threshold = c(3, 4, 2))

> plot(RD2)

Note that we used here a non-default "GPD" distribution for the excesses Yi, and we gave the values of
the parameters. For now, the rRendata function can not generate random missing periods.

1.3.7 Aggregated data and gaps

A difficulty with aggregated data such as block data concerns the treatment of missing data or gaps.
There is usually no reason that missing periods should correspond to full blocks (e.g. years), and most
often a fraction of some blocks is missing. Excluding all blocks with missing data leads to a severe loss
of information, while ignoring gaps in blocks may cause a bias. The use of aggregated data will be
illustrated later in the section 2.3 about barplotRenouv. The problem of gaps in blocks will be also be
discussed when describing the OT2MAX function in section 4.3 p. 38.
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Chapter 2

Descriptive tools

Some functions of Renext have been designed to check the assumptions relative to the stationnarity of
the events or to the distribution of the levels. The analysis of the events can cope with gaps as are often
met in practice. Although of less importance, the case where counts are used in place of events is also
considered.

2.1 Functional plots

2.1.1 Principles

Widespread graphical tools in statistics are functional plots, such as exponential plot, Weibull or Gumbel
plots. In all cases, the plot is designed so that the theoretical distribution curve (exponential/Weibull/Gumbel)
shows as a straight line. For instance the relations for distribution functions F

− log [1− F (x)] = (x− µ)/σ (exponential)

− log [− logF (x)] = (x− µ)/σ (Gumbel)

both show a linear relation between x and a transformed version φ(F ) of F (x), e.g. φ(F ) = − log [1− F ]
for the exponential case. The functional plots are obtained by plotting [x, φ(F )] still using the values of
the probability F to display the unevenly spaced graduations on the y-axis. The Weibull plot is similar
but also uses a (log) transformation of x.

With a sampleXi of size n one uses non-parametric estimates F̃i of the values F (Zi) of the distribution

function at the order statistics Zi with Z1 > Z2 > · · · > Zn. The n resulting points with ordinates F̃i

can be plotted with the transformed scale on the y-axis. A classical choice for the plotting positions is
implemented in the ppoints function of the stats package

F̃ (Zn+1−i) =
i− a

n− 2a+ 1
, (2.1)

where a is a parameter typically in the interval [0, 1]. The right hand side is the expectation of the
random variable F (Zn+1−i) for a = 0 and an approximation of its median for a = 0.3.

As some other packages do, Renext provides exponential and Weibull plotting functions, namely
expplot and weibplot

> expplot(x = Brest$OTdata$Surge, main = "expplot for \"Brest\"")

> weibplot(x = Brest$OTdata$Surge-30, main = "weibplot for \"Brest\" (surge - 30)")

producing the two plots on figure 2.1.
Note that the transformation φ(F ) must not depend on unknown parameters. Therefore the Weibull

plot produces a theoretical line only for the version with two parameters (shape and scale), and not for
the three parameter one (with location).
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Figure 2.1: Exponential and Weibull plot for the Brest data. The variable Surge is used for the
exponential plot. The threshold 30 cm is subtracted from Surge for the Weibull plot. The later uses a
log-scale for x.

2.1.2 Exponential vs Gumbel

While hydrologists often favour Gumbel plots, the exponential plot may also be used. The latter is better
suited to the use of "OTdata" i.e. data where only values over a threshold u are kept. Even if the original
observations Xi are Gumbel, the conditional distribution Xi | Xi > u will be close to an exponential for
u large enough, see B.1.3. This can be illustrated with a few simple R commands

> library(evd); set.seed(136)

> X <- rgumbel(400); X <- X[X > 0.6] ## X is truncated Gumbel

> n <- length(X);

> Zrev <- sort(X); F <- (1:n) / (n + 1) ## distribution function

> y.exp <- -log(1 - F); y.gum <- -log(-log(F))

> plot(Zrev, y.exp, col = "red3", main = "exponential plot")
> plot(Zrev, y.gum, col = "SteelBlue3", main = "Gumbel plot")

The two plots are shown on figure 2.2. The difference between exponential and Gumbel plots is restricted
to the small values.

2.2 Events and stationarity

2.2.1 Simple plots

The simplest plot for checking stationarity has points [Ti, Xi] and can be obtained with R functions of
the graphics package. The Ti and Xi will typically be available as two vectors of the same length or as
two columns of a same data.frame object. For the example datasets of Renext, the Ti and Xi are given
as two columns of the OTdata data frame

> plot(Flow ~ date, data = Garonne$OTdata, type = "h", main = "Flows > 2500 m3/s")

The graphic shows that several successive years had no exceedance over 2500 m3/s during the second
half of the 1940-1950 decade. This could lead to further investigations using the subset function

> subset(Garonne$OTdata, date >= as.POSIXct("1945-01-01") & date <= as.POSIXct("1950-01-01"))

date Flow comment

96 1945-01-29 3200

The graphics can be enhanced using the text function in the graphics package to annotate special
events or periods.
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2.2.2 Uniformity

The gof.date function performs some tests to check the (conditional) uniformity of the events Ti as
implied by the HPP assumption. It is based on the fact that for a given interval of time (s, t) the events
Ti falling in the interval are jointly distributed as are the order statistics of a sample of the uniform
distribution on (s, t). The sample size n is then random. Alternatively, the n events falling in an interval
(Tk, Tn+k+1) also have this joint conditional distribution. In both cases a Kolmogorov-Smirnov (KS)
test is well suited to check the uniformity.

The gof.date function mainly works with a POSIX object containing the events Ti as in

> gof.date(date = Garonne$OTdata$date)

which produces the plot on the left of figure 2.4. The empirical cumulative distribution function (ECDF)
is compared to the uniform and the KS distance Dn is shown as a vertical segment. The displayed KS
p-value tells that uniformity should be rejected at the significance level of 0.1%. Though less clearly than
above, the plot points out that the years 1940-1950 had fewer events.

The gof.date function has optional args start and end to specify (and possibly restrict) the period
on which the test is performed. By default these are taken as the first and last event in date and therefore
only inner events are used in the ECDF.

2.2.3 Interevents

An important property of the HPP concerns the interevents Wi = Ti − Ti−1: the Wi are independent
and have exponential distribution with rate λ. Thus an exponentiality test might be performed to check
the HPP assumption for observed data.

The interevt function computes the interevents Wi as numbers of days. The function returns a list
with a interevt data.frame element containing the Wi in the duration column which can be used to
check exponentiality. This can be done either with a plot - see figure 2.4 or with the test of exponentiality
of the function gofExp.test

> ie <- interevt(date = Garonne$OTdata$date)

> names(ie)

[1] "interevt" "noskip"

> d <- ie$interevt$duration

> expplot(d, main = "Exponential plot for interevents")

> bt <- gofExp.test(d)

> bt

$statistic

[1] 193.9517

$df

[1] 149

$p.value

[1] 0.01560322

$method

[1] "Bartlett gof for exponential"

It seems unlikely to obtain a good exponential fit as far as events occurrence shows seasonality as is the
case here. A seasonality can no longer result from another distribution of interevents – that is from a
non-Poisson stationary renewal process. Increasing the threshold might improve the adequacy with the
assumptions.

2.2.4 Missing periods or gaps

In practice the situation is somewhat more complex due to the possible existence of missing (or skipped)
periods where no events have been recorded. Event rates should then be computed using effective
duration that is: the total duration of measurement ignoring missing periods.
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Figure 2.4: Analysis of the events for the Garonne data set (OTdata). Left panel: test for the uniformity
of events with the KS distance shown as a vertical segment. Right panel : exponential plot for the
interevents.

The functions gof.date and interevt can take this problem into consideration. The gof.date plot
can display the missing periods or "gaps" provided that a suitable skip arg is given. For instance the
following commands produce the plot on the left of figure 2.5

> gof.Brest <- gof.date(date = Brest$OTdata$date, skip = Brest$OTmissing,

start = Brest$OTinfo$start, end = Brest$OTinfo$end)

> print(names(gof.Brest))

[1] "effKS.statistic" "effKS.pvalue" "KS.statistic" "KS.pvalue"

[5] "effnevt" "nevt" "rate" "effrate"

[9] "duration" "effduration" "noskip"

As their name may suggest, the returned list elements give the effective duration and the effective rate
based on the true non-missing periods. The noskip element contains detailed information about each
non-skipped period

> head(gof.Brest$noskip, n = 2)

start end duration nevt rate Dn KS

1 1846-01-04 1847-01-01 0.991102 17 17.152624 0.2586935 0.17172882

2 1847-01-21 1852-01-21 4.999316 48 9.601314 0.2057777 0.02929104

For each period the rate has been computed as well as a KS test of uniformity. The power of the test is
obviously limited for periods containing only a few events.

The preceding call to gof.date corresponded to the default value of plot.type, namely "skip". A
drawback of the plot and KS test is that the comparison with the uniform is biased by the gaps. The
KS distance Dn between the empirical and theoretical distributions can be amplified by the gaps when
there are too few events or, on the contrary, be reduced by gaps when there are too much events. These
two phenomena can be seen by comparing the two plots of figure 2.5 although the two KS statistics and
p-value are here nearly identical. The right panel plot was produced using the non-default choice for the
plot.type arg i.e. plot.type= "omit", missing periods can be omitted on the plot and in the KS test
computation.

> gof.Brest2 <- gof.date(date = Brest$OTdata$date,

skip = Brest$OTmissing, plot.type = "omit",

start = Brest$OTinfo$start, end = Brest$OTinfo$end)
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Figure 2.5: Using the plot.type arg of gof.date leads to the left panel (default value or "skip"),
or the right one (value "omit"). Each missing period appears as a grey rectangle on the left, and is
flattened as a line on the right. Though graphically unevenly spaced, the tickmarks of time axis on the
right show the beginning of years.

The time axis now has unevenly spaced ticks since it is obtained by concatenating the successive non-
missing periods. More precisely, each retained time interval k begins at the first event Tfk of a continuous
observation period and ends at its last event Tℓk . Each of the vertical lines shows an interval (Tℓk , Tfk+1

),
which covers a missing period and is cut out as shown on figure 2.6. The displayed information on the right
panel of figure 2.5 concerns effKS.pvalue and effKS.statistic of an "effective" KS test performed
on non-missing periods. Provided that observation gaps occur independently from the events Ti, the
interevents for couples of successive events falling in the same non-missing period can be used in a modified
KS test. In the HPP case, these interevents should be independent and identically distributed with
exponential distribution, thus concatenating them should produce an HPP hence an uniform conditional
distribution of events.

For the Brest example, the test tells us that the uniformity of events should be rejected while the plot
indicates that there were more events during the XIXth century than during the XXth (the events have
been shown on the left of figure 1.4). Since large surges tend to occur more frequently in winter, further
investigation of the gaps distribution would be useful. The OT2MAX function can help, see section 4.3.2
page 40. Since the interest in on high surge levels, we can select the events exceedances over the threshold
u := 50 cm.

> gof.Brest3 <- gof.date(date = subset(Brest$OTdata, Surge > 50)$date,

skip = Brest$OTmissing, plot.type = "omit",

start = Brest$OTinfo$start, end = Brest$OTinfo$end)

> c(gof.Brest3$KS.pvalue, gof.Brest3$effKS.pvalue)

[1] 0.6017242 0.1963612

The test now tells that the uniformity is accepted; the second p-value ≈ 0.2 is computed by omitting the
gaps and is thus more reliable than the first. The plot is not shown.
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2.3 Aggregated (counts) data

2.3.1 Counts

The barplotRenouv function draws a barplot for counts data and performs a few tests adapted to this
context where events are unknown, or when interevents can no longer be used. The data used are n counts
Ni for i = 1, 2, . . . , n. These counts must be on disjoint intervals or "blocks" with the same duration,
e.g. one year. If events occur according to an HPP the Ni form a sample of a Poisson distribution.
The barplot compares the empirical (or observed) frequencies to their theoretical counterparts i.e. the
expectations. The theoretical distribution is estimated using the sample mean as Poisson parameter
(Poisson mean).

The Brest.years object contains aggregated data for one-year blocks. Some blocks are incomplete
and are listed in Brest.years.missing which can be used in barplotRenvouv

> data(Brest.years); data(Brest.years.missing)

> bp40 <- barplotRenouv(data = Brest.years, threshold = 40,

na.block = Brest.years.missing, main = "threshold = 40 cm")

produces the graphic at the left of figure 2.7. Increasing the threshold

> bp50 <- barplotRenouv(data = Brest.years, threshold = 50,

na.block = Brest.years.missing, main = "threshold = 50 cm")

we get a barplot for the smaller sample at the right of figure 2.7. Note that the function guesses that the
first column represents a block indication which may not be true with other data. Therefore the normal
use would specify the blockname and varname formal arguments of barplotRenouv.

Great care is needed when the data contain missing periods since the number of events is then biased
downward.

2.3.2 Goodness-of -fit

A popular test for Poisson counts is called overdispersion test. It is based on the fact that expectation
and variance are equal in a Poisson distribution. The test statistic is

I = (n− 1)S2/N̄

where N̄ and S2 are the sample mean and variance. Under the null hypothesis I is approximately
distributed as χ2(n− 1). The statistic I tends to take large values when the observations Ni come from
an overdispersed distribution such as the negative binomial. A one-sided test can therefore be used for
a negative binomial alternative.
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Figure 2.7: The two barplots produced with barplotRenouv. A bar height represents a number of blocks
(here years) with the number of events given in abscissa.

A Chi-square Goodness-of-fit test is also available to check the goodness-of-fit of the Nk to a Poisson
distribution. In this test, the counts values Nk are summarized in a tabular format retaining m distinct
values or group of adjacent values, together with the corresponding frequencies. The test statistic is

D2 =

m∑

k=1

(Ok − Ek)
2
/Ek

where Ok and Ek are the observed and expected frequencies for the class k. For instance, the first class
k = 1 can be N = 0 meaning that O1 and E1 are the number of intervals with no events recorded.
Asymptotically (for large n)

D2 ∼ χ2(m− p− 1)

where p is the number of parameters estimated from data, here p = 1 (for the mean of N). A one-sided
test will reject the Poisson hypothesis when D2 is too large1.

A classical drawback of this test is that classes with a small expected count Ei should be grouped,
in order to reach a minimal total of (say) 5.

> bp40$tests

statistic df p.value

disp 181.4726 113 4.652672e-05

chi2 21.5105 5 6.485040e-04

> bp50$tests

statistic df p.value

disp 131.022727 113 0.1181542

chi2 5.722912 3 0.1258975

For the dataset Brest.years, using a threshold of 50 cm leads to acceptable tests (at the 10% level),
while 40 cm seems too small. For the chi-square test, more details (e.g. grouping) are available.

> bp50$freq

1That is: D2 > χ2
α
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obs. theo. group

0 31 24.3452997 1

1 27 37.5857258 2

2 31 29.0135427 3

3 18 14.9309460 4

4 4 5.7628213 5

5 1 1.7793974 5

6 2 0.4578567 5

7 0 0.1244104 5

The values of N have been grouped in odrer to reach a minimal expected number of 5 for each group.
Note that for a fairly high threshold, the statistic N will generally take only the two values 0 and 1.

Then the chi-square test which requires at least three classes will not be available.
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Chapter 3

Renouv objects

Fitted POT models are in Renext considered as objects of a "Renouv" S3 class, and can be used with
methods coef, vcov, plot, predict, . . . Such models are usually created by a ML estimation using the
creator function Renouv. This function can carry out the usual estimation from observations Xi of the
marked process. It can also cope with heterogeneous data including blocks such as MAXdata or OTSdata
described in previous chapters, e.g. to use historical information. In some rare cases, a Renouv object
can also be created with RenouvNoEst if all coefficients are known.

3.1 Fitting POT for La Garonne

For the dataset Garonne, the OT data contain flow values over the threshold u⋆ = 2500 m3/s. We
can fit a POT model with any threshold u > 2500. As in Miquel (1984) we fit an exponential and a
two-parameter Weibull distribution using OT data only. The Renouv function needs on input the levels
given in a vector x, the effective duration effDuration – normally in years – and the threshold

> fit.exp <- Renouv(x = Garonne$OTdata$Flow, effDuration = 65, threshold = 3000,

distname.y = "exponential", main = "exponential")

Special inference for the exponential case without history

> class(fit.exp)

[1] "Renouv"

The result is an object with (S3) class "Renouv". A few S3 methods are available for this class:

> methods(class = "Renouv")

[1] AIC anova BIC coef lines logLik nobs plot PPplot

[10] predict print QQplot summary vcov

see '?methods' for accessing help and source code

The method coef extracts the vector of estimated coefficients

> coef(fit.exp)

lambda rate

1.5076923077 0.0009695003

The first element named "lambda" is the event rate expressed in events by year. The other elements are
the ML estimates of the distribution for excesses, with names corresponding to the probability functions
– here one name "rate" for the exponential distribution parameter. The ubiquitous plot method can be
used to re-draw a return level plot from the fitted object. The summary method can be used to display
the results. The predict method can be used to compute return levels corresponding to given return
periods as illustrated later.

A Renouv object is mainly a list within which the estimate element gives the maximum likelihood
estimates returned by coef. Many other results are returned.
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Figure 3.1: Return level plots for the example Garonne with two distributions for the excesses.

> head(names(fit.exp), n = 24)

[1] "call" "x.OT" "y.OT" "nb.OT" "effDuration"

[6] "threshold" "distname.y" "p.y" "parnames.y" "fixed.y"

[11] "trans.y" "est.N" "cov.N" "est.y" "cov.y"

[16] "corr.y" "estimate" "fixed" "df" "nobs"

[21] "p" "opt" "logLik" "logLikFun"

This shows the 24 first elements in the list. The sigma element gives the vector of standard deviations
for the estimates.

The distname.y formal in Renouv is used to change the distribution for the excesses Yi = Xi − u.

> fit.weibull <- Renouv(x = Garonne$OTdata$Flow, effDuration = 65, threshold = 3000,

distname.y = "weibull", main = "Weibull")

> coef(fit.weibull)

lambda shape scale

1.507692 1.063710 1057.298215

> fit.weibull$sigma

lambda shape scale

0.15229992 0.08451114 106.04186243

The estimated parameters of the Weibull distribution and their standard deviation (list item sigma)
show that the shape is close to 1.0, which corresponds to the exponential distribution. The two fits
produced return level plots shown on figure 3.1.

3.2 Return level plot

3.2.1 Description

Renext uses a return level plot which may be qualified as exponential, and differs from the usual one
which uses Gumbel scales. The main difference is that the exponential plot uses a log scale for return
periods while the Gumbel plot uses a log-log scale. In both cases, the theoretical return level curve
(exponential/Gumbel) shows as a straight line.

The difference between the two plots is restricted to the small levels/return periods, since the expo-
nential and Gumbel distribution functions are close for large values. As it was advocated in the discussion
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about functional plots page 11, the exponential return level plot is better suited to the use of "OTdata"
i.e. data where only values over a threshold are kept, even if the the original observations Xi are Gumbel
see B.1.3.

The return level plot is similar to the classical exponential plot of the previous chapter, but with the
two axes x, y exchanged. A concave (downward) RL plot indicates a distribution with a tail "lighter
than the exponential" or even with finite end-point such as GPD with ξ < 0.

The displayed confidence limits are in all cases pointwise and bilateral, and correspond to the con-
fidence percents displayed which can be changed in the call. In most cases the confidence limits are
approximate and obtained by using the delta method briefly described later. For some special cases with
exponential distribution an exact inference is possible and used. The infer.method element in the list
returned by Renouv provides information about this.

3.2.2 Plot method for Renouv objects

Once created with the Renouv function, an object of class "Renouv" can be used to (re)draw a return
level plot and change some options. Useful changes concern the main title using the main argument, or
axes labels xlab, ylab. Axis limits can also be set. For the return levels, this is done using the usual
ylim argument. For the return periods, the limits are set using Tlim or problim. The first possibility
works with a vector containing two return periods (in years); the second possibility requires a vector
with two probabilities.

The two following code chunks produce the return level plots shown on figure 3.2. On left panel, we
change the return periods axis limits.

> plot(fit.weibull, Tlim = c(1, 100), main = "return periods from 0 to 100 years")

On the right panel we change both axes and the confidence level.

> plot(fit.weibull, Tlim = c(1, 100), ylim = c(3000, 10000), pct.conf = 95,

main = "return levels and 95% limits")

The chosen percentage for the confidence limits pct.conf = 95 must correspond to a value available
in the object description. Otherwise, it is necessary to force a new prediction by passing a suitable
pct.conf argument along with predict = TRUE in the call to the plot method. The shown elements of
the Renouv object can be selected, see chapter 5 p. 42 for more details.

When only OT data are used as here, the default plotting positions use a return period at the order
statistics Z1 > Z2 > · · · > Zn estimated by 1/T̂ (Zi) = λ̂ S̃(Zi), where λ̂ is the natural estimate of the

rate (see below) and S̃(Zi) = 1− F̃ (Zi) = i/(n+ 1). Alternatively, the ppoints formula (2.1) for a 6= 0
or Nelson’s formula (Nelson 2000) can be specified with plotOptions passed to the SandT function. The
difference between the different choices can be important for the largest order statistics (i.e. for small i).

3.3 Computational details

3.3.1 Maximum Likelihood theory

Estimation and inference in Renext mainly rely on the Maximum Likelihood (ML) theory. A relevant
presentation can be found in Coles (2001, chap. 2) or in the Further reading references given there.

The standard application context of ML is when an ordinary sample i.e. n independent random
variables Xi with the same distribution depending of an unknown vector θX with density fX(x;θX).
The likelihood function L is the joint density of the sample i.e.

L =

n∏

i=1

fX(Xi; θX)

and the estimator θ̂X is the value of θX maximising L. In some special cases the maximisation of L
can have an explicit solution, but a numerical optimisation will generally be required. The ML theory
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Figure 3.2: Changing the settings of the return level plot. Left and right: the limits of the x-axis are set
using Ylim. Right: ylim and pdc.conf are used and only the specified 0.95 confidence level is shown.

warrants1 the asymptotic unbiasedness and asymptotic normality : when n is large θ̂X has its expectation
approximately equal to the true unknown θX , and it is approximately normally distributed.

The ML theory applies to more general situations where observations are no longer independent or
can have different marginal distributions. This occurs when order statistics are used in the estimation,
e.g. with historical data.

The general principle of the Renouv function is to allow a large choice of distributions, yet trying to
take advantage of the specific distribution/independence when possible. In most cases the maximisation
of the likelihood is obtained using optim function of the stats package. When historical data are used
they are considered as a complement to the ordinary data (excesses) and two optimisations might be
used.

3.3.2 Estimation and inference

The model uses a parameter vector θ = [λ, θ⊤
X ]⊤ of length p formed with the HPP rate λ and the

parameter vector θX for the levels distribution.
When only OT data are used, the observed data consist in N events [Ti, Xi] on a given period. Since

events Ti and levels Xi are independent the likelihood is

LOT =
(λw)N

N !
e−λw

︸ ︷︷ ︸
events

×
N∏

i=1

fX(Xi; θX)

︸ ︷︷ ︸
levels

where w is the time-length (i.e. the effective duration), and the log-likelihood is

logLOT = N log(λw)− λw − log(N !) +

N∑

i=1

log fX(Xi; θX). (3.1)

The ML estimation consists in two simple ML estimations: one for the events (rate estimation) and the
other for levels. The ML estimate of the unknown rate λ is

λ̂ =
N

w
=

number of events

duration
,

1Under suitable regularity conditions.
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its variance is Var[λ̂] = λ/w ≈ λ̂/w. Note that the number of events N is a sufficient statistic for λ: the
events Ti are not used and the whole information they provide about λ is contained in N . The "X-part"
of ML concerns an ordinary sample. The ML estimate θ̂X is available in closed form in some cases (e.g.
exponential) or can be computed by using a specific method (e.g. GPD, Weibull, gamma), see Deville
(2015).

When only OT data are used, it can be said that λ and θX are orthogonal parameters. This is no
longer true when block data (e.g. historical data) are also used: the likelihood then takes a slightly more
complex form given below.

In a few cases with only OT data and favourable distribution (e.g. Weibull), it is possible to use the
expected information matrix. But the general treatment in Renext is based on the observed information
and the numerical derivatives. More precisely, the information matrix is obtained as the numerical
hessian at convergence. The hessian can either be the element hessian returned by the optim function,
or result from the use of the hessian function from the numDeriv package: see the manual for more
details.

3.3.3 Delta method

The delta method can be used to infer about a function2 ψ = ψ(θ) of the parameter θ. For instance ψ(θ)

can be the return period of a given level x (see 1.1). The transformed parameter estimate is ψ̂ = ψ(θ̂).
As a general result in the ML framework, the transformed parameter estimate is asymptotically unbiased
E[ψ̂] ≈ ψ(θ) and asymptotically normal with variance

Var[ψ̂] ≈ δ
⊤ Var[θ̂] δ

where δ is the gradient vector

δ =
∂ψ

∂θ
=

[
∂ψ

∂θ1
,
∂ψ

∂θ2
, . . . ,

∂ψ

∂θp

]⊤

evaluated at θ̂, see Coles (2001, chap. 2).
Renext uses this approach3 with ψ taken as the level (or quantile) x(T ) corresponding to a given

return period T , given by (1.2) in section 1.2.2. Using chain rule, the derivative with respect to the rate
λ is

∂

∂λ
x(T ) =

1

λ2TfX

where the density fX is evaluated at x(T ). In practice, the uncertainty on λ has a minor impact for
large return periods and can optionally be ignored in the computations. The gradient of the quantile
function with respect to θX is computed numerically using a finite difference approximation.

3.3.4 Goodness-of-fit

As a general tool to assess the fit, the Kolmogorov-Smirnov (KS) test is computed in all cases.
The KS test normally requires a completely specified distribution for the null hypothesis while the

fitted distribution is used here – thus generating a bias. In some special cases (normal, exponential) the
bias could be corrected using an adaptation depending on the distribution as in Lilliefors test for the
normal. However since the number of estimated parameters is small (usually 1 or 2 for the "excesses
part") the bias will be small provided that the number of exceedances is large enough, say 50 or more.

For some distributions such as exponential a specific test may be available. In the current version
distribution-specific tests are in Renouv limited to Bartlett’s test of exponentiality.

Rounded measurements often lead to ties in the sample, which would without precaution generate
a warning in the KS test. This can be avoided by "jitterising" i.e. adding a small random noise to the
observed values.

The graphical analysis of the fit using the return level plot is generally instructive. For exponential or
Weibull excesses, classical exponential or Weibull plot can also be drawn using the expplot and weibplot

functions.
2Smooth enough.
3In the predict method for Renouv objects.
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Figure 3.3: An unobserved level can provide information on an historical period (left) or on missing
periods (right). In the second case, one would use a virtual block with its duration w1 set to the sum of
all gaps lengths.

When block data (e.g. historical data) are given, they are used during the estimation but not included
in the empirical distribution in the KS test. In this case, the interpretation of the test needs further
investigations.

3.4 Using heterogeneous data

3.4.1 Two types of block data

Beside OT data, Renouv and other Renext functions can use two other sorts of data: MAX data which
are r largest, and OTS data for “Over Threshold Supplementary” data4. In both cases, the data are
structured in blocks and can be used only as complement to the main OT data.

MAX data contain r largest blocks. Each block corresponds to a time interval of known duration w
during which the r largest values are available. Blocks are assumed to be mutually disjoint and
disjoint from the OT period. Neither the duration of blocks nor the number r of observations are
assumed to be constant; hence each block b has a specified duration wb and a number rb of largest
values.

OTS data contain Over Threshold blocks with known duration, exceedances and levels (or excesses).
Again, blocks are assumed to be mutually disjoint and disjoint from the OT period and other blocks.
For each such block b with known duration wb, we must have a threshold ub and all observations
with levels exceeding ub. The number rb of such observations may be zero, in which case we may
say that ub is an unobserved level. The threshold ub can not be smaller than the main threshold.

In the context of historical information, the threshold ub of an OTS block can be called a perception
threshold. Unobserved levels (empty OTS blocks) occur when it is granted, or at least believed, that ub
was never exceeded during a period of time. For instance it can be granted that a river never flooded
over a given benchmark level during the last five centuries, or that the arch of a bridge was never reached
since its construction. Such information has obviously a great potential impact on the estimation since it
typically concerns very long periods, much longer than the observation period. Note that the unobserved
level can concern missing periods for OT data: although no data are available we may still know that
no very high level occurred, see figure 3.3.

3.4.2 Likelihood

Global likelihood

In the general setting of heterogeneous data described above, the log-likelihood takes the form

logL = logLOT + logLMAX + logLOTS,

because the OT period and MAX or OTS blocks are assumed to correspond to disjoint time intervals
and hence to independent observations. Similarly the log-likelihood for MAX or OTS data are sums of

4Or Over ThresholdS.
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contributions arising from independent blocks, so

logL = logLOT +
∑

b∈{MAX blocks}

logLb +
∑

b∈{OTS blocks}

logLb.

The log-likelihood for a MAX or OTS block is given below.

MAX data

Consider a MAX block b with duration wb. Let Zb,1 > Zb,2 > · · · > Zb,rb be the rb largest observations.
The log-likelihood for the block can be proved to be

logLb = rb log(λwb) +

rb∑

i=1

log fX(Zb,i; θX)− λwb SX(Zb,r; θX) (3.2)

up to an unimportant additive constant.

OTS data

The likelihood for an OTS block with threshold ub is simpler to derive. According to the POT assump-
tions5, the levels greater than ub occur according to an HPP thinning the original HPP. This thinned
process has rate λSX(ub) because at each OT event, the level ub can be exceeded with probability SX(ub).
Let wb be as before the block duration, and let Zb,1 > Zb,2 > · · · > Zb,rb be the rb observations, with
possibly rb = 0. Up to an additive constant, the log-likelihood is

logLb = rb log(λwb) +

rb∑

i=1

log fX(Zb,i; θX)− λwb SX(ub; θX). (3.3)

This expression is identical to (3.2) with the block threshold ub replacing the minimum observed value Zb,rb .
When an OTS block b contains no observation i.e. when rb = 0, the log-likelihood (3.3) is simply

logLb = −λwb SX(ub; θX). (3.4)

This is easily checked: on a period of length wb, the number of levels > ub is Poisson with mean
µ := SX(ub)× λwb. Hence the probability to observe no level > ub is: e−µµ0/0! = e−µ.

Remarks

Assume that we have OT data, and consider the impact of using one extra block. Some special cases
arise.

1. When only one OTS block with no observation and with ub equal to the main threshold, its contri-
bution to the global log-likelihood is −λwb since then SX(ub) = 1 in 3.4). Up to an unimportant
constant, the resulting global log-likelihood is identical to the one which would result from simply
adding wb to the effective duration w of the main OT sample in (3.1).

2. Assume that we have only one historical MAX block which only contains the maximum Zb,1 i.e.
has rb = 1. The contribution of the block to the log-likelihood (3.2) is

logLb = log(λwb) + log fX(Zb,1; θX)− λwb SX(Zb,1; θX).

At the right hand side, the third term is identical to (3.4) with an unobserved level ub = Zb,1 and
a period length wb. The sum of the two first terms at right hand side is the extra contribution that
would be added to the log-likelihood of the OT data if a new OT observation with level Zb,1 had
been added without changing the main OT period duration. Therefore, the same likelihood/results
are obtained in the two following approaches.

• Specify an historical MAX block of length wb with rb = 1 and level Zb,1.

• Join the observed maximum Zb,1 to the OT levels Xi, and specify that the level ub := Zb,1

was never reached during a OTS block of length wb.

The second approach might seem natural to practitioners.
5See section 1.2.1 page 2.
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Likelihood maximisation

When heterogeneous data are used, the ML estimators of λ and θX are found by numerically maximising
the log-likelihood. It can be shown that this likelihood function can be concentrated with respect to the
rate λ, thus leading to the maximisation of a function logLc(θX) depending on θX only, see Deville
(2015).

The numerical maximisation relies on the optim function. Like most EV packages do, Renext uses
an unconstrained optimisation, while most distributions would normally require the use of inequality
constraints. For instance with GPD excesses, constraints should be imposed because the maximal like-
lihood is otherwise infinite, see B.3.2. In practice, this is not really a concern because the log-likelihood
will take the value NA or NaN rather than a large value near the boundary of the parameter domain, and
optim copes quite well with a NA value of the objective.

By default, the initial values for the estimation with heterogeneous data are obtained as the ML
estimates based on the OT data only. The reason is that MAX or OTS data were regarded as comple-
mentary data in the initial conception of Renext. Moreover, the ML estimation based on OT data is
simplified for most of the distributions used in practice.

3.4.3 Example: using Garonne historical MAX data

As seen in chapter 1, the Garonne dataset contains historical data of type MAX, which can be used in
the estimation. The data are described in the section 1.3.4 page 7. The historical part corresponds here
to one block, and the following levels

> Garonne$MAXdata$Flow

[1] 7500 7400 7000 7000 7000 6600 6500 6500 6400 6300 6300 6200

The duration is given in Garonne$MAXinfo$duration with value 143.09 years.
As a general rule, the MAX or OTS data must in Renouv be passed as a list of numeric vectors,

each vector corresponding to one block. The (effective) durations are given as a numeric vector with
the same length as the list. For the MAX case, the formal arguments to use are MAX.data (list) and
MAX.effDuration (numeric vector).

Since the data corresponds here to one block, the list MAX.data contains only one vector and the
vector MAX.effDuration is of length one. The two following fits produce the return level plots shown in
figure 3.4.

> fit.exp.H <- Renouv(x = Garonne$OTdata$Flow,

effDuration = 65, threshold = 3000,

MAX.data = list(Garonne$MAXdata$Flow),

MAX.effDuration = Garonne$MAXinfo$duration,

distname.y = "exponential",

main = "Garonne data, \"exponential\" with MAXdata")

> fit.weib.H <- Renouv(x = Garonne$OTdata$Flow,

effDuration = 65, threshold = 3000,

MAX.data = list(Garonne$MAXdata$Flow),

MAX.effDuration = Garonne$MAXinfo$duration,

distname.y = "weibull",

main = "Garonne data, \"Weibull\" with MAXdata")

The exponential fit is only slightly modified by the use of historical data. As said before, the parameter
λ and θX are no longer orthogonal when historical data are used

> fit.exp.H$corr

lambda rate

lambda 1.0000000 0.2054784

rate 0.2054784 1.0000000
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Figure 3.4: Return level plots for the example Garonne with two distributions for the excesses and
historical data. Specific plotting positions are used to take into account the historical observations. The
twp plots can be compared to those of figure 3.1.

3.4.4 Plotting positions

To be displayed on the return level plot (see figure 3.4), MAX or OTS data require suitable plotting
positions. Naive plotting positions based on predictions where used in former versions of Renext. They
are now replaced by more elaborated ones arising from some relevant literature on censored data (Millard
and Neerchal 2001). The principle is most easily understood for OTS data.

• If there is only one OTS block with threshold u1 > u and duration w1, then we can easily estimate
the return period of the level u1 by counting the total number of exceedances over u1 (including
those during the OT period). The product λSX(u1) = 1/T (u1) is estimated as the number of
exceedances divided by the duration w +w1. The plotting positions for the observations above u1
are determined as usual, see section 3.2.2 above, with the estimated rate λ̂ replaced by 1/T̂ (u1).
The number of exceedances over u is then estimated by assuming that the observations with levels
in (u, u1) occurred in the wb years of the block with the known rate for the w years of the OT
data. We thus can estimate the return period T (u) of u and then those of the observations with
level between u and u1 using an interpolation.

• When B OTS blocks exist, the threshold u and the B thresholds ub can without loss of generality
be assumed to be ordered as u0 < u1 < · · · < uB with u0 := u, and thus define B+1 slices of levels
(ub, ub+1) for 0 6 b 6 B with uB+1 := ∞. The previous computation still applies for the upper
slice which correspond to levels in > uB . Starting from this highest slice, one can then estimate by
recursion the number of observations falling in each of the slices (ub, ub+1) for b = B, B − 1, . . . ,
0, and thus the return periods T (ub). The computation is similar to that described by Hirsch and
Stedinger (1987) for the survival. The plotting positions for the observations in a slice result from
an interpolation.

For MAX blocks, the plotting positions are computed by considering a MAX block as an OTS block
with it its threshold set near to the smallest observation in the block, i.e. ub := Zb,rb − ǫ in the notations
used in (3.2) where ǫ is small. The chosen value of ǫ depends on the data.

For instance, for the data Garonne with B = 1, the MAX block can be considered as an OTS block
with threshold u1 = 6200− ǫ = 6195 m3/s. The total number of observations in the upper slide (u1, ∞)
is 3 + 12 = 15 (in the OT sample and the MAX block), during w + w1 = 65 + 143.09 = 208.09 years.
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So the return period of u1 is 208.09/15 = 13.9 years. Now the number of observations in the next slide
(u0, u1) is estimated by using the rate of such observations during the OT period.

The computations are carried out by the SandT function which estimates both the survival S and the
return periods T . Details are provided in Deville (2015).

3.4.5 Fitting from Rendata objects

Recall that a S3 class "Rendata" is defined in Renext in order to represent heterogeneous data with
optional block or historical data. An object of class "Rendata" contains an OT sample, but also embeds
useful pieces of information such as the effective duration for the OT sample or the variable name.
It seems sensible to use these indications in a POT model by simultaneously passing them as formal
arguments to the fitting function. For instance, when the OT sample of a "Rendata" object is used in
a fit, the effective duration could consistently be taken from this object. Renouv can indeed be used by
giving an x formal with class "Rendata" instead of a numeric vector.

> fitWithObj <- Renouv(x = Garonne)

Note that the threshold is taken from the Rendata object’s OTdata part, and will generally be too small
for a POT modelling. It can be changed simply

> fitWithObj1 <- Renouv(x = Garonne, threshold = 3000)

Similarly, the effective duration of the object can be shortcut by providing the effDuration formal
argument in the call. The distribution of the excesses can be set in the usual way. In all cases, the
summary method should be invoked on the fitted object.

Using "Rendata" objects passed as x formals can simplify the task of fitting many datasets files if
these are read with the readXML function.

3.5 GPD excesses

3.5.1 Standard POT

Of course, the Renouv function can be used with a GPD for the excesses.

> fit.GPD <- Renouv(x = Garonne$OTdata$Flow, effDuration = Garonne$OTinfo$effDuration,

threshold = 3000, distname.y = "GPD",

main = "Garonne data, \"GPD\"")

> coef(fit.GPD)

lambda scale shape

1.5076923 1160.1536041 -0.1226653

The fitted distribution has a negative shape ξ̂ = −0.12, hence has a finite upper end-point, which makes
a major difference with the Weibull fit. The maximal level is thus estimated as u− σ̂/ξ̂ = 12458.

As before, we can use the historical information in Garonne

> fit.GPD.H <- Renouv(Garonne, threshold = 3000, distname.y = "GPD",

main = "Garonne data, \"GPD\" with MAXdata")

> coef(fit.GPD.H)

lambda scale shape

1.5547065 1321.6227580 -0.1853906

The maximal level is now estimated as 10129.

29



4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

Garonne data, "GPD"

periods

le
ve

l

1 2 5 10 20 50 100 200 500

 quant

 95%

 70%

 sample

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

Garonne data, "GPD" with MAXdata

periods

le
ve

l

1 2 5 10 20 50 100 200 500

 quant

 95%

 70%

 sample

 1770−1913 (MAX)

Figure 3.5: Using GPD excesses for Garonne.

3.5.2 Several parameterisations

The Lomax and maxlo6 distributions are re-parameterisations of the GPD with shape ξ > 0 and ξ < 0
respectively, see B.3.7 and B.3.8. In both cases, the distribution involves a scale parameter β > 0 and
a shape parameter α > 0. The exponential corresponds to a limit when α → ∞ and β → ∞ while β/α
tends to a finite limit σ > 0.

> fit.maxlo <- Renouv(x = Garonne$OTdata$Flow,

effDuration = Garonne$OTinfo$effDuration,

threshold = 3000, distname.y = "maxlo")

> coef(fit.maxlo)

lambda shape scale

1.507692 8.152266 9457.880896

The scale parameter of the maxlo distribution is upper end-point for the excess, hence the upper end-
point for the level is estimated as u+ β̂ = 12458 as it was with the GPD distribution.

Choosing the Lomax distribution would here give an error

> trylomax <- try(Renouv(x = Garonne$OTdata$Flow,

effDuration = Garonne$OTinfo$effDuration,

threshold = 3000, distname.y = "lomax"))

> class(trylomax)

[1] "try-error"

> cat(trylomax)

Error in flomax(x = y, info.observed = info.observed) :

CV < 1. Estimation impossible for "lomax"

When only OT data are used in the estimation, only one of the two distributions Lomax and maxlo can
be fitted with Renouv without producing an error. Indeed, a finite ML estimator exists for the Lomax
distribution if and only if the empirical coefficient of variation ĈV is greater than 1, while a finite ML
estimator exists for the maxlo if and only ĈV < 1. Note that for a sample of size n of a GPD with

6We use this new name for an important yet apparently unnamed distribution. While the Lomax distribution is named
after K.S. Lomax, no Mrs or Mr Maxlo seems famous yet for having used it, hence the name does not require a capital
letter.
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ξ > 0 small, the probability that ĈV < 1 hence that the ML estimation of the Lomax is impossible is
not always negligible. For ξ = 0 the probability that ĈV < 1 is computed by the pGreenwood1 function.

Again, when MAX or OTS data are used only one of the two distributions Lomax and maxlo can be
fitted

> fit.maxlo.H <- Renouv(Garonne, threshold = 3000, distname.y = "maxlo")

> coef(fit.maxlo.H)

lambda shape scale

1.554721 5.391524 7126.255255

The situation can be quite confusing when MAX or OTS data are used because it is possible then that
the sign of the ML estimator of the GPD shape ξ differs depending on whether the block data (MAX
and OTS) are used or not. In such a case, it is simpler to directly use GPD.

The return levels for the GPD or its re-parameterisation as Lomax or maxlo are identical. Inasmuch
the delta method is used, the confidence intervals on the RL are identical as well, up to small numerical
differences.

> predict(fit.GPD, newdata = c(100, 200))

period quant L.95 U.95 L.70 U.70

100 100 7345.885 6018.570 8673.20 6643.998 8047.772

200 200 7762.568 6073.465 9451.67 6869.367 8655.769

> predict(fit.maxlo, newdata = c(100, 200))

period quant L.95 U.95 L.70 U.70

100 100 7345.885 6018.570 8673.200 6643.998 8047.772

200 200 7762.568 6073.466 9451.669 6869.367 8655.768

3.6 Fixing parameter values

3.6.1 Problem

In some situations one may want to fix one or several parameters in the distribution of excesses and still
perform a ML estimation for the remaining parameters. For instance, the shape of a Weibull distribution
can be fixed while the scale is to be estimated.

The Renouv function supports fixed parameters, with some limitations. In the current version, the
HPP rate parameter λ can not be fixed, and at least one parameter must be estimated in the excesses
part. Thus the full model must have at least two non-fixed parameters.

The specification of the fixed parameter is done using the fixed.par.y formal argument in Renouv.
Its value must be a named vector list with names in the distribution parnames. As a general rule7, the
non-fixed (estimated) parameters must be given using the start.par.y arg with a similar list value.

3.6.2 Example

The fixed parameter option can work with or without historical data in the same manner.

> fit.weib.fixed.H <-

Renouv(x = Garonne$OTdata$Flow,

effDuration = 65, threshold = 3000,

MAX.data = list(Garonne$MAXdata$Flow),

MAX.effDuration = Garonne$MAXinfo$duration,

distname.y = "weibull",

fixed.par.y = c(shape = 1.4),

start.par.y = c(scale = 2000),

trace = 0,

main = "Garonne data, \"Weibull\" with MAXdata and fixed shape")

7In some special cases, this is unnecessary but harmless.
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Figure 3.6: Return level plots for the example Garonne with two distributions with fixed parameters

(and historical data).

> fit.weib.fixed.H$estimate

lambda shape scale

1.579748 1.400000 1326.602872

With some distributions such as the SLTW some parameters must be fixed. Here the shift parameter
delta is fixed to δ = 2800 m3/s meaning that we believe that excesses over u − δ = 500 are Weibull,
even if we only know excesses over the threshold u = 3000 m3/s.

> fit.SLTW.H <-

Renouv(x = Garonne$OTdata$Flow,

effDuration = 65, threshold = 3000,

MAX.data = list(Garonne$MAXdata$Flow),

MAX.effDuration = Garonne$MAXinfo$duration,

distname.y = "SLTW",

fixed.par.y = c(delta = 2800, shape = 1.4),

start.par.y = c(scale = 2000),

main = "Garonne data, \"SLTW\" with MAXdata, delta and shape fixed")

When some parameters are fixed the covariance contains structural zeros, and consequently the correla-
tion matrix contains non-finite coefficients.

> fit.SLTW.H$cov

lambda delta shape scale

lambda 0.02270571 0 0 -2.950236

delta 0.00000000 0 0 0.000000

shape 0.00000000 0 0 0.000000

scale -2.95023609 0 0 9881.428891

3.6.3 All parameters known

Using Renouv with its fixed.par argument is possible when some of the parameters are known, but not
all of them. The RenouvNoEst function can be used to create a Renouv object with all its parameters
known, including the Poisson rate λ. This can be useful to use plot or predict with known parameters.
See the help ?RenouvNoEst for an example.
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3.7 Likelihood Ratio tests

3.7.1 Using the anova method

In section 3.1, two POT models were fitted using the same Garonne data with exponential and Weibull
distributions for the excesses. The ML estimate for the Weibull shape was α̂ = 1.06, and since the
exponential distribution corresponds to Weibull with shape α = 1, it seems natural to test the hypothesis
H0 : α = 1 against the alternative H1 : α 6= 1.

More generally, we can consider two nested models: the null hypothesis H0 imposes some restrictions8

on the parameter vector θ which is unrestricted under the alternative H1. The Likelihood Ratio (LR)
statistic is obtained by maximising the restricted and unrestricted likelihoods as

LR :=
maximal likelihood under H0

maximal likelihood under H1
,

with values LR 6 1. It is often convenient to use the test statistic W := −2 logLR, which takes values
W > 0 and is the difference of the deviances D := −2 logL. A large value for W tells that H0 should
be rejected. Under some general conditions, it can be proved that W has asymptotic distribution χ2(r)
where r is the number of independent scalar restrictions imposed by the null hypothesis, so r = 1 in the
exponential vs Weibull case.

LR tests are often made available in R packages through the anova method which must be imple-
mented for the class of fitted models that we wish to test. The anova methods compare nested models
fitted with the same data. In a general context, it is enough to extract the log-likelihood and the num-
ber of parameters for each model. The statistic W above is computed and compared to its asymptotic
distribution. In Renext, the anova method was implemented for the Renouv class. For instance using
two Renouv objects created before

> anova(fit.exp, fit.weibull)

Models:

o 'fit.exp' with exceedances dist. "exponential"

o 'fit.weibull' with exceedances dist. "weibull"

Method used: asymptotic approximation

Analysis of Deviance Table

df deviance W Pr(>W)

fit.exp 2 1556.0

fit.weibull 3 1555.4 0.58725 0.4435

which tells that the null hypothesis of an exponential distribution must here be rejected at any level
α 6 0.44 and accepted for larger values of α. So in practice we would here accept H0.

Note that the same test statistic W could have been used to test H0 against the thin-tailed Weibull
alternative H1 : α > 1, which seems in better accordance with the data. But the asymptotic distribution
of W would then no longer be χ2, and be that of the product BC of two independent random variables
with Bernoulli and chi-square distributions B ∼ Ber(1/2) and C ∼ χ2(1). The reason is that the tested
value of the parameter is now on the boundary of parameter domain, and the statistic W takes the value
0 when α̂ < 1. For w > 0 we have Pr{BC > w} = Pr{B = 1}Pr{C > w}, so the p-value for H1 : α < 1
is about 0.22 and the exponentiality would thus still be rejected.

3.7.2 LR test for the GPD family

In the standard POT framework, excesses are assumed to follow a GPD, say GPD(0, σ, ξ). Depending
on the sign of ξ, very different tail behaviour and return levels will be obtained. Not infrequently, the
ML estimate ξ̂ is close to zero thus suggesting to test the null hypothesis ξ = 0 corresponding to the

8Equality constraints.
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exponential distribution. Three (composite) alternative hypotheses are often of interest

H0 : ξ = 0 (exponential) against H1 :





ξ 6= 0 (GPD),

ξ > 0 (Lomax),

ξ < 0 (maxlo).

The LR still can be used as test statistic. However, a well-known problem is that the distribution of the
LR ratio has a very slow convergence to its asymptotic distribution in the present context9. More than
100 excesses are typically needed to obtain a p-value with a two-digit precision. For instance, with the
Lomax alternative, the probability to obtain W = 0 under H0 is the probability that ĈV < 1 and is given
by the pGreenwood1 function related to the Greenwood’s statistic. For n = 50, we get Pr{W = 0} ≈ 0.6
while the asymptotic probability mass is 0.5.

To overcome this problem of slow convergence, the distribution of the test statistic for a given sample
size n has been computed by Monte-Carlo simulations and a statistical model was fitted to allow a more
precise evaluation of the distribution of W (Deville 2015). This approximation is used in the LRexp.test
and also in the anova method for the Renouv class as far as no MAX or OTS data are used.

> anova(fit.exp, fit.GPD)

Models:

o 'fit.exp' with exceedances dist. "exponential"

o 'fit.GPD' with exceedances dist. "GPD"

Method used: numerical approximation

Analysis of Deviance Table

df deviance W Pr(>W)

fit.exp 2 1556

fit.GPD 3 1555 0.99712 0.3444

> anova(fit.exp, fit.maxlo)

Models:

o 'fit.exp' with exceedances dist. "exponential"

o 'fit.maxlo' with exceedances dist. "maxlo"

Method used: numerical approximation

Analysis of Deviance Table

df deviance W Pr(>W)

fit.exp 2 1556

fit.maxlo 3 1555 0.99712 0.2343

So none of the two tests would reject exponentiality.
The LR test also works with heterogeneous data. However the usual asymptotic approximation will

still be used as soon as the compared fits used MAX or OTS block data.

> anova(fit.exp.H, fit.GPD.H)

Models:

o 'fit.exp.H' with exceedances dist. "exponential"

o 'fit.GPD.H' with exceedances dist. "GPD"

Method used: asymptotic approximation

Analysis of Deviance Table

df deviance W Pr(>W)

fit.exp.H 2 1714.2

fit.GPD.H 3 1710.0 4.1515 0.318

9See e.g. Kozubowski, Panorska, Qeadan, Gershunov, and Rominger (2009)
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> anova(fit.exp.H, fit.maxlo.H)

Models:

o 'fit.exp.H' with exceedances dist. "exponential"

o 'fit.maxlo.H' with exceedances dist. "maxlo"

Method used: asymptotic approximation

Analysis of Deviance Table

df deviance W Pr(>W)

fit.exp.H 2 1714.2

fit.maxlo.H 3 1710.0 4.1515 0.159

So when the historical data are used, the exponentiality hypothesis is still accepted against the ξ < 0
alternative, but the p-value is now smaller.

Concerning the specific application to the Garonne data, it must be said that the tests give pretty
different results when the threshold varies in the range [2500, 3500]. For instance, the exponentiality is
rejected at the 5% level when the threshold is taken as 3200.

3.7.3 Other tests for the exponential-GPD context

As far as only OT data are used, two other tests of Renext can be used to test the exponential ξ = 0
against the Lomax alternative. These tests use the squared coefficient of variation and the Jackson’s
statistic and named CV2 test (or WE test, for Wilk’s Exponentiality test) and Jackson’s test. As for
the LR test, the distribution of the test statistic for both of these tests is approximated thanks to a
statistical model fitted on simulated values. In accordance with the results of Kozubowski et al. (2009),
the Jackson’s test was found on simulations to be nearly as poweful as the LR test, both having greater
power than the CV2 test.

We can use these two tests for the excesses of the Garonne example, although the Lomax alternative
H1 : ξ > 0 is clearly not well supported by the data

> X <- Garonne$OTdata$Flow

> Y <- X[X > 3000]

> c(CV2 = CV2.test(Y)$p.value, Jackson = Jackson.test(Y)$p.value)

CV2 Jackson

1 1

> Y <- X[X > 3300]

> c(CV2 = CV2.test(Y)$p.value, Jackson = Jackson.test(Y)$p.value)

CV2 Jackson

0.581 1.000

So both tests accept H0 : ξ = 0 against the Lomax alternative. The computed p-value in these tests can
be 1 (exactly), which may seem unusual. The reason is that the p-value is computed with a precision
which is not greater than two digits and is rounded. This is not a concern for large p-values (≈ 1).
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Chapter 4

POT and block data

Although devoted to POT, Renext can be used for some analyses involving block data: block maxima
and r largest. These possibilities are restricted to models arising form the marked process with a
distribution of levels in the GPD family, including exponential, Lomax or maxlo distributions.

4.1 Example: Venice data

Consider the Venice data, concerning the sea-level at Venice (in cm). This dataset is used as example 1.5
in Coles’ book, where it used in section 3.5.3 for a r largest analysis. Variants of this dataset are provided
by several CRAN packages1. We will use here the data frame object named venice from evd.

> head(venice, n = 3)

1 2 3 4 5 6 7 8 9 10

1931 103 99 98 96 94 89 86 85 84 79

1932 78 78 74 73 73 72 71 70 70 69

1933 121 113 106 105 102 89 89 88 86 85

> range(venice, na.rm = TRUE)

[1] 69 194

We have 51 years of data from 1931 to 1981 and for each year the r largest observations for r 6 10, given
in descending order. Missing observations are present in year 1935, and then given as NA.

We may regard the observations as arising from a POT model, and hence use them as MAX data
blocks, all with duration equal to one year. For that aim, we need to build a list with one element by
year: a numeric vector with the r largest values observed that year, e.g. r = 5.

> r <- 5

> MAX.data <- as.list(as.data.frame(t(venice[ , 1:r])))

> MAX.data <- lapply(MAX.data, function(x) x[!is.na(x)])

> MAX.effDuration <- rep(1, length(MAX.data))

> head(MAX.data, n = 2)

$`1931`

[1] 103 99 98 96 94

$`1932`

[1] 78 78 74 73 73

> head(unlist(lapply(MAX.data, length)))

1931 1932 1933 1934 1935 1936

5 5 5 5 5 5

1E.g. with a Year column in ismev.
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Figure 4.1: Fit using r largest values from the venice data set. The plotting positions are obtained as
explained in section 3.4.4.

Note that the transposition method t returns a matrix, and a coercion to data.frame is required to get
a list.

Since all observations are > 66 cm, we can consider a POT model with u 6 66 to use all available
information. Then we can the use the Renouv function

> fit.GPD <- Renouv(x = NULL,

MAX.data = MAX.data, MAX.effDuration = MAX.effDuration,

distname.y = "GPD", threshold = 66,

numDeriv = FALSE, trace = 0, plot = FALSE)

> coef(fit.GPD)

lambda scale shape

27.51085268 18.28501439 -0.08798975

We implicitly supposed that for each year the r provided observations are the largest, even when NA are
found. Since the fitted object has class "Renouv", the plot method shows the usual RL plot

> plot(fit.GPD)

see fig. 4.1. The plotting positions for the points are obtained as explained in section 3.4.4.
For Renouv objects using a distribution in the GPD family, a “translation” of the parameters to GEV

parameters for block maxima is provided in the MAX element of the result.

> fit.GPD$MAX

$distname

[1] "gev"

$blockDuration

[1] 1

$estimate

loc scale shape

118.56917923 13.65946564 -0.08798975

$sigma

loc scale shape

1.56641520 0.77521523 0.03292705
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$cov

loc scale shape

loc 2.453656585 0.74275331 -0.005386851

scale 0.742753305 0.60095866 0.012692692

shape -0.005386851 0.01269269 0.001084191

The translation provides the estimated parameters of a GEV distribution GEV(µ⋆, σ⋆, ξ⋆) and must not
be confused with those of the GPD(u, σ, ξ) for the excesses of the POT model. The estimated values of
the shape parameters ξ and ξ⋆ are the always the same, but the estimated scale parameters differ and
µ⋆ is not equal to the threshold u. The GEV distribution can be used as usual in the r largest context.
If a different threshold had been used, e.g. u = 50 the POT parameters would have been very different,
but the GEV parameters would have been the same.

4.2 Using fGEV.MAX

Beside Renouv, the fGEV.MAX function was added to Renext to perform the estimation of a GEV
distribution GEV(µ⋆, σ⋆, ξ⋆) from block maxima or from r largest observations, using in both cases blocks
having the same duration. This function uses the representation of the GEV as the distribution of the
block maxima in a POT model with GPD excesses. The distribution is no longer a formal argument, and
nor is the threshold u which is chosen depending on the data. In the likelihood L, the POT rate λ has
been concentrated out, so L depends only on the two parameters σ and ξ of the POT model. Although
computation time is not really a concern here, the optimisation is much faster than the usual one which
uses the three GEV parameters µ⋆ σ⋆ and ξ⋆. The hessian at the optimum is computed using analytical
derivatives rather than numerical derivatives. Details can be found in Deville (2015).

> fit.GEV <- fGEV.MAX(MAX.data = MAX.data, MAX.effDuration = MAX.effDuration)

> fit.GEV$estimate

loc scale shape

118.57054271 13.66158562 -0.08789015

> require(ismev)

> fit.GEVref <- rlarg.fit(venice, show = FALSE)

> fit.GEVref$mle

[1] 120.5479027 12.7840265 -0.1129418

Note that fGEV.MAX returns a simple list object and the methods such as coef can not be used.

4.3 Computing the r largest observations

4.3.1 Coping with gaps

Given observations [Ti, Xi] of the marked process, it seems quite easy to compute block maxima or
r largest – in other words, to aggregate the data. However, in some cases gaps are present and must
be taken into account in the aggregation. When known gaps exist in the data, they should be carefully
inspected to assess their possible impact on the estimation.

The OT2MAX function was designed to compute the r largest observations as well as some diagnostics
when known missing periods exist. The formal argument OTdata of this function corresponds to a
data frame with two columns: a date column and a column containing the variable X, as in the OTdata

element of an object of the "Rendata" class. The maxMissingFrac gives the maximum fraction (between
0 and 1) of gap within a block. When this fraction is exceeded in a block, the returned block observations
are NA. By default, the function produces a plot as shown in figure 4.2.

The Dunkerque data set used here is similar to Brest: it also concern sea surge and embeds missing
periods, but the data cover a smaller period of time.
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Figure 4.2: Left: block maxima for Dunkerque with maxMissing set to 0.5 and 0.05. Right: the r
largest observations for r = 4. Each annual block can contain up to 4 observations.

> RD <- Dunkerque

> OTdata <- RD$OTdata; OTmissing <- RD$OTmissing

> ## allow up to 50% of gap within each block, or only 5%?

> MAX1 <- OT2MAX(OTdata = OTdata, OTmissing = OTmissing,

maxMissingFrac = 0.5,

main = "impact of the 'maxMissingFrac' formal")

> MAX2 <- OT2MAX(OTdata = OTdata, OTmissing = OTmissing, dataFrames = TRUE,

prefix = "Max", maxMissingFrac = 0.05, plot = FALSE)

> lines(MAX2$MAXdata$date, MAX2$MAXdata$Surge, type = "h", col = "red", lwd = 3)

> legend("topleft", lw = c(1, 3), col = c("black", "orangered"),

legend = c("50% max", " 5% max"))

The OTmissing element of Dunkerque reports quite large gaps in the nineties (e.g. from October of 1992
to July of 1995). With the larger value maxMissingFrac = 0.5, up to 50% of a block can be a gap, and
fewer NA block observations result than when a small value of maxMissingFrac is used.

> ## r largest obs for r = 4

> MAX3 <- OT2MAX(OTdata, OTmissing = OTmissing, MAX.r = 4,

maxMissingFrac = 0.9,

dataFrames = FALSE, trace = TRUE,

main = "r largest with r = 4")

Number of events by block

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

2 7 11 13 12 13 11 15 6 9 18 22 29 18 17 11

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

13 16 9 14 11 15 10 17 14 29 29 29 21 17 17 13

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

17 4 5 NA NA NA NA 1 7 8 14 16 19 28 22 17

2004 2005 2006 2007 2008

24 19 20 31 NA

> ## restrict the period

> MAX4 <- OT2MAX(OTdata, OTmissing = OTmissing, MAX.r = 4,

start = "1962-01-01",

end = "1990-01-01",

maxMissingFrac = 0.9,

dataFrames = FALSE, trace = TRUE,

main = "r-largest with r = 4 with given 'start' and 'end'")

39



Number of events by block

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

11 15 6 9 18 22 29 18 17 11 13 16 9 14 11 15

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

10 17 14 29 29 29 21 17 17 13 17 4

> ## use in a block maxima analysis, as if there were no gaps.

> fitDunk <- fGEV.MAX(MAX.data = MAX3$data,

MAX.effDuration = rep(1, length(MAX3$effDuration)))

4.3.2 Diagnostics for gaps

A quite common problem with gaps is that they can conceal a seasonal effect: the probability that a
randomly selected time T falls in a gap can differ according to the season of T . Even if the gaps are
really exogenous, this may cause a bias in models, either POT or block maxima. For example severe
storm surges occur mainly in winter, so a gap with a six month duration will probably lead to loose
more of large observations when it is located in winter rather than in summer. This can be controlled
by estimating the probability that T falls in a gap according to its location in the year. The plotType

argument of OT2MAX provides an useful related diagnostic.

> ## plot the gap rate

> MAX5 <- OT2MAX(OTdata = OTdata, OTmissing = OTmissing,

maxMissingFrac = 0.5,

main = "probability of being in a gap",

plotType = "gap")

The plot (fig 4.3, left) shows that the probability of falling in a gap does not have a very strong variation
along one year, and broadly ranges from 1/5 to 1/3. The horizontal segments in gray show jitterised
versions of the gap rates for all the year × month pairs. Many of these rates are equal to 0 (no gap in
the month) and several of them are equal to 1 (fully missing month).

A complementary diagnostic is obtained by plotting a yearly time series for each month of a year (as
in fig 4.3 right), thus showing the evolution of the gap fraction in a given month.

> require(lattice)

> xyplot(MAX5$monthGapTS[ , c(1:3, 10:12)], type = "h", lwd = 2, ylim = c(0, 1))

The lattice base package (Sarkar 2008) used here provides nice plots for multiple time series.
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Figure 4.3: Controlling the possible impact of gaps. Left: the probability that a day in the year falls in
a gap is shown in orange. The horizontal segments in gray show a jitterised version of the gap fraction
for a year/month combination. Right: yearly time series of gap fraction for six months.
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Chapter 5

Renext graphics

Renext graphics are based on the graphics package and can hence be customised as usual. However,
adding points to a RL plot is not always easy: when several types of data exist, the determination of the
plotting positions requires quite technical computations as performed by the SandT function.

A number of supplementary functions are provided to facilitate the most frequent modifications of RL
plots. A widespread practice is showing on a same RL plot the data (sample points) and some elements
of a fitted model: quantile line, confidence bounds. When several kinds or sources of data are used in
the fit, it is important to display them in such a way that the different sources are readily identified. It
arose from users practice that representing several fits on the same RL plot through a lines or points
method is often a valuable option, provided that the fits can be identified by colour or line type, and
that a legend is shown: the RLpar function and the RLlegend* functions have been designed for these
two tasks.

5.1 The plot and lines methods

The plot and lines methods can be used to build return level plots showing several elements: quantile
line (or return level line), sample points, . . . A plot can be obtained by adding elements to an existing
plot with the lines method. Recall that the dispatch mechanism of S3 applies when the first argument
(here x) of the generic function (here lines) is an object of a class "Renouv" for which a method has
been implemented (here "Renouv").

> fitG <- Renouv(Garonne, distname.y = "GPD", plot = FALSE)

> ## specify pch background color for MAX block #1

> plot(fitG, show = list(OT = TRUE, MAX = FALSE), main = "use plot, then lines")

> lines(fitG, show = list(MAX = TRUE))

The show argument of plot and lines is used to select the elements in "Renouv" object passed in x

(here Garonne) that will be shown. This is a named list having logical vectors as its elements. By playing
with the show formal, we can build a plot in several steps as here: first plot without MAX blocks, then add
them to the plot. Note that the legend is not updated when adding elements to the graph, motivating
the RLlegend* mechanism described later in section 5.3.

5.2 The RLpar function

5.2.1 Basics

The RLpar function is used to change some of the graphical parameters such as colours, line types or
plotting characters. It returns a hierarchical list designed to be used as a value of the par formal argument
of the plot and lines methods. The hierarchical structure of this list can be shown using str, but this
would take too much space here, so we will use names

> names(RLpar())
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Figure 5.1: Adding historical information with lines. Note that the points added using lines are not
described in the legend.

[1] "quant" "OT" "conf" "MAX" "OTS"

> str(RLpar()$quant)

List of 4

$ type: chr "l"

$ col : chr "black"

$ lwd : num 2

$ lty : chr "solid"

> names(RLpar()$MAX)

[1] "block1" "block2" "block3" "block4" "block5" "block6" "block7"

[8] "block8" "block9" "block10"

The hierarchical structure is displayed in table 5.1. The list can be flattened by using unlist, producing
element names as shown in the last column of table 5.1.

> ## display 10 names

> head(names(unlist(RLpar())), n = 10)

[1] "quant.type" "quant.col" "quant.lwd" "quant.lty"

[5] "OT.col" "OT.pch" "OT.cex" "OT.bg"

[9] "conf.conf1.lty" "conf.conf1.col"

So unlist coerces the hierarchical list into a character vector with named elements. In the elements
names, the dot . indicate the hierarchical levels that have been flattened. For instance, the element
quant.type is the coercion of the quant$type element of the hierarchical list RLpar(). Using this dot
separated format, we can easily change the value of any graphical parameter appearing in the list.

> newPar <- RLpar("quant.col" = "azure")

> unlist(newPar$quant)

type col lwd lty

"l" "azure" "2" "solid"

The use of RLpar is not totally unlike that of the par function of the graphics package; however RLpar
does not alter the value of a variable outside of the global environment as par does. The normal use of
RLpar is as a value for the par formal argument within a call to plot or lines methods, with the aim
of encapsulating the graphical parameters settings. Here is an example.
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Figure 5.2: Using a par formal with RLpar. Note that on the plot at the right all the plotting characters
have been changed.

> ## specify pch background colour for MAX block #1

> plot(fitG, par = RLpar(MAX.block1.bg = "green", MAX.block1.pch = 24),

main = "change symbol bg colour")

The given values for the parameters must be chosen with care since they are not controlled. For instance,
giving the value "blue" for a pch parameter will cause no error or warning but will most probably lead
to an unwanted result. Note that as seen in table 5.1, the graphical parameters can be numeric or
character1. Character values for plotting characters (e.g. in pch = "+") should not be used, because
they are likely to create problems in legends. They can be replaced by an equivalent numeric (e.g. in
pch = 3).

With a package version >= 2.2-0, regular expressions can be used as well to change several graphical
parameters. For instance, in

> newPar <- RLpar("OTS.block[0-9]+.col" = "red")

> newPar$OTS$block1$col

[1] "red"

we turn to red the colour of all the symbols used for the OTS blocks. We can as well use only “nabla”
triangles (∇, pch = 25) as plotting characters with

> plot(fitG, par = RLpar("*.pch" = 25), main = "regexp for plotting characters (pch)")

which produces the plot at the right of figure 5.2.
By combining the two formals show and par of the plot and lines methods, we can easily change

the styles of the elements of a plot, see section 5.4 later.

5.3 The RLlegend* functions

A plot statement can contain directives to plot several graphic elements: quantile lines, sample points,
... each generating a line in the legend provided that the legend formal is TRUE. To a certain extend,
the text labels in the legend can be changed by using named elements in the lists or vector.

The RLlegend* functions are used to add a legend to a return level plot which is built by steps via
lines.

1To a certain extend, they also can be R language to be evaluated. E.g. rgb(0.1, 0.2, 0.9) can be used to specify a
colour.
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level 1 level 2 level 3 value full name

quant

"type" "l" quant.type

"col" "black" quant.col

"lwd" 2 quant.lwd

"lty" "solid" quant.lty

OT

"col" "black" OT.col

"pch" 16 OT.pch

"cex" 0.8 OT.cex

"bg" "black" OT.bg

conf

conf1

"lty" 2 conf.conf1.lty

"col" "black" conf.conf1.col

"lwd" 2 conf.conf1.lwd

conf2 (list)
...

conf6 (list)

MAX

block1

"col" "orangered" MAX.block1.col

"pch" 21 MAX.block1.pch

"cex" 1.1 MAX.block1.cex

"lwd" 2 MAX.block1.lwd

"bg" "yellow" MAX.block1.bg

block2 (list)
...

block10 (list)

OTS

block1

"col" "orangered" OTS.block1.col

"pch" 21 OTS.block1.pch

"cex" 1.1 OTS.block1.cex

"lwd" 2 OTS.block1.lwd

"bg" "yellow" OTS.block1.bg

block2 (list)
...

block10 (list)

Table 5.1: The RLpar() hierarchical list. The hidden structures are similar to those shown, e.g.
within MAX, the block2 has the same structure as block1.
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Figure 5.3: Left: building a RL plot with legend by steps. Right: Fits using different thresholds u.

1. A call to the RLlegend.ini function initialises a special variable which can be thought of as global2.

2. One call to the plot method creates the plot, and subsequent calls to lines add elements to it.
For these statements, the legend formal argument must be turned to FALSE in order to delay the
construction of the legend3.

3. RLlegend.show adds the legend to the plot on the active device.

Consider again the first example of this chapter.

> RLlegend.ini()

> plot(fitG, show = list(OT = TRUE, MAX = FALSE),

main = "use plot, then lines", legend = FALSE)

> lines(fitG, show = list(OT = FALSE, quant = FALSE, MAX = TRUE), legend = FALSE)

> RLlegend.show()

The elements added with lines are now duly described in the legend as shown on figure 5.3. Note that
the name of the R object used in the x argument of plot or lines (here fitG) is used as prefix. This
can be changed by specifying a value for the label argument.

5.3.1 Example: sensitivity to the choice of the threshold

The next example shows a situation in which the gradual construction of a RL plot can be useful. We
want to compare RL plots for different fits of the same data but using different thresholds u. We use
again Garonne, including its historical information. Since the fit lines differ only by their colour, we can
use the standard palette4 rainbow. We also make colours translucent (i.e. semi-transparent) for clarity.

> u <- seq(from = 2500, to = 5000, by = 500)

> fit1 <- Renouv(Garonne, threshold = u[1], distname.y = "GPD", plot = FALSE)

> cols <- translude(rainbow(length(u)), alpha = 0.6)

> RLlegend.ini()

> ## plot with no lines or points.

> plot(fit1,

main = "GPD for 'Garonne'. Sensitivity of RL to the threshold u",

show = list(quant = FALSE, OT = TRUE, conf = FALSE, MAX = TRUE),

2To be exact, this variable is stored in an environment bound to the package.
3Without this precaution, the same element will be shown several times in the legend.
4A better solution would use a sequential palette from the RColorBrewer package.
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legend = FALSE)

> for (i in 1L:length(u)) {

fiti <- Renouv(Garonne, threshold = u[i], distname.y = "GPD", plot = FALSE)

lines(fiti, legend = FALSE,

label = paste("u = ", u[i]),

show = list(OT = FALSE, conf = FALSE, quant = TRUE, MAX = FALSE),

par = RLpar(quant.col = cols[i]))

}

> RLlegend.show()

The plot is shown on the right of figure 5.3. It shows that choosing u > 3500 will lead to much smaller
return levels for the return period T = 1000.

5.4 Block data

5.4.1 One style per block?

When a Renouv object contains block data (MAX or OTS), these can be shown on the RL plot in a quite
flexible way. As explained above, the graphical parameters can be set with RLpar, although a limited
number of styles is imposed for the blocks.

• A different plotting style can be used or not for each block, depending on the byBlockStyle formal
argument.

• For each of the two block types, one can select the blocks shown by using a logical or character
vector as a MAX or OTS element of the show list formal.

Consider the following fictive example with 4 OTS blocks. We begin with a basic call to plot

producing the plot on the left of figure 5.4.

> fitSim <- Renouv(x = rexp(100), effDuration = 100, threshold = 0,

OTS.data = list("deluge" = c(1.2, 2.4, 6.2, 3.1),

"dryness1" = c(0.2, 0.3),

"dryness2" = numeric(0),

"dryness3" = numeric(0)),

OTS.effDuration = c(60, 100, 20, 30),

OTS.threshold = c(1.0, 0.1, 0.3, 0.1),

plot = FALSE)

> plot(fitSim, main = "simulated data, by Block", label = "")

Each of the four blocks uses a different style and is shown in the legend. By using the byBlockStyle

argument, we can change this default behaviour, see the plot at the right of figure 5.4. Note that when
byBlockStyle is TRUE, the common plotting characteristics can be changed as would be the first block
"block1", even if the block with number 1 is not shown on the plot – this is just a matter of convention.
To specify a common style for all OTS blocks we use

> plot(fitSim, main = "simulated data", label = "", byBlockStyle = c("OTS" = FALSE))

Since there are no MAX blocks here, it is not necessary to specify the MAX element. Obviously, the elements
of byBlockStyle must be named; yet we could have used as well a list as in list("OTS" = FALSE),
instead of the character (atomic) vector c("OTS" = FALSE).

5.4.2 Enlightening one block

We now consider a more elaborated example using the same Renouv object as before, namely fitSim.
Assume that we want all blocks to be shown with the same style, except one. We can use a logical vector
in the considered element of show, i.e. in showOTS. This vector must have its length equal to the number
of blocks, and its elements tell if the corresponding block (in the same order) is shown or not.
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Figure 5.4: Using a different style for each block (left) or one common style for all (right).

> RLlegend.ini()

> plot(fitSim, main = "grouping blocks", label = "",

show = list("OTS" = FALSE), ## IMPORTANT!

legend = FALSE)

> ## add dryness blocks. Note that the label is used as prefix for all elements.

> lines(fitSim, label = "dyryness",

byBlockStyle = c("OTS" = FALSE),

show = list("quant" = FALSE, "OTS" = c(FALSE, TRUE, TRUE, TRUE)),

par = RLpar(OTS.block1.pch = 22,

OTS.block1.col = "red", OTS.block1.bg = "gold"),

legend = FALSE)

> ## add deluge block

> lines(fitSim, label = "",

byBlockStyle = c("OTS" = TRUE),

show = list("quant" = FALSE, "OTS" = c(TRUE, FALSE, FALSE, FALSE)),

par = RLpar(OTS.block1.col = "SteelBlue3", bg = "darkcyan"),

legend = FALSE)

> RLlegend.show()

As said before, we use OTS.block1 to select the plotting symbol and its properties, although the block
with number 1 (named "deluge") is not displayed by the corresponding call to lines (since the first
element of show$OTS is FALSE).

Instead of a logical vector, each of the list elements named "MAX" and "OTS" in show can be a character
string used to select the wanted elements. This is useful when the names of the blocks are relevant for
the selection. The following code produced the plot shown at the right of figure 5.5.

> RLlegend.ini()

> plot(fitSim, main = "char. in 'show'", label = "", show = list("OTS" = "dryness"))

> RLlegend.show()
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Appendix A

The “renouvellement” context

A.1 Marked point process

The méthode du renouvellement uses a quite general marked process [Ti, Xi] for events and levels. As
in 1.2.1 the two sequences "events" and "levels" are assumed to be independent, and the Xi are assumed
to be independent and identically distributed with continuous distribution FX(x).

An alternative equivalent description of the events occurrence is through the associated counting
process N(t). This describes the joint distribution for the the numbers of events N(tk) − N(sk) on an
arbitrary collection of disjoint intervals (sk, tk). Although the most important and clearest context is the
HPP, the theory can be extended to cover non-poissonian Lévy counting processes N(t) e.g. Negative
Binomial. However, the Negative Binomial Lévy Process implies the presence of multiple (simultaneous)
events.

A.2 Maxima

A.2.1 Compound maximum

Consider an infinite sequence of independent and identically distributed random variables Xk with con-
tinuous distribution FX(x). The maximum

Mn = max(X1, X2, . . . , Xn)

has a distribution function given by FMn
(x) = FX(x)n. Now let N be a random variable independent of

the Xk sequence and taking non-negative integer values. The "compound maximum"

M = max(X1, X2, . . . , XN )

is a random variable with a mixed type distribution: it is continuous with a probability mass corre-
sponding to the N = 0 case which can be considered as leading to the certain value M = −∞. The
distribution of M can be derived from that of Xk and N . Using Pr (M 6 x | N = n) = FX(x)n and the
total probability formula we get

FM (x) =

∞∑

n=0

FX(x)n Pr {N = n} = hN [FX(x)] (A.1)

where hN (z) = E
(
zN

)
is the generating function of N .

When N has a Poisson distribution with mean µN = λw the generating function is given by hN (z) =
exp{−µN [1− z]} and

FM (x) = exp{−λw [1− FX(x)]} = exp{−λw SX(x)}. (A.2)

When FX(x) is GPD, it can be shown that M is1 GEV see later.

1Up to its probability mass.
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For large return levels x, we have FX(x) ≈ 1. The generating function hN (z) for z = 1 has a value
hN (z) = 1 and a first derivative h′N (z) = E(N), leading to

1− FM (x) ≈ E(N) [1− FX(x)] , (A.3)

or equivalently
FM (x) ≈ FX(x)E(N) (A.4)

which tells that for large return levels, the distribution of M is approximately that of the maximum
of E(N) independent Xk. Both formula (A.3) and (A.4) tell that the distribution of N only influences
large return periods through its expectation. Consequently there is little point in choosing a non-Poisson
distribution for N as far as the interest is focused on large return periods.

From formula (A.4) and the asymptotic behaviour of the maximum of n independent and identically
distributed random variables (see B.1 later), it appears that when E(N) is large the distribution of M
will generally be close to a suitably scaled GEV distribution.

A.2.2 Special cases

A case with special interest is when N is Poisson with mean µN = λw and X has a Generalised Pareto
Distribution (GPD). Then M follows2 a Generalised Extreme Value (GEV) distribution as is usually
assumed .

Consider first the exponential case SX(x) = e−(x−µ)/σ for x > µ. Then (A.2) writes as

FM (x) = exp
{
−λw e−(x−µ)/σ

}

which using simple algebra can be identified as the Gumbel distribution function with parameters µ⋆ =
µ+ σ log(λw) and σ⋆ = σ.

In the general case where FX(x) corresponds to the GPD, we have SX(x) = [1 + ξ(x− µ)/σ]
−1/ξ for

x > µ, hence

FM (x) = exp
{
−λw [1 + ξ(x− µ)/σ]

−1/ξ
}

which can be identified as GEV(µ⋆, σ⋆, ξ) with parameters µ⋆ and σ⋆ depending on µ and σ, see Deville
(2015). Note that the shape parameter ξ is the same for the GPD and the GEV distribution.

A.3 Return periods

In the general marked process context described above, the return period of a given level x can be defined
using the thinned process [Ti, Xi] of events with level exceeding x i.e. with Xi > x. The return period
will be the expectation TX(x) of the interevent in the thinned process. In the rest of this section, we
assume that events occur according to a HPP with rate λ > 0. Due to the independence of events and
levels, the thinned event process also is an HPP with rate λ(x) = λSX(x). The return period is then
given by

TX(x) =
1

λSX(x)
.

Actually the interevent distribution is exponential with expectation 1/λ(x).
Still using the same probabilistic framework, we may consider the sequence of annual maxima or

more generally the sequence Mn of maxima for successive non-overlapping time blocks with the same
duration w > 0. The random variables Mn are independent with a common distribution FM (x) that can
be determined as it was done in the previous section. In this "block" context, the return period of a level
x naturally expresses as a (non-necessarily integer) multiple of the block duration. Thus if FM (x) = 0.70
i.e. if the level x is exceeded with 30% chance within a block, the return period is 1/0.3 ≈ 3.33 expressed
in block duration unit. More generally, the block return period of the level x will be computed as

TM (x) =
w

1− FM (x)
=

block duration

prob. that M exceeds x
. (A.5)

2Up to its probability mass in −∞.
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A major difference between the two return periods TX(x) and TM (x) is that the level x can be exceeded
several times within the same block, especially for small x. This difference may make ambiguous some
statements about yearly return periods or yearly risks. For instance, the level x with a 100 years return
period TX(x) is very likely to be exceeded twice or more within a given century3.

Using the relation (A.2) between the distributions FX(x) and FM (x), the relation (A.5) becomes

TM (x) =
w

1− exp {−λw [1− FX(x)]} . (A.6)

In practice, the interest will be focused on large levels x. In the expression at the denominator we
may then use the approximation 1 − e−z ≈ z for small z, leading to TM (x) ≈ TX(x). Moreover the
inequality 1− e−z 6 z for z > 0 shows that TM (x) > TX(x) for all x. Using 1− e−z ≈ z− z2/2, we even
find a better approximation for moderately large levels x

TM (x) ≈ TX(x) +
w

2
.

The presence of the half-block length w/2 can be viewed as a rounding effect.

3Within a given century, the number N(x) of events with levels Xi > x is then Poisson with mean 1. Thus Pr{N(x) =
0} ≈ 0.37 and Pr{N(x) > 1} ≈ 0.26.
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Appendix B

Distributions

B.1 Asymptotic theory

B.1.1 An important theorem

The following conventions or definitions are used.

• Two probability distributions F (x) and G(x) are of same type when G(x) = F (ax + b) for some
constants a > 0 and b. All distributions of a given type are often written as F0([x − µ]/σ) where
F0(z) is a chosen member of the type, µ (location) and σ > 0 (shape) are parameters. The
parameters µ and σ are not necessarily the mean nor the standard deviation.

• The notation z+ is for the positive part of a number z, that is z+ = max(z, 0).

A central result of Extreme Values theory is the following

Theorem (Fisher-Tippett-Gnedenko). Let Xn be a sequence of independent and identically dis-
tributed random variables, and let Mn = max(X1, X2, . . . , Xn). If there exists two sequences bn and
an > 0 such that (Mn − bn)/an has a non-degenerate limiting distribution G(z), then that limiting
distribution must be one of the following three types

G(z) = exp{−e−z} Gumbel or type I
G(z) = exp{−z−α

+ } Fréchet or type II
G(z) = exp{−(−z)α+} Weibull (reversed) or type III

where α > 0 is a parameter for types II or III.

For each type, the distribution depends on µ and σ > 0 and possibly of α > 0. E.g. the general
Gumbel distribution is

G(x) = exp {− exp [−(x− µ)/σ]} .
The third distribution corresponds to values z 6 0 and is often called Weibull. This may create a
confusion with the ordinary Weibull described below. A preferable appellation is reversed Weibull.

Each of the three possible limiting distributions is max-stable i.e. is closed for the maximum of
independent and identically distributed random variables. For example if the Xi are independent with
the same Gumbel distribution, then their maximum Mn is also of Gumbel type.

The three possible limit distributions are fairly different. Some mathematical criteria allow to say
whether a given distribution ofXk is in the domain of attraction of Gumbel, Fréchet or (reversed) Weibull
(Embrecht et al. 1996, chap. 3). Some usual examples are found in the book of Kotz and Nadarajah (2005,
chap. 1) and table B.1 gives the domains of attraction for the main distributions used in Renext. Broadly
speaking, distributions with exponentially decaying upper tail (such as normal, exponential, gamma) fall
in the domain of attraction of Gumbel. The Fréchet domain attracts heavy-tailed distributions (Pareto,
Cauchy).
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distribution of Xi limit of Mn

exponential Gumbel
Weibull Gumbel
gamma Gumbel

GPD ξ = 0 Gumbel
GPD ξ > 0 Fréchet
GPD ξ < 0 reversed Weibull

log-normal Gumbel
finite mixture of exponentials Gumbel
Pareto Fréchet
Cauchy Fréchet

Table B.1: Domain of attraction of some classical distributions.

B.1.2 The Generalised Extreme Value distribution

The three types of the theorem above can be considered as special cases of the Generalised Extreme
Value distribution depending of a shape parameter ξ

G(z) = exp
{
− [1 + ξ z]

−1/ξ
+

}
.

The sign of the shape parameter ξ is essential. When ξ > 0 we retrieve the Fréchet above up to a
translation of z. For ξ < 0 we get the reversed Weibull up to a translation of z. When ξ = 0 the power

[1 + ξ z]
−1/ξ is to be replaced by its limit for ξ → 0 which is e−z and G(z) is the Gumbel distribution

function above.
Using a linear transform z = (x−µ)/σ with arbitrary µ and σ > 0 all distributions of the GEV type

are obtained as

G(x) = exp

{
−
[
1 + ξ

(x− µ)

σ

]−1/ξ

+

}
. (B.1)

This distribution is named GEV with location parameter µ and scale parameter σ > 0, and it will be
denoted as GEV(µ, σ, ξ). It is defined on the set of values x for which the bracketed expression within [ ]
in (B.1) is non-negative that is

ξ < 0 ξ = 0 ξ > 0

−∞ < x 6 µ− σ/ξ −∞ < x < +∞ µ− σ/ξ 6 x < +∞

so the GEV distribution has a finite upper end-point for ξ < 0.
A distribution F (x) satisfying the conditions Fisher-Tippett-Gnedenko theorem can be said to be

in the domain of attraction of the GEV with shape ξ; the sign of the shape parameter and ist value
characterize the tail behaviour of the distribution.

Grouping the three distributions of the theorem into one GEV family may be thought of as a purely
formal trick. However, since the GEV distribution is regular at ξ = 0 we have a parametric family in the
usual sense, with a parameter ξ. Thus it makes sense to estimate the parameter ξ without specifying its
sign, or to give a confidence interval including the value ξ = 0. Note that the support of the distribution
depends on the parameters and thus that Maximum Likelihood (ML) theory must be invoked with care.

B.1.3 POT

The Fisher-Tippett-Gnedenko theorem suggests that the GEV distribution should be systematically used
to describe block maxima. A comparable result holds for the POT context.

Theorem (Pickands-Balkema-de Haan). Assume that the distribution FX is in the domain of at-
traction of the GEV distribution with shape ξ, and let x⋆ denote its upper end-point. Then there exists
a positive function a(u) > 0 such that for any z with z > 0 and 1 + ξz > 0

lim
u→x⋆

Pr [X − u > a(u)z | X > u] = [1 + ξz]
−1/ξ

.
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See theorem 4.1 in Coles (2001) or theorem 3.4.5 in Embrecht et al. (1996).
The implication in POT and the marked process context is that when a large enough threshold u is

chosen, the scaled excess Z := Y/a(u) with Y := X−u has approximately the survival S(z) = [1+ξz]−1/ξ,
meaning that Y approximately follows a two-parameter Generalised Pareto Distribution (GPD) with
shape ξ and scale a(u), see B.3.2.

B.2 Probability distributions in POT

B.2.1 Levels vs excesses

POT methods fit a distribution to the excesses Yi = Xi − u over a fixed threshold u. The excesses
are positive by construction and might contain small values since the threshold will generally be taken
greater than the mode of X.

In the rest of this section the letter X will be used for a level while Y is used for a positive excess
random variable. The densities and distribution functions of X will be denoted as fX(x) and FX(x)
while the Y subscript is used for Y . Thus

fX(x) = fY (x− u), fY (y) = fX(y + u).

For the distribution fitted in POT the threshold u is not a parameter to be estimated. Yet the
probability functions for level X can have a location parameter. R functions used for Y can also have a
location parameter with suitable default value for it.

B.2.2 Coefficient of variation

The coefficient of variation CV of a positive random variable Y is the ratio of the standard deviation to
the mean

CV =
√

Var(Y )/E(Y ). (B.2)

Comparing this theoretical CV to its empirical equivalent ĈV is often instructive, keeping in mind that
ĈV is subject to sampling fluctuation. For an exponential distribution we have CV = 1; a mixture
of several exponentials corresponds to CV > 1. When fitting distributions from the Pareto families,
comparing ĈV to 1 will often be essential, see B.3.2 page 59 below.

B.2.3 Some useful probability functions

Several probability functions provide useful insights about the upper tail of a given distribution. Their
name is related to survival analysis where the random variable of interest is the lifetime Y of a subject
or item. The relation with POT is: increasing the POT threshold u is equivalent to selecting subjects
still alive at "time" u.

The survival function value S(y) is the probability Pr{Y > y} = 1−F (y). The hazard function h(v)
is defined by

h(v) dv = Pr [v < Y 6 v + dv | Y > v] , v > 0

corresponding to the notion of instantaneous death rate. An usual equivalent definition is h(v) =
f(v)/S(v). In survival analysis, hazards are usually non-decreasing since a decreasing hazard would
mean a "rejuvenation" effect. Yet in POT modelling, distributions often have decreasing hazards. A
decreasing hazard will correspond either to an exponential tail behaviour if the limit of h(y) for y → ∞
is positive (as for the gamma distribution ot the finite mixture of exponentials), or to a long-tail hence
heavy-tail behaviour otherwise.

The mean residual life MRL (or mean excess life) is defined as

MRL(v) := E [Y − v | Y > v] , v > 0.

While a decreasing MRL(v) may seem natural, a distribution with long tail such as GPD can have an
increasing mean residual life. One can show that an increasing hazard rate implies an increasing mean
residual life.
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dist. name ini. spec. ML par. name note

exponential n y rate GPD with ξ = 0
gpd n y scale, shape from the evd package
GPD n y scale, shape NaN with bad parameters
lomax n y scale, shape GPD with ξ > 0
maxlo n y scale, shape GPD with ξ < 0

weibull n y scale, shape
gamma n y scale, shape
lnorm n y meanlog, sdlog
mixexp2 n n prob1, rate1, delta
SLTW y n delta, scale, shape

Table B.2: Distributions in Renouv. The ini. column indicates whether or not initial values are always
required on input. The spec. ML columns indicates if a specific ML estimation is used. However the
special ML is used when only OT data are used.

Another meaningful function is the cumulative hazard H(y)

H(y) = − logS(y) =

∫ y

0

h(z) dz, y > 0.

Increasing and decreasing hazards h(y) are respectively equivalent to convex and concave cumulative
hazards H(y). When the distribution function F (y) is plotted on an exponential plot, the ordinate used
is in fact H(x), see page 11. The concavity of the resulting curve is that of H(y), and hence is related
to the variation of h(y). Distributions with increasing hazard h(y) will give a convex (upward concave)
curve on the exponential plot while a decreasing h(y) leads to a concave (downward) one. The same effect
is observed for the exponential return level plot but with axes exchanged hence with opposite concavity.

An alternative to the quantile function qX(p) of X is the following return level function, sometimes
called tail quantile function. Consider an independent and identically distributed sequence Xi with
survival SX(x); for a given m > 1 the value xm that is exceeded on average once every m observations
is given by the equation

SX(xm) = 1/m (m > 1) (B.3)

and it can be called the return level with period m (or m-return level). This is an increasing function
of m with limit for large m the upper end-point of the distribution of X. For many distributions the
solution of (B.3) exist in closed form. In the POT context where levels Xi are observed on a rate of λ
events by years, the value of m in (B.3) is to be divided by the rate λ to obtain the corresponding period
T . Then xm is the return level corresponding to period T := m/λ.

Since 1/m = SX(xm), we have logm = HX(xm). Thus plotting points [logm, xm] i.e. points [m, xm]
with a log scale for the first axis (return periods) is equivalent to plotting points [x, HX(x)], but with
the two axes exchanged.

B.3 Distributions in Renext

B.3.1 Exponential

Definition

The exponential distribution has a survival function S(y) and a density f(y) given by

S(y) = e−νy, f(y) = ν e−νy, y > 0 (B.4)

where ν > 0 is a parameter called rate.
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Properties

The equation S(y) = 1/m giving the "m years return level" has the explicit solution ym = log(m)/ν.
The exponential distribution has constant hazard rate – a fact known as the "memorylessness prop-

erty". It therefore also has a constant mean residual life.
The exponential is a special case of several families: Weibull (with shape α = 1), GPD (with shape

ξ = 0) and gamma (with shape α = 1). For these three families, the shape parameter is in one-to-one
relation with the coefficient of variation CV which can take values smaller or larger than 1. Within the
three families, the exponential is characterized by CV = 1.

The exponential distribution is closely related to Gumbel distribution. If Y is exponential then
V = − log Y is Gumbel.

Estimation and inference

The exponential distribution has a well known ML inference from an ordinary sample Yi of size n.
The ML estimator for ν is the inverse of the sample mean ν̂ = 1/Ȳ . Up to a scaling factor the

exponential distribution is nothing but the χ2(2) with two degrees of freedom. More precisely 2ν Yi ∼
χ2(2). Multiplying the sum

∑
i Yi = n Ȳ by 2ν gives a "pivotal" quantity V = 2ν×n Ȳ having a χ2(2n)

distribution. Since V = 2n ν/ν̂, an exact confidence interval at the level 1− α for ν is obtained as

χ2
1−α/2

2n
× ν̂ 6 ν 6

χ2
α/2

2n
× ν̂

where χ2
α is the upper quantile for the χ2(2n) distribution1. Exact confidence intervals are similarly

derived for the distribution F (y) with given y or for a m-return level ym with m given.

Goodness-of-fit

A specific goodness-of-fit test for the exponential distribution is sometimes called Bartlett’s (or Moran’s)
test of exponentiality. The test statistic Bn involves the sample mean Y as well as the sample mean
log Y of the logged Yi

Bn = bn ×
{
log Ȳ − log Y

}
, bn = 2n× {1 + (n+ 1)/(6n)}−1

.

Under the null hypothesis we have approximately Bn ∼ χ2(n− 1) and a two-sided test is in order.
Remind that the goodness-of-fit can also be evaluated using a graphical analysis with an exponential

plot.

Use in Renext

The exponential can be used in Renouv under the two names "exponential" and "exp". In both cases,
the rate parameter ν of (B.4) is named rate. In the Renouv function, the choice of the distribution name
among the two possible ones for the exponential has consequences.

• Using distname.y = "exponential" (which corresponds to the default value), the estimation and
inference will be specific to the exponential. The test of exponentiality is computed and displayed
by the summary method for the fitted object. When no historical data are used, the exact inference
described above is used both for the parameter and the return levels.

• Using distname.y = "exp", the distribution of the stats package is used in black-box mode, as
it would be with any other available distribution. Thus the inference on the parameter and the
return levels is based on the asymptotic normality and the delta method.

The first possibility should obviously be preferred. In the second case, the likelihood is maximised
numerically, and an initial value must be given using the start.par.y argument.

1Pr
{
χ2(2n) > χ2

α

}
= α
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µ µ− σ/ξµ− σ/ξ x

−1 < ξ < 0

ξ < −1

ξ = −1
(uniform)

ξ < 0 ξ > 0

ξ = 0 (exponential)

ξ > 0

xµ

Figure B.1: GPD densities for ξ < 0 (left) and ξ > 0 (right). In the ξ < 0 case, the parameters are
chosen in order to give the same support, i.e. µ and −σ/ξ are kept constant.

B.3.2 Generalised Pareto GPD

Definition

The Generalised Pareto Distribution (GPD) depends on three parameters µ (location), σ > 0 (scale)
and ξ (shape). When ξ 6= 0, the survival function S(y) and the density function f(y) are given by

S(x) =

[
1 + ξ

(x− µ)

σ

]−1/ξ

+

f(x) =
1

σ

[
1 + ξ

(x− µ)

σ

]−1/ξ−1

+

x > µ (B.5)

while the limit for ξ → 0 is to be used for ξ = 0

S(x) = e−(x−µ)/σ f(x) =
1

σ
e−(x−µ)/σ x > µ

which is a shifted exponential distribution with rate 1/σ.
The distribution is defined for the values x with x > µ and 1 + ξ (x− µ)/σ > 0, that is

ξ < 0 ξ = 0 ξ > 0

µ 6 x 6 µ− σ/ξ µ 6 x < +∞ µ 6 x < +∞

Unlike the GEV distribution the support of GPD(µ, σ, ξ) never extends to −∞.
The value of the shape parameter ξ has a very strong impact, see figure B.1.

• When ξ < 0 the distribution has a finite upper end-point. As a special case, the uniform distribution
is obtained with ξ = −1. The density function is decreasing for −1 < ξ < 0.

• When ξ > 0 the density is decreasing. The distribution tail thickens as ξ increases.

For most practical applications, the range of values for ξ is (−0.5, 0.5).

Properties

The GPD has a finite expectation when ξ < 1 and a finite variance when ξ < 1/2 then given by

E(X) = µ+
σ

1− ξ
, Var(X) =

σ2

(1− ξ)2(1− 2ξ)
, CV(Y ) =

1√
1− 2ξ

.

The shape parameter ξ can be related to the coefficient of variation. Note that ξ > 0 gives CV(Y ) > 1.
For m > 1 the return level with period m of (B.3) is

xm = µ+ σ
[
mξ − 1

]
/ξ

It can be remarked that for any fixed m the value xm is increasing with respect to each of the three
parameters µ, σ and ξ and the same is true for the expectation. Thus increasing any of the three
parameters leads to a distribution with greater values.

58



µ u

u

GPD(µ, σ, ξ)

area = 1− F (u)

area = 1

GPD(u, σ⋆, ξ)

Figure B.2: “POT stability” of the GPD family. When X ∼ GPD(µ, σ, ξ) the density of X conditional
on X > u is GPD(u, σ⋆, ξ) with location u and the shape parameter ξ.

The GPD can be said to be "POT stable" in the following sense. If X ∼ GPD(µ, σ, ξ) then for u > µ

X | X > u ∼ GPD(u, σ⋆, ξ)

with σ⋆ = σ + ξ(u − µ). In other words, the upper tail of a GPD density is a (unnormalized) GPD
density see figure B.2.

When ξ < 1 the GPD corresponds to a linear mean residual life

E [X − v | X > v] =
σ + ξ v

1− ξ

This may be used for the determination of the threshold in POT: replacing the expectation by a sample
mean we can check that the mean excess life is linear: see Coles (2001, chap. 4).

From the Pickands-Balkema-de Haan theorem, if X is a random variable with a distribution in the
domain of attraction of the GEV distribution with shape ξ, then distribution of Y = X − u conditional
on X > u when u is large will be close to a GPD with shape ξ. This property provides a justification
for the traditional exclusive use of the GPD for excesses of POT models. A simple illustration for the
Gumbel case ξ = 0 is given page 12.

The GPD has an infinite variance when ξ > 1/2. In practice, the values used are generally in the
range −0.3 6 ξ 6 0.3.

Estimation and inference

In the POT context, the parameter µ is known since it is taken as the threshold u. The excesses
Yi := Xi − u are distributed according to the GPD with location µ = 0 and unknown σ and scale ξ.

Given an ordinary sample Yi of size n, moments estimators for σ and ξ are readily available

ξ̂mom =
1

2

[
1− ĈV

−2]
, σ̂mom =

Ȳ

2

[
1 + ĈV

−2]
.

The ML estimation can rely on a two-dimensional maximisation. Interestingly enough, the sign of the
ML estimator ξ̂ML has a simple relation with the empirical coefficient of variation ĈV. Provided that
a denominator n is used to estimate the variance2 in (B.2), one can show that ξ̂ < 0 is equivalent to

ĈV < 1. In other words, ξ̂mom and ξ̂ML have the same sign. This shows that the sign of the ML estimator
ξ̂ML must be interpreted with care since it is not robust to outliers.

It is important to note that when ξ < 0 the inequality −σ/ξ > max{Yi} must hold, and also that the
likelihood tends to ∞ when −σ/ξ → max{Yi} with ξ < −1. Therefore, a constraint ξ > ξ⋆ with ξ⋆ > −1
should in theory be imposed in a numerical optimisation, although the limited precision of computations
prevents from converging to a boundary parameter vector.

2That is V̂ar(Y ) = 1

n

∑
i
(Yi − Y )2.
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Use in Renext

In Renext, the ML estimation of the two-parameters for an ordinary sample can be done using the fGPD
function. The estimation is carried out by using either the Lomax or the maxlo re-parameterisation
below (see sections B.3.7 and B.3.8), depending on the sign of ĈV− 1. In both cases, a one-dimensional
maximisation is used thanks to a concentration of the likelihood.

The GPD can be used in Renouv under the name "GPD". The parameters of (B.5) are named as those
of the distribution names "gpd" the evd package

σ ↔ scale, ξ ↔ shape.

Note that the parameter µ is used with the name "loc" in the distribution functions, but should not be
used in the POT context: it must then be equal to its default value 0, since the distribution is fitted on
the excesses Yi.

The GPD can also be used under the name "gpd" for compatibility reasons and is then taken from
the evd package. For the ordinary sample (no historical data) case, Renext then relies on the evd

package (Stephenson 2002) and its fpot estimation function. As for usual functions related to the
distribution (density, distribution, quantile, . . . ) the difference between "GPD" and "gpd" is the the
former returns NaN when an invalid parameter is provided , e.g. a negative value of scale, while the
later then produces an error. Sine the optim function can cope with a NaN value for the optimised
function, GPD is more flexible than gpd.

B.3.3 Weibull

Definition

The Weibull distribution has a survival function S(y) and a density function f(y) given by

S(y) = e−(y/β)α , f(y) =
α

β

[
y

β

]α−1

e−(y/β)α , y > 0 (B.6)

where α > 0 is the shape parameter and β > 0 the scale parameter.

Properties

The Weibull distribution has finite moments at any order with

E(Y ) = β Γ(1 + 1/α), Var(Y ) = β2
[
Γ(1 + 2/α)− Γ2(1 + 1/α)

]
, CV(Y ) =

√
Γ(1 + 2/α)

Γ2(1 + 1/α)
− 1.

The coefficient of variation is strictly decreasing with respect to α and takes the value 1 in the exponential
case α = 1. For α = 0.2 the CV is about 15.8 so only values α > 0.2 are used in practice.

The properties of the Weibull depend on the shape parameter α > 0.

• When 0 < α < 1, the hazard rate decreases to the limit 0, and the mean residual life MRL is
increasing.

• When α = 1 the distribution is exponential with constant hazard rate and constant MRL.

• When α > 1 the distribution has an increasing hazard rate and decreasing MRL.

See Bagnoli and Bergstrom (2004).

The return level of period m > 1 is given by ym = β [logm]
1/α, confirming that the exponential

return level curve [logm, ym] is convex (concave upwards) for 0 < α < 1 and (downwards) concave for
α > 1.

The Weibull distribution is closely related to the exponential. When Y is Weibull with shape α the
random variable Z = Y 1/α has an exponential distribution. Thus when Y follows a Weibull distribution
V = − log Y has a Gumbel distribution.
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Estimation and inference

The ML estimation is carried out by concentrating the scale parameter out of the likelihood. It can be
shown that with a suitable re-parameterisation the concentrated likelihood is a log-concave function hav-
ing an unique maximum easily obtained through a one-parameter maximisation. Moreover the expected
information matrix can be given in closed form. These tips are used in Renext.

The moment estimators are not available in closed form and they can be obtained only at nearly the
same cost as the ML estimators.

Goodness-of-fit

Specific tests exist for Weibull distributions but are not implemented in Renext. The fit can be controlled
graphically with a Weibull plot such as produced by the weibplot function.

Use in Renext

The Weibull distribution can be used in Renext under the name "weibull". The parameters of (B.6)
are named as in the stats package from which the distribution functions are taken

β ↔ scale, α↔ shape.

The ML estimation with likelihood concentration is available in the fweibull function.
This distribution can be used in Renouv as a special distribution. It is not necessary to provide initial

values for the ML estimation since specific initial values are used then in Renouv.

B.3.4 Gamma

Definition

The gamma distribution has density

f(y) =
1

Γ(α)βα
yα−1e−y/β y > 0 (B.7)

where Γ(α) denotes the Euler’s gamma function, β > 0 is the scale parameter and α > 0 is the shape
parameter. The distribution function F (y) and the survival S(y) do not have a simple expression.

Properties

Expectation, variance and coefficient of variation are given by

E(Y ) = αβ, Var(Y ) = αβ2, CV(Y ) =
1√
α
.

The shape parameter α is related to the coefficient of variation and 0 < α < 1 gives CV(Y ) > 1.

The properties of the distribution depend on the shape parameter α > 0.

• For 0 < α < 1 the hazard rate decreases to the limit 1/β and the mean residual life MRL increases
to the limit β

• For α = 1 the distribution is the exponential with constant hazard and constant MRL,

• For α > 1 the hazard rate increases to the limit 1/β and the MRL decreases to the limit β.

See Bagnoli and Bergstrom (2004).
The gamma distribution is not frequently used to describe extremes, maybe because it nearly boils

down to an exponential with rate 1/β for large return periods. In the decreasing hazard case 0 < α < 1,
it can be considered as a continuous mixture of exponentials with rates λ > 1/β.

It can be shown that the gamma distribution falls in the domain of attraction of the Gumbel distri-
bution. It is a light-tailed distribution.

61



Estimation

Using an ordinary sample Yi the moment estimators are readily available

α̂mom = ĈV
− 2
, β̂mom = X̄ × ĈV

2
,

and these could be used as initial values for a numerical likelihood maximisation.
As in the Weibull case, it is possible to concentrate the likelihood and thus to solve a one-parameter

maximisation problem. Moreover, the maximisation can be reduced to that of a concave function, and
the expected information matrix can be computed.

Use in Renext

The gamma distribution can be used in Renext under the name "gamma". The parameters of (B.7) are
named as in the stats package from which the distribution functions are taken

β ↔ scale, α↔ shape.

The ML estimation with likelihood concentration is available in the fgamma function.
It is not necessary to provide initial values for the ML estimation since specific initial values are used

then in Renouv.

B.3.5 Log-normal

Definition

The log-normal distribution is the distribution of eV where V is normal. It has density

f(y) =
1

y σ
√
2π

exp

{
− 1

2σ2
[log y − µ]

2

}
y > 0, (B.8)

where µ and σ > 0 are the parameter of the normal distribution of log Y . The distribution function F (y)
and the survival S(y) do not have simple expression.

Note that these parameters are not the location nor the scale parameter since they are in the logged
scale.

Properties

The expectation, variance and coefficient of variation of the log-normal distribution are

E(Y ) = eµ+σ2/2, Var(Y ) =
[
eσ

2 − 1
]
e2µ+σ2

, CV(Y ) =
√
eσ2 − 1.

For the log-normal distribution neither the hazard h(y) nor the mean residual life MRL(y) are monotonous
functions. The mean residual life MRL(y) is reputed3 to be decreasing for large values of y.

Estimation and inference

The ML estimation from an ordinary sample is straightforward using the log transformation which leads
to the normal case. Exact inference is also available for the parameters.

However, exact inference for the return levels or return periods is more complicated. Hence the
standard numerical "delta method" is used in Renext.

Goodness-of-fit

The fit of the log-normal distribution can be assessed using the logged values and a normality test (e.g.
Shapiro-Wilk). Since the log-normal is not frequently used in POT, such a test is not in computed in
Renext.

3No proof of this assertion was found.
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Use in Renext

The log-normal distribution can be used in Renext under the name "lnorm". The parameters of (B.8)
are named as in the stats package from which the distribution functions are taken

µ↔ meanlog, σ ↔ sdlog.

It is not necessary to provide initial values for the ML estimation since specific initial values are used
then in Renouv.

B.3.6 Finite mixture of exponentials

Definition

The finite mixture of exponentials is a distribution with density (or survival) function obtained as a
weighed mean of a finite number of exponential densities (or survivals) with different rates. For a
mixture of two exponentials, the survival function S(y) and density f(y) are given by

S(y) = α1 e
−λ1y + (1− α1) e

−λ2y, f(y) = α1λ1 e
−λ1y + (1− α1)λ2 e

−λ2y, y > 0 (B.9)

and the parameters are α1, λ1 and λ2 must verify

0 < α1 < 1 0 < λ1 < λ2. (B.10)

It can be preferable to use the alternative parameter vector [α1, λ1, δ]
⊤ with δ := λ2 − λ1, since the

constraint λ1 < λ2 is replaced then by the simple constraint δ > 0.
The usual interpretation of a mixture applies: the distribution is that of a random variable that would

be randomly chosen from the exponential with rate λ1 or from the exponential with rate λ2 the respective
probabilities being α1 and 1−α1. In survival analysis the mixture components correspond to two death
rates that may result from two causes of mortality or from the existence of two sub-populations.

Properties

The expectation and uncentered moments have a simple form

E(Y γ) = α1/λ
γ
1 + (1− α1)/λ

γ
2

for any γ > 0. The coefficient of variation is always greater than 1.
For large values of y, the survival S(y) only depends on the smallest rate λ1, since

S(y) ∼
y→+∞

α1 e
−λ1y. (B.11)

The survival analysis context provides a simple interpretation: after a large time y, the sub-population
with smaller death rate λ1 dominates, and the mean residual life therefore increases.

It can be shown that the hazard rate function h(y) is decreasing with a limit λ1, and that the mean
excess life is increasing with a finite limit 1/λ1. This "rejuvenation effect" results from the progressive
extinction of the population having the highest death rate λ2. The cumulative hazard H(y) is concave,
see figure B.3.

The quantile function is not available in closed form and must be computed numerically.

Estimation and inference

Note that the model would be unidentifiable if the second constraint of (B.10) was omitted since the
distribution is invariant under the transformation

[α1, λ1, λ2] → [1− α1, λ2, λ1].

For an ordinary sample Yi the ML estimation can be done using Expectation-Maximisation (EM) algo-
rithm. In this approach, each data Yi is associated to a latent variable Zi with value z = 1 or z = 2
indicating the group (or sub-population) for observation i and consequently the rate λz.

In Renext the standard log-likelihood maximisation is used. Initial values are computed using the
moments when possible, or using (B.11): regressing logS(y) against y for large values of y give − logα1

(intercept) and λ1 (slope), see figure B.3. Then λ2 can be deduced from the sample mean. However care
is needed since these estimates may not fulfil the constraint requirements.
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Figure B.3: Exponential plot for the distribution function of a mixture of two exponentials. The curve
shows the cumulative hazard H(y) = − log[1 − F (y)]. The slope of the tangent to the curve at the
origin is the weighed mean rate λ = α1λ1 + (1 − α1)λ2. The slope of the asymptote is λ1. Note that
λ1 < λ < λ2.

Generalisation

A mixture of m exponentials (m > 2) can be defined through

S(y) =

m∑

i=1

αi e
−λiy, f(y) =

m∑

i=1

αiλi e
−λiy, y > 0

with constraints 0 < αi < 1,
∑

i αi = 1 and 0 < λ1 < λ2 < · · · < λm Since the parameter αm can be
dropped as in the m = 2 case, the distribution depends on 2m − 1 free parameters. The behaviour for
large y results from (B.11) which still applies.

The mixture of exponentials is sometimes called hyper-exponential distribution.

Use in Renext

The mixture of exponential distributions can be used in Renext under the name "mixexp2", and is
currently limited to m = 2 exponentials. The distribution functions (including the quantile function) are
provided by Renext and use the following names for the parameters of (B.9)

α1 ↔ prob1, λ1 ↔ rate1, δ = λ2 − λ1 ↔ delta.

It is not necessary to provide initial values for the ML estimation since specific initial values are used
then in Renouv.

The ML-based inference for the mixture of exponentials is well known to be difficult, and bayesian
inference might be a valuable alternative.

B.3.7 Lomax

Definition

The Lomax distribution depends on two parameters β > 0 (scale) and α > 0 (shape) with survival and
density functions

S(y) =

[
1 +

y

β

]−α

, f(y) =
α

β

[
1 +

y

β

]−α−1

, y > 0. (B.12)

This distribution is also known as Pareto distribution of the second kind (Johnson, Kotz, and Balakr-
ishnan 1994). When Y is a random variable following this distribution, X = Y + β is Pareto with
minimum x0 = β and shape α, that is

SX(x) =
[x0
x

]α
, x > x0.

The Pareto distribution with minimum x0 and shape α is a special case of GPD(µ, σ, ξ) with location
µ = x0, shape ξ = 1/α (positive) and the extra constraint σ/ξ = x0. The Lomax distribution is the
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special case of the Generalised Pareto GPD(µ, σ, ξ) with µ = 0, σ = β/α and ξ = 1/α, thus implying a
positive shape parameter ξ.

We can rewrite the distribution function of Y in the form (B.15) below, with φα(z) ≡ log z, i.e. with
the Box-Cox transformation (B.16) for α = 0. Therefore, the Lomax distribution can be considered as
a limit case of the Shifted Left Truncated Weibull SLTW. We may speak of log-exponential distribution
although the expression is ambiguous.

Properties

The quantile function is available in closed form. The expectation is finite only for α > 1 and the variance
is finite only for α > 2. In this case

E(Y ) =
β

α− 1
, Var(Y ) =

αβ2

(α− 1)2(α− 2)
, CV(Y ) =

√
α

α− 2
> 1.

Only the cases with α > 2 seem practicable. Then CV(Y ) will be close to 1 for a large shape α.
The Lomax distribution has a decreasing hazard rate and a linearly increasing Mean Residual Life.
If both α and β tend to ∞ with α/β tending to λ > 0 then the Lomax distribution tends to the

exponential with rate λ.
It can be shown that this distribution is a (continuous) gamma mixture of exponentials. More

precisely, the survival of (B.12) can be written as

S(y) =

∫ +∞

0

g(λ) e−λy dλ

where g(λ) is the density of the gamma distribution with shape αgam := α and scale βgam := 1/β.
The survival S(y) is thus the weighed mean of the exponential survivals e−λy with the weight function
g(λ). Contrary to the finite mixture of exponentials which behaves for large return periods as does its
component with the smallest rate (B.11), this continuous mixture is heavy tailed. The reason is that g(λ)
weights small rates λ ≈ 0, and thus the mixture embeds exponentials with arbitrarily large means 1/λ.
The survival function is a completely monotone function (Feller 1971).

Estimation

When the two parameters β > 0 and α > 0 are unknown, the ML estimators from an ordinary sample
Yi can be found using a one-dimensional optimisation by concentrating the shape parameter α out of
the likelihood. Although the concentrated log-likelihood ℓc(β) is not concave, it can be proved to have a
maximum4 when the sample CV is greater than 1. Moreover the expected information matrix is available
in closed form (Giles, Feng, and Godwin 2013). The ML estimates fail to exist when the sample coefficient
of variation CV is less than 1. The estimation may also fail when CV is greater than, yet close to 1.

When β is known, the estimation boils down to that of the exponential distribution since V :=
log[1 + Y/β] then follows an exponential distribution with rate α.

Use in Renext

This distribution is provided in Renext under the name "lomax". The names of the formal arguments
for the parameters in the probability functions are

β ↔ scale, α↔ shape.

The ML estimation with likelihood concentration is available in the flomax function. This function
rescales the data to avoid numerical problems.

This distribution is recognized as special in Renouv, thus providing a simple mean to impose the
constraint ξ > 0 for excesses assumed to follow GPD(0, σ, ξ).

Estimation and exact inference are possible in the case where the shift β is taken as the (known)
threshold i.e. β = u. The exponential distribution should then be used with a logarithmic transfor-
mation as explained below in B.3.9. The two formal arguments and values to use in the Renouv call
are distname.y = "exponential" and trans.y = "log". Note that α is then obtained with the name
"rate", and its estimated value will be greater than 1.

4Our proof states that a global maximum exists, but not that it is unique.
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B.3.8 Maxlo

Definition

Though very useful in POT models, this distribution does not seem to have deserved its own name yet.
We decided to call it "maxlo" as a pun inspired by a kind of symmetry to the Lomax distribution.

The maxlo distribution depends on two parameters β > 0 (scale) and α > 0 (shape). The support of
the distributions is [0, β] and the survival and density functions are

S(y) =

[
1− y

β

]α
, f(y) =

α

β

[
1− y

β

]α−1

0 < y < β. (B.13)

The maxlo distribution is the special case of the Generalised Pareto GPD(µ, σ, ξ) with µ = 0, σ = β/α
and ξ = −1/α, thus implying a negative shape ξ.

Properties

The quantile function is available in closed form. This distribution has finite moments of any order and

E(Y ) =
β

α+ 1
, Var(Y ) =

αβ2

(α+ 1)2(α+ 2)
, CV(Y ) =

√
α

α+ 2
< 1.

Note that CV(Y ) will be close to 1 for large values of the shape α.
If both α and β tend to ∞ with α/β tending to λ > 0 then the maxlo distribution tends to the

exponential with rate λ.

Estimation

When the two parameters β > 0 and α > 0 are unknown, the ML estimators from an ordinary sample
Yi can be found using a one-dimensional optimisation by concentrating the shape parameter α out of
the likelihood. Note that the inequality constraint β > max{Yi} must hold and that the likelihood tends
to ∞ when β → max{Yi} with α < 1. So in practice an inequality α > αL must be imposed for some
αL > 1.

Although the concentrated log-likelihood ℓc(β) is not concave it can be proved to have a maximum5

when the sample CV is smaller than 1, thus mirroring the property stated for the Lomax distribution.
Moreover the expected information matrix is available in closed form. The ML estimates fail to exist
when the sample coefficient of variation CV is greater than 1. The estimation may also fail when CV is
smaller than yet close to 1.

When β is known, the estimation boils down to that of the exponential distribution since V :=
− log[1− Y/β] follows an exponential distribution with rate α.

Use in Renext

This distribution is provided in Renext under the name "maxlo". The names of the formal arguments
for the parameters in the probability functions are

β ↔ scale, α↔ shape.

The ML estimation with likelihood concentration is available in the fmaxlo function. This function
rescales the data to avoid numerical problems.

This distribution can be used in Renouv, thus providing a simple mean to impose the constraint ξ < 0
for excesses assumed to follow GPD(0, σ, ξ).

5Our proof states the existence of local maximum.
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B.3.9 Transformed Exponential distributions

Definition

This rather informal family of distributions is sometimes used in hydrology. Although we will only
consider in practice the two functions φ(x) = x2 and φ(x) = log x both for x > 0, a slightly more general
framework can be proposed as follows. Let φ(x) be a regular and strictly increasing function defined for
x > x0 and let u be a known value u > x0. When a random variable X is such that

φ(X)− φ(u) ∼ Exp

we may say that X has a transformed exponential distribution. The values of this distribution are the real
numbers x with x > u. Note that the transformation needs to be one-to-one, because the distribution
of X must be determinable from that of Z = φ(X)− φ(u). Then

X = ψ (Z + φ(u))

where ψ(z) is the reciprocal function of φ(x). As an example, the square transformation can be applied
only for x > 0.

The survival function is given by

SX(x) = exp
{
−ν [φ(x)− φ(u)]

}
x > u

where ν > 0 is the rate of the exponential distribution. The density comes by derivation.

Properties

The properties of the distribution obviously depend on the choice of the transformation.

• For the square transformation φ(x) = x2 we get a shifted and truncated Weibull distribution as
described below. It may be called square-exponential or (in french) loi en carré.

• With the logarithmic transformation φ(x) = log x we get a shifted version of the Pareto (heavy
tailed) distribution called Lomax distribution and described above in B.3.7. It may be called
log-exponential.

The quantile function is available in closed form provided that the reciprocal function ψ(z) is such. This
is actually the case for the two transformations considered.

Estimation and inference

As far as an ordinary sample Xi is used, the ML estimator ν̂ of the rate ν is available using the mean of
the transformed random variables Zi = φ(Xi)− φ(u)

1/ν̂ = Z̄ = φ(X)− φ(u)

Exact inference on ν is deduced from the exponential case.

Use in Renext

The package allows the use of two transformed exponential distributions with the Renouv function, where
u is necessarily taken as equal to the threshold. The value given for the transformation formal argument
trans.y can be either "square" or "log". In both cases, the exponential distribution must be specified
by giving the value "exponential" to the distribution argument distname.y.
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Figure B.4: "Square exponential" densities, i.e. SLTW densities with shape α = 2. Only the part y > 0
of the Weibull densities is used and the normalisation is on the interval y > 0.

B.3.10 Shifted Left Truncated Weibull (SLTW) distribution

Definition

We call (shifted) left truncated Weibull (SLTW) the following distribution for a random variable Y > 0.
It depends on three parameters δ > 0 (shift or location), β > 0 (scale) and α > 0 (shape) and has

survival function

S(y) = exp

{
−
[(

y + δ

β

)α

−
(
δ

β

)α]}
y > 0 (B.14)

The density comes by derivation. This is the conditional distribution X − δ | X > δ whereX has Weibull
distribution with shape α and scale β.

For α = 2 we can rewrite the survival as

S(y) = exp
{
−ν

[
(y + δ)2 − δ2

]}
y > 0

thus the distribution is identical to the square-exponential described previously.
This three parameter family can be used for excesses in POT, but in a general framework there is no

natural choice for δ > 0 in relation with a physical threshold u, though the two quantities have the same
physical dimension. For some applications of POT where the random variable is positive δ is sometimes
chosen as the threshold δ = u.

Properties

The moments or even the expectation are not easily computed in the general case.
For α 6 1 the mode of Y is always y = 0. For α > 1 the mode of Y is the positive part y⋆+ of the

shifted mode y⋆ of the Weibull i.e. y⋆ = (α− 1)
1/α

β − δ. Thus for a fixed α and δ we can have a mode
varying with β.

The quantile function is available in closed form. The hazard and the MRL for this distribution
are merely truncations of their equivalent for the Weibull distribution, e.g. the hazard is decreasing for
0 6 α < 1 and increasing for α > 1.

For α > 0 and large δ, the distribution is close to the exponential since the Weibull distribution is in
the domain of attraction of the Gumbel distribution for which the excesses over a large threshold tend
to be exponentially distributed.

Using the notation ρ = α/βα we can rewrite the survival as

S(y) = exp {−ρ [φα(y + δ)− φα(δ)]} y > 0, (B.15)

where φα(z) is the Box-Cox transformation defined for z > 0 by

φα(z) =

{
(zα − 1)/α α > 0

log z α = 0.
(B.16)
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The function φα(z) is strictly increasing with limit +∞ when z → +∞ and it is regular with respect to α
for α = 0. Thus if α and β both tend to zero in such way that ρ tends to a limit ρ⋆ > 0 the distribution
tends to the Lomax distribution described above. The limit survival is (B.15) with α = 0 and ρ = ρ⋆.

Estimation

In most contexts, the shift parameter δ should be known and given.
Note that when both α and δ are known and when the estimation is from an ordinary sample Yi of

size n, the ML estimator ρ̂ = α/βα of ρ is available using the mean of the transformed Yi

1/ρ̂ = φα(Y + δ)− φα(δ)

Exact inference on ρ or on the quantiles is then easily deduced from the exponential case.

Use in Renext

The SLTW distribution is provided in Renext under the name SLTW. The relevant probability functions
share the three following formal arguments for the parameters, in correspondence with (B.14)

δ ↔ delta, α↔ shape, β ↔ scale.

Note that the parameter named scale is not a scale parameter in the usual statistical sense; the name
only refers to the original Weibull distribution.

No specific inference method is implemented in the Renext POT fitting. A special case is when δ
is equal to the (known) threshold u and when moreover α is known. Indeed, we then fit an exponential
distribution to a transformed version φα(X) of the level X ≡ Y + u. We thus can use in the special
case where α = 2 (square transformation) and the limit case where α = 0 (log transformation) as
explained above in B.3.9. In the Renouv function, one must then use distname.y = "exponential";
the transformation argument must be respectively trans.y = "square" and trans.y = "log".

B.3.11 Other distributions

It is possible to use a quite arbitrary distribution within the Renouv function provided the probability
functions6 are available in R and satisfy the conditions stated in the help of the Renouv function.

6Density, distribution and quantile functions are required.
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Index

aggregation, temporal, 5
axes limits in return level plot, 22

block data, 7–9, 25–29, 47–48
block maxima, 4–5, 36–38
blocks, 4, 17
Brest data, 5–6

censoring, 7, 28–29
chi-square goodness-of-fit test, 18
coefficient of variation, 30, 55, 57, 59
completely monotone function, 65
compound maximum, 50
concentration, likelihood, 27, 61, 62, 65, 66
confidence limits

level choice, 22
shown or not, 42

constraint
equality (test of), 33
inequality in MLE, 27, 59, 66

Coordinated Universal Time (UTC), 6
cumulative hazard, 56

declustering, 5
delta method, 2, 22, 24
deviance, 33
domain of attraction, 53–55
Dunkerque data, 38

effective duration, 14, 15
end-point, 3, 54
evd package, 36, 60
exact inference, 57, 69
exceedance, 4
excess, 3, 55
Expectation-Maximisation, 63
exponential distribution, 14, 20, 33–35, 56–57
exponential plot, 11, 22, 24, 56, 57
exponential vs exp, 57

fgamma estimation function, 62
fGPD estimation function, 60
Fisher-Tippett-Gnedenko theorem, 53
fixed parameter values, 31–32, 65, 66
flomax estimation function, 65
fmaxlo estimation function, 66
Fréchet distribution, 53
fweibull estimation function, 61

gamma distribution, 61–62, 65
gaps, see missing periods
Garonne data, 7–8, 20–35, 42–48
Generalised Extreme Value, see GEV distribution
Generalised Pareto Distribution, see GPD (distri-

bution)
GEV distribution

definition, 54
for block maxima, 51
ML estimation, 38

goodness-of-fit, 17–19, 24–25
GPD (distribution), 51, 58–60
GPD vs gpd, 60
Greenwood’s statistic, 34, 35
Gumbel distribution, 51, 53
Gumbel plot, 11, 21

hazard function, 55
hessian, 8, 24
heterogeneous data, 25–29
historical data, 5, 7, 23, 25–29
hyper-exponential distribution, 64

inference
delta method, 24
exact for the exponential rate, 57

information matrix
expected, 61, 62, 65, 66
observed, 24

initial values, 27, 31, 56
interevent, 2, 14

Jackson’s test, 35
jitter, 24, 41

Kolmogorov-Smirnov test, 14, 15, 24

left truncated Weibull, 4
legend of a RL plot, 44
levels vs excesses, 55
Likelihood Ratio test, 33–35
log-exponential distribution, 65, 67
log-normal distribution, 62–63
loi en carré, 67, 68
Lomax distribution, 30–31, 33–35, 64–65

marked point process, 2
max-stable distribution, 53

72



MAXdata, 7, 26
maximum likelihood, 22–23
maxlo distribution, 30–31, 33–35, 66
mean residual life, 55, 59
missing periods

description, 6, 7
endogenous, 7
in blocks, 38–40
in interevents, 14

mixture of exponentials
continuous, 61, 65
finite, 63–64

moment estimation, 59, 62
MRL, see mean residual life

negative binomial, 50
nested models, 33

optim function, 23, 27
orthogonal parameters, 24
OT2MAX function, 16, 38–40
OTdata, 5–6
OTSdata, 8, 26
overdispersion index, test, 17

Pareto distribution, 64
Pareto distribution of the second kind, 64
partial observation, 5
Pickands-Balkema-de Haan theorem, 3, 54–55
plotting positions, 11, 22, 28–29
POSIX objects, 5
POT (Peaks Over Threshold), 3–4
POT stability, 3, 59
ppoints function, 11
predict method, 20, 31

rate, Poisson process, 2
readXML function, 8, 29
regular expression, 44
Rendata class, 6–9, 29
Renouv class, 20–35
RenouvNoEst, 32
rescaling (data), 8, 65, 66
return level

m years, 56
in POT, 3, 20
plot, 21–22, 42–48

return period
in POT, 3
POT vs block maxima, 51–52

reversed Weibull distribution, 53
r largest, 4–5, 26, 36–38
RLlegend* functions, 44–47
RLpar function, 42–44
rRendata function, 9

scale of data, see rescaling (data)

shifted left truncated Weibull, see SLTW
show argument of lines.Renouv, 42, 47, 48
simulation, 9
SLTW distribution, 32, 68
square-exponential distribution, 67, 68
subset method, 12, 16
survival function, 2, 55

tail quantile function, 56
test of exponentiality

Bartlett’s, 57
Jackson’s, 35
likelihood ratio, 35
Moran’s, 57
WE or Wilk’s or CV2, 35

thinning (Poisson Process), 3, 26
threshold

choice, 4, 46–47
in POT, 3
perception, 5, 25

ties, 24
transformed exponential, 67
translucent colours, 46

uniform distribution, 58
unobserved level, 25

venice data, 36–38

Weibull distribution, 4, 21, 33, 60–61, 68
Weibull plot, 24, 61

XML, 8
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