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lmom-package The lmom package

Description

R functions for use with the method of L-moments

Details

L-moments are measures of the location, scale, and shape of probability distributions or data sam-
ples. They are based on linear combinations of order statistics. Hosking (1990) and Hosking and
Wallis (1997, chap. 2) give expositions of the theory of L-moments and L-moment ratios. Hosk-
ing and Wallis (1997, Appendix) give, for many distributions in common use, expressions for the
L-moments of the distributions and algorithms for estimating the parameters of the distributions by
equating sample and population L-moments (the “method of L-moments”). This package contains
R functions that should facilitate the use of L-moment-based methods.

For each of 13 probability distributions, the package contains functions to evaluate the cumulative
distribution function and quantile function of the distribution, to calculate the L-moments given the
parameters and to calculate the parameters given the low-order L-moments. These functions are as
follows.

cdf... computes the cumulative distribution function of the distribution.

qua... computes the quantile function (inverse cumulative distribution function) of the distribution.

lmr... calculates the L-moment ratios of the distribution given its parameters.

pel... calculates the parameters of the distribution given its L-moments. When the L-moments
are the sample L-moments of a set of data, the resulting parameters are of course the “method of
L-moments” estimates of the parameters.

Here ... is a three-letter code used to identify the distribution, as given in the table below. For
example the cumulative distribution function of the gamma distribution is cdfgam.

exp exponential
gam gamma
gev generalized extreme-value
glo generalized logistic
gpa generalized Pareto
gno generalized normal
gum Gumbel (extreme-value type I)
kap kappa
ln3 lognormal
nor normal
pe3 Pearson type III
wak Wakeby
wei Weibull

The following functions are also contained in the package.

samlmu computes the sample L-moments of a data vector.
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lmrp and lmrq compute the L-moments of a probability distribution specified by its cumulative
distribution function (for function lmrp) or its quantile function (for function lmrq). The computa-
tion uses numerical integration applied to a general expression for the L-moments of a distribution.
Functions lmrp and lmrq can be used for any univariate distribution. They are slower and usually
less accurate than the computations carried out for specific distributions by the lmr... functions.

pelp and pelq compute the parameters of a probability distribution as a function of the L-moments.
The computation uses function lmrp or lmrq to compute L-moments and numerical optimization to
find parameter values for which the sample and population L-moments are equal. Functions pelp
and pelq can be used for any univariate distribution. They are slower and usually less accurate than
the computations carried out for specific distributions by the pel... functions.

lmrd draws an L-moment ratio diagram.

lmrdpoints and lmrdlines add points, or connected line segments, respectively, to an L-moment
ratio diagram.

evplot draws an “extreme-value plot”, i.e. a quantile-quantile plot in which the horizontal axis is
the quantile of an extreme-value type I (Gumbel) distribution.

evpoints, evdistp, and evdistq add, respectively, a set of points, a cumulative distribution func-
tion, and a quantile function to an extreme-value plot.

Trimmed L-moments

Some functions support the trimmed L-moments defined by Elamir and Seheult (2003). Trimmed
L-moments are based on linear combinations of order statistics that give zero weight to the most
extreme order statistics and thereby can be defined for very heavy-tailed distributions that do not
have a finite mean.

Function samlmu can compute sample trimmed L-moments. Functions lmrp and lmrq can compute
trimmed L-moments of probability distributions. Functions pelp and pelq can calculate parameters
of a probability distribution given its trimmed L-moments.

The distribution-specific functions lmr... and pel... and the functions for L-moment ratio dia-
grams (lmrd, etc.) currently do not support trimmed L-moments.

Parameters of cumulative distribution functions and quantile functions

The functions cdf... (cumulative distribution functions) and qua... (quantile functions) expect
the distribution parameters to be specified as a single vector. This differs from the standard R
convention, in which each parameter is a separate argument. There are two reasons for this. First,
the single-vector parametrization is consistent with the Fortran routines on which these R functions
are based. Second, the single-vector parametrization is often easier to use. For example, consider
computing the 80th and 90th percentiles of a normal distribution fitted to a set of L-moments stored
in a vector lmom. In the single-vector parametrization, this is achieved by

quanor( c(.8,.9), pelnor(lmom) )

The separate-arguments parametrization would need a more complex expression, such as

do.call( qnorm, c( list(.8,.9), pelnor(lmom) ) )

In functions (lmrp, lmrq, pelp, pelq, evplot, evdistp, evdistq) that take a cumulative distribu-
tion function or a quantile function as an argument, the cumulative distribution function or quantile
function can use either form of parametrization.
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Relation to the LMOMENTS Fortran package

Functions cdf..., qua..., lmr..., pel..., and samlmu are analogous to Fortran routines from
the LMOMENTS package, version 3.04, available from StatLib at http://lib.stat.cmu.edu/
general/lmoments. Functions cdfwak and samlmu, and all the lmr... and pel... functions,
internally call Fortran code that is derived from the LMOMENTS package.

Author(s)

J. R. M. Hosking <jrmhosking@gmail.com>

References

Elamir, E. A. H., and Seheult, A. H. (2003). Trimmed L-moments. Computational Statistics and
Data Analysis, 43, 299-314.

Hosking, J. R. M. (1990). L-moments: analysis and estimation of distributions using linear combi-
nations of order statistics. Journal of the Royal Statistical Society, Series B, 52, 105-124.

Hosking, J. R. M., and Wallis, J. R. (1997). Regional frequency analysis: an approach based on
L-moments. Cambridge University Press.

cdfexp Exponential distribution

Description

Distribution function and quantile function of the exponential distribution.

Usage

cdfexp(x, para = c(0, 1))
quaexp(f, para = c(0, 1))

Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order ξ, α
(location, scale).

Details

The exponential distribution with parameters ξ (lower bound) and α (mean) has distribution function

F (x) = 1− exp{−(x− ξ)/α}

for x ≥ 0, and quantile function

x(F ) = ξ − α log(1− F ).

Value

cdfexp gives the distribution function; quaexp gives the quantile function.

http://lib.stat.cmu.edu/general/lmoments
http://lib.stat.cmu.edu/general/lmoments
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Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R functions pexp and qexp.

See Also

pexp for the standard R version of the exponential distribution. cdfgam for the gamma distribution,
cdfgpa for the generalized Pareto distribution, cdfkap for the kappa distribution, cdfpe3 for the
Pearson type III distribution, and cdfwak for the Wakeby distribution, all of which generalize the
exponential distribution.

Examples

# Random sample from the exponential distribution
# with lower bound 0 and mean 3.
quaexp(runif(100), c(0,3))

cdfgam Gamma distribution

Description

Distribution function and quantile function of the gamma distribution.

Usage

cdfgam(x, para = c(1, 1))
quagam(f, para = c(1, 1))

Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order α, β
(shape, scale).

Details

The gamma distribution with shape parameter α and scale parameter β has probability density
function

f(x) =
xα−1 exp(−x/β)

βαΓ(α)

for x ≥ 0, where Γ(.) is the gamma function.

Value

cdfgam gives the distribution function; quagam gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R functions pgamma and qgamma.
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See Also

gamma for the gamma function.

pgamma for the standard R version of the gamma distribution.

cdfpe3 for the Pearson type III distribution, which generalizes the gamma distribution.

Examples

# Random sample from the gamma distribution
# with shape parameter 4 and mean 1.
quagam(runif(100), c(4,1/4))

cdfgev Generalized extreme-value distribution

Description

Distribution function and quantile function of the generalized extreme-value distribution.

Usage

cdfgev(x, para = c(0, 1, 0))
quagev(f, para = c(0, 1, 0))

Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order ξ, α, k
(location, scale, shape).

Details

The generalized extreme-value distribution with location parameter ξ, scale parameter α and shape
parameter k has distribution function

F (x) = exp{− exp(−y)}

where
y = −k−1 log{1− k(x− ξ)/α},

with x bounded by ξ + α/k from below if k < 0 and from above if k > 0, and quantile function

x(F ) = ξ +
α

k
{1− (− logF )k}.

Extreme-value distribution types I, II and III (Gumbel, Frechet, Weibull) correspond to shape pa-
rameter values k = 0, k < 0 and k > 0 respectively.

Value

cdfgev gives the distribution function; quagev gives the quantile function.
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Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm, qnorm, etc.

Two parametrizations of the generalized extreme-value distribution are in common use. When
Jenkinson (1955) introduced distribution he wrote the distribution function in the form

F (x) = exp[−{1− k(x− ξ)/α)}1/k].

and that is the form used in R package lmom. A slight inconvenience with it is that the skewness of
the distribution is a decreasing function of the shape parameter k. Perhaps for this reason, authors
of some other R packages prefer a form in which the sign of the shape parameter k is changed and
the parameters are renamed:

F (x) = exp[−{1 + ξ(x− µ)/σ)}−1/ξ].

Users should be able to mix functions from packages that use either form; just be aware that the
sign of the shape parameter will need to be changed when converting from one form to the other
(and that ξ is a location parameter in one form and a shape parameter in the other).

References

Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) of
meteorological elements. Quarterly Journal of the Royal Meteorological Society, 81, 158-171.

See Also

cdfgum for the Gumbel (extreme-value type I) distribution.

cdfkap for the kappa distribution, which generalizes the generalized extreme-value distribution.

cdfwei for the Weibull distribution,

Examples

# Random sample from the generalized extreme-value distribution
# with parameters xi=0, alpha=1, k=-0.5.
quagev(runif(100), c(0,1,-0.5))

cdfglo Generalized logistic distribution

Description

Distribution function and quantile function of the generalized logistic distribution.

Usage

cdfglo(x, para = c(0, 1, 0))
quaglo(f, para = c(0, 1, 0))
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Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order ξ, α, k
(location, scale, shape).

Details

The generalized logistic distribution with location parameter ξ, scale parameter α and shape param-
eter k has distribution function

F (x) = 1/{1 + exp(−y)}

where
y = −k−1 log{1− k(x− ξ)/α},

with x bounded by ξ + α/k from below if k < 0 and from above if k > 0, and quantile function

x(F ) = ξ +
α

k

{
1−

(
1− F

F

)k}
.

The logistic distribution is the special case k = 0.

Value

cdfglo gives the distribution function; quaglo gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm, qnorm, etc.

See Also

cdfkap for the kappa distribution, which generalizes the generalized logistic distribution.

Examples

# Random sample from the generalized logistic distribution
# with parameters xi=0, alpha=1, k=-0.5.
quaglo(runif(100), c(0,1,-0.5))

cdfgno Generalized normal distribution

Description

Distribution function and quantile function of the generalized normal distribution.

Usage

cdfgno(x, para = c(0, 1, 0))
quagno(f, para = c(0, 1, 0))
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Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order ξ, α, k
(location, scale, shape).

Details

The generalized normal distribution with location parameter ξ, scale parameter α and shape param-
eter k has distribution function

F (x) = Φ(y)

where
y = −k−1 log{1− k(x− ξ)/α}

and Φ(y) is the distribution function of the standard normal distribution, with x bounded by ξ+α/k
from below if k < 0 and from above if k > 0.

The generalized normal distribution contains as special cases the usual three-parameter lognormal
distribution, corresponding to k < 0, with a finite lower bound and positive skewness; the normal
distribution, corresponding to k = 0; and the reverse lognormal distribution, corresponding to
k > 0, with a finite upper bound and negative skewness. The two-parameter lognormal distribution,
with a lower bound of zero and positive skewness, is obtained when k < 0 and ξ + α/k = 0.

Value

cdfgno gives the distribution function; quagno gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm, qnorm, etc.

See Also

cdfln3 for the lmom package’s version of the three-parameter lognormal distribution.

cdfnor for the lmom package’s version of the normal distribution.

pnorm for the standard R version of the normal distribution.

plnorm for the standard R version of the two-parameter lognormal distribution.

Examples

# Random sample from the generalized normal distribution
# with parameters xi=0, alpha=1, k=-0.5.
quagno(runif(100), c(0,1,-0.5))

# The generalized normal distribution with parameters xi=1, alpha=1, k=-1,
# is the standard lognormal distribution. An illustration:
fval<-seq(0.1,0.9,by=0.1)
cbind(fval, lognormal=qlnorm(fval), g.normal=quagno(fval, c(1,1,-1)))



10 cdfgpa

cdfgpa Generalized Pareto distribution

Description

Distribution function and quantile function of the generalized Pareto distribution.

Usage

cdfgpa(x, para = c(0, 1, 0))
quagpa(f, para = c(0, 1, 0))

Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order ξ, α, k
(location, scale, shape).

Details

The generalized Pareto distribution with location parameter ξ, scale parameter α and shape param-
eter k has distribution function

F (x) = 1− exp(−y)

where
y = −k−1 log{1− k(x− ξ)/α},

with x bounded by ξ + α/k from below if k < 0 and from above if k > 0, and quantile function

x(F ) = ξ +
α

k
{1− (1− F )k}.

The exponential distribution is the special case k = 0. The uniform distribution is the special case
k = 1.

Value

cdfgpa gives the distribution function; quagpa gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm, qnorm, etc.

Two parametrizations of the generalized Pareto distribution are in common use. When Jenkinson
(1955) introduced the generalized extreme-value distribution he wrote the distribution function in
the form

F (x) = exp[−{1− k(x− ξ)/α)}1/k].

Hosking and Wallis (1987) wrote the distribution function of the generalized Pareto distribution
analogously as

F (x) = 1− {1− k(x− ξ)/α)}1/k
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and that is the form used in R package lmom. A slight inconvenience with it is that the skewness of
the distribution is a decreasing function of the shape parameter k. Perhaps for this reason, authors
of some other R packages prefer a form in which the sign of the shape parameter k is changed and
the parameters are renamed:

F (x) = 1− {1 + ξ(x− µ)/σ)}−1/ξ.

Users should be able to mix functions from packages that use either form; just be aware that the
sign of the shape parameter will need to be changed when converting from one form to the other
(and that ξ is a location parameter in one form and a shape parameter in the other).

References

Hosking, J. R. M., and Wallis, J. R. (1987). Parameter and quantile estimation for the generalized
Pareto distribution. Technometrics, 29, 339-349.

Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) of
meteorological elements. Quarterly Journal of the Royal Meteorological Society, 81, 158-171.

See Also

cdfexp for the exponential distribution.

cdfkap for the kappa distribution and cdfwak for the Wakeby distribution, which generalize the
generalized Pareto distribution.

Examples

# Random sample from the generalized Pareto distribution
# with parameters xi=0, alpha=1, k=-0.5.
quagpa(runif(100), c(0,1,-0.5))

cdfgum Gumbel (extreme-value type I) distribution

Description

Distribution function and quantile function of the Gumbel distribution.

Usage

cdfgum(x, para = c(0, 1))
quagum(f, para = c(0, 1))

Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order ξ, α
(location, scale).
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Details

The Gumbel distribution with location parameter ξ and scale parameter α has distribution function

F (x) = exp[− exp{−(x− ξ)/α}]

and quantile function
x(F ) = ξ − α log(− logF ).

Value

cdfgum gives the distribution function; quagum gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm, qnorm, etc.

See Also

cdfgev for the generalized extreme-value distribution, which generalizes the Gumbel distribution.

Examples

# Random sample from the Gumbel distribution with parameters xi=0, alpha=3.
quagum(runif(100), c(0,3))

cdfkap Kappa distribution

Description

Distribution function and quantile function of the kappa distribution.

Usage

cdfkap(x, para = c(0, 1, 0, 0))
quakap(f, para = c(0, 1, 0, 0))

Arguments

x Vector of quantiles.
f Vector of probabilities.
para Numeric vector containing the parameters of the distribution, in the order ξ, α, k, h

(location, scale, shape, shape).

Details

The kappa distribution with location parameter ξ, scale parameter α and shape parameters k and h
has quantile function

x(F ) = ξ +
α

k

{
1−

(
1− Fh

h

)k}
.

Its special cases include the generalized logistic (h = −1), generalized extreme-value (h = 0),
generalized Pareto (h = 1), logistic (k = 0, h = −1), Gumbel (k = 0, h = 0), exponential (k = 0,
h = 1), and uniform (k = 1, h = 1) distributions.



cdfln3 13

Value

cdfkap gives the distribution function; quakap gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm, qnorm, etc.

References

Hosking, J. R. M. (1994). The four-parameter kappa distribution. IBM Journal of Research and
Development, 38, 251-258.

Hosking, J. R. M., and Wallis, J. R. (1997). Regional frequency analysis: an approach based on
L-moments, Cambridge University Press, Appendix A.10.

See Also

cdfglo for the generalized logistic distribution, cdfgev for the generalized extreme-value distribu-
tion, cdfgpa for the generalized Pareto distribution, cdfgum for the Gumbel distribution, cdfexp
for the exponential distribution.

Examples

# Random sample from the kappa distribution
# with parameters xi=0, alpha=1, k=-0.5, h=0.25.
quakap(runif(100), c(0,1,-0.5,0.25))

cdfln3 Three-parameter lognormal distribution

Description

Distribution function and quantile function of the three-parameter lognormal distribution.

Usage

cdfln3(x, para = c(0, 0, 1))
qualn3(f, para = c(0, 0, 1))

Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order ζ, µ, σ
(lower bound, mean on log scale, standard deviation on log scale).
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Details

The three-parameter lognormal distribution with lower bound ζ, mean on log scale µ, and standard
deviation on log scale σ has distribution function

F (x) = Φ(y),

x > 0, where
y = {log(x− ζ)− µ}/σ

and Φ(y) is the distribution function of the standard normal distribution.

Value

cdfln3 gives the distribution function; qualn3 gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm, qnorm, etc.

See Also

cdfgno for the generalized normal distribution, a more general form of the three-parameter lognor-
mal distribution.

qlnorm for the standard R version of the two-parameter lognormal distribution.

Examples

# Random sample from three-parameter lognormal distribution
# with parameters zeta=0, mu=1, sigma=0.5.
qualn3(runif(100), c(0,1,0.5))

## Functions for the three-parameter lognormal distribution can
## also be used with the two-parameter lognormal distribution
# Generate a random sample from a standard lognormal distribution
xx <- qualn3(runif(50))
# Fit 2-parameter LN distribution
pelln3(samlmu(xx), bound=0)
# Fit 2-parameter LN distribution "in log space",
# i.e. fit normal distribution to log-transformed data
pelnor(samlmu(log(xx)))

cdfnor Normal distribution

Description

Distribution function and quantile function of the normal distribution.

Usage

cdfnor(x, para = c(0, 1))
quanor(f, para = c(0, 1))
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Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order µ, σ
(location, scale).

Details

The normal distribution with location parameter µ and scale parameter σ has probability density
function

f(x) =
1

σ
√
2π

exp{−(x− µ)2/(2σ2)}.

Value

cdfnor gives the distribution function; quanor gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm and qnorm.

See Also

pnorm for the standard R version of the normal distribution.

cdfgno for the generalized normal distribution, which generalizes the normal distribution.

Examples

# Random sample from the normal distribution
# with mean 0 and standard deviation 3.
quanor(runif(100), c(0,3))

cdfpe3 Pearson type III distribution

Description

Distribution function and quantile function of the Pearson type III distribution

Usage

cdfpe3(x, para = c(0, 1, 0))
quape3(f, para = c(0, 1, 0))

Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order µ, σ, γ
(location, scale, shape).
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Details

The Pearson type III distribution contains as special cases the usual three-parameter gamma distri-
bution (a shifted version of the gamma distribution) with a finite lower bound and positive skewness;
the normal distribution, and the reverse three-parameter gamma distribution, with a finite upper
bound and negative skewness. The distribution’s parameters are the first three (ordinary) moment
ratios: µ (the mean, a location parameter), σ (the standard deviation, a scale parameter) and γ (the
skewness, a shape parameter).
If γ ̸= 0, let α = 4/γ2, β = 1

2σ|γ|, ξ = µ− 2σ/γ. The probability density function is

f(x) =
|x− ξ|α−1 exp(−|x− ξ|/β)

βαΓ(α)

with x bounded by ξ from below if γ > 0 and from above if γ < 0. If γ = 0, the distribution is a
normal distribution with mean µ and standard deviation σ.
The Pearson type III distribution is usually regarded as consisting of just the case γ > 0 given above,
and is usually parametrized by α, β and ξ. Our parametrization extends the distribution to include
the usual Pearson type III distributions, with positive skewness and lower bound ξ, reverse Pearson
type III distributions, with negative skewness and upper bound ξ, and the Normal distribution, which
is included as a special case of the distribution rather than as the unattainable limit α → ∞. This
enables the Pearson type III distribution to be used when the skewness of the observed data may be
negative. The parameters µ, σ and γ are the conventional moments of the distribution.
The gamma distribution is obtained when γ > 0 and µ = 2σ/γ. The normal distribution is the
special case γ = 0. The exponential distribution is the special case γ = 2.

Value

cdfpe3 gives the distribution function; quape3 gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm, qnorm, etc.

References

Hosking, J. R. M. and Wallis, J. R. (1997). Regional frequency analysis: an approach based on
L-moments, Cambridge University Press, Appendix A.10.

See Also

cdfgam for the gamma distribution.
cdfnor for the normal distribution.

Examples

# Random sample from the Pearson type III distribution
# with parameters mu=1, alpha=2, gamma=3.
quape3(runif(100), c(1,2,3))

# The Pearson type III distribution with parameters
# mu=12, sigma=6, gamma=1, is the gamma distribution
# with parameters alpha=4, beta=3. An illustration:
fval<-seq(0.1,0.9,by=0.1)
cbind(fval, qgamma(fval, shape=4, scale=3), quape3(fval, c(12,6,1)))
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cdfwak Wakeby distribution

Description

Distribution function and quantile function of the Wakeby distribution.

Usage

cdfwak(x, para = c(0, 1, 0, 0, 0))
quawak(f, para = c(0, 1, 0, 0, 0))

Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order ξ, α, β, γ, δ.

Details

The Wakeby distribution with parameters ξ, α, β, γ and δ has quantile function

x(F ) = ξ +
α

β
{1− (1− F )β} − γ

δ
{1− (1− F )−δ}.

The parameters are restricted as in Hosking and Wallis (1997, Appendix A.11):

• either β + δ > 0 or β = γ = δ = 0;

• if α = 0 then β = 0;

• if γ = 0 then δ = 0;

• γ ≥ 0;

• α+ γ ≥ 0.

The distribution has a lower bound at ξ and, if δ < 0, an upper bound at ξ + α/β − γ/δ.

The generalized Pareto distribution is the special case α = 0 or γ = 0. The exponential distribution
is the special case β = γ = δ = 0. The uniform distribution is the special case β = 1, γ = δ = 0.

Value

cdfwak gives the distribution function; quawak gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm, qnorm, etc.

References

Hosking, J. R. M. and Wallis, J. R. (1997). Regional frequency analysis: an approach based on
L-moments, Cambridge University Press, Appendix A.11.
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See Also

cdfgpa for the generalized Pareto distribution.

cdfexp for the exponential distribution.

Examples

# Random sample from the Wakeby distribution
# with parameters xi=0, alpha=30, beta=20, gamma=1, delta=0.3.
quawak(runif(100), c(0,30,20,1,0.3))

cdfwei Weibull distribution

Description

Distribution function and quantile function of the Weibull distribution.

Usage

cdfwei(x, para = c(0, 1, 1))
quawei(f, para = c(0, 1, 1))

Arguments

x Vector of quantiles.

f Vector of probabilities.

para Numeric vector containing the parameters of the distribution, in the order ζ, β, δ
(location, scale, shape).

Details

The Weibull distribution with location parameter ζ, scale parameter β and shape parameter δ has
distribution function

F (x) = 1− exp[−{(x− ζ)/β}δ]

for x > ζ.

Value

cdfwei gives the distribution function; quawei gives the quantile function.

Note

The functions expect the distribution parameters in a vector, rather than as separate arguments as in
the standard R distribution functions pnorm, qnorm, etc.

See Also

cdfgev for the generalized extreme-value distribution, of which the Weibull (reflected through the
origin) is a special case.
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Examples

# Random sample from a 2-parameter Weibull distribution
# with scale parameter 2 and shape parameter 1.5.
quawei(runif(100), c(0,2,1.5))

# Illustrate the relation between Weibull and GEV distributions.
# weifit() fits a Weibull distribution to data and returns
# quantiles of the fitted distribution
# gevfit() fits a Weibull distribution as a "reverse GEV",
# i.e. fits a GEV distribution to the negated data,
# then computes negated quantiles
weifit <- function(qval, x) quawei(qval, pelwei(samlmu(x)))
gevfit <- function(qval, x) -quagev(1-qval, pelgev(samlmu(-x)))
# Compare on Ozone data
data(airquality)
weifit(c(0.2,0.5,0.8), airquality$Ozone)
gevfit(c(0.2,0.5,0.8), airquality$Ozone)

evplot Extreme-value plot

Description

evplot draws an “extreme-value plot”, i.e. a quantile-quantile plot in which the horizontal axis is
the quantile of an extreme-value type I (Gumbel) distribution.

evdistp adds the cumulative distribution function of a distribution to an extreme-value plot.

evdistq adds the quantile function of a distribution to an extreme-value plot.

evpoints adds a set of data points to an extreme-value plot.

Usage

evplot(y, ...)

## Default S3 method:
evplot(y, qfunc, para, npoints = 101, plim, xlim = c(-2, 5),

ylim, type,
xlab = expression("Reduced variate, " * -log(-log(italic(F)))),
ylab = "Quantile", rp.axis = TRUE, ...)

evdistp(pfunc, para, npoints = 101, ...)
evdistq(qfunc, para, npoints = 101, ...)

evpoints(y, ...)

Arguments

y Numeric vector. The data values in the vector are plotted on the extreme-value
plot.

qfunc A quantile function. The function is drawn as a curve on the extreme-value plot.

pfunc A cumulative distribution function. The function is drawn as a curve on the
extreme-value plot.
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para Distribution parameters for the quantile function qfunc or cumulative distribu-
tion function pfunc.
If pfunc or qfunc is the standard R form of quantile function, para should be a
list.
If pfunc or qfunc is the qua... form of quantile function used throughout the
lmom package, para should be a numeric vector.
In evplot, para is not used if qfunc is omitted.

npoints Number of points to use in drawing the quantile function. The points are equally
spaced along the x axis. Not used if qfunc is omitted.

plim X axis limits, specified as probabilities.

xlim X axis limits, specified as values of the Gumbel reduced variate − log(− logF ),
where F is the nonexceedance probability. Not used if plim is specified.

ylim Y axis limits.

type Plot type. Determines how the data values in y are plotted. Interpreted in the
same way as argument type of function plot, i.e. "p" for points, "b" for points
connected by lines, etc.

xlab X axis label.

ylab Y axis label.

rp.axis Logical. Whether to draw the “Return period” axis, a secondary horizontal axis.

... Additional arguments are passed to the plotting routine.

Arguments of cumulative distribution functions and quantile functions

pfunc and qfunc can be either the standard R form of cumulative distribution function or quantile
function (i.e. for a distribution with r parameters, the first argument is the variate x or the probability
p and the next r arguments are the parameters of the distribution) or the cdf... or qua... forms
used throughout the lmom package (i.e. the first argument is the variate x or probability p and the
second argument is a vector containing the parameter values).

Note

Data points are plotted at the Gringorten plotting position, i.e. the ith smallest of n data points is
plotted at the horizontal position corresponding to nonexceedance probability (i−0.44)/(n+0.12).

Author(s)

J. R. M. Hosking <jrmhosking@gmail.com>

Examples

# Extreme-value plot of Ozone from the airquality data
data(airquality)
evplot(airquality$Ozone)

# Fit a GEV distribution and add it to the plot
evdistq(quagev, pelgev(samlmu(airquality$Ozone)))

# Not too good -- try a kappa distribution instead
evdistq(quakap, pelkap(samlmu(airquality$Ozone)), col="red")
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lmr-functions L-moments of specific probability distributions

Description

Computes the L-moments of a probability distribution given its parameters. The following distri-
butions are recognized:

lmrexp exponential
lmrgam gamma
lmrgev generalized extreme-value
lmrglo generalized logistic
lmrgpa generalized Pareto
lmrgno generalized normal
lmrgum Gumbel (extreme-value type I)
lmrkap kappa
lmrln3 three-parameter lognormal
lmrnor normal
lmrpe3 Pearson type III
lmrwak Wakeby
lmrwei Weibull

Usage

lmrexp(para = c(0, 1), nmom = 2)
lmrgam(para = c(1, 1), nmom = 2)
lmrgev(para = c(0, 1, 0), nmom = 3)
lmrglo(para = c(0, 1, 0), nmom = 3)
lmrgno(para = c(0, 1, 0), nmom = 3)
lmrgpa(para = c(0, 1, 0), nmom = 3)
lmrgum(para = c(0, 1), nmom = 2)
lmrkap(para = c(0, 1, 0, 0), nmom = 4)
lmrln3(para = c(0, 0, 1), nmom = 3)
lmrnor(para = c(0, 1), nmom = 2)
lmrpe3(para = c(0, 1, 0), nmom = 3)
lmrwak(para = c(0, 1, 0, 0, 0), nmom = 5)
lmrwei(para = c(0, 1, 1), nmom = 3)

Arguments

para Numeric vector containing the parameters of the distribution.

nmom The number of L-moments to be calculated.

Details

Numerical methods and accuracy are as described in Hosking (1996, pp. 8–9).

Value

Numeric vector containing the L-moments.
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Author(s)

J. R. M. Hosking <jrmhosking@gmail.com>

References

Hosking, J. R. M. (1996). Fortran routines for use with the method of L-moments, Version 3.
Research Report RC20525, IBM Research Division, Yorktown Heights, N.Y.

See Also

lmrp to compute L-moments of a general distribution specified by its cumulative distribution func-
tion or quantile function.

samlmu to compute L-moments of a data sample.

pelexp, etc., to compute the parameters of a distribution given its L-moments.

For individual distributions, see their cumulative distribution functions:

cdfexp exponential
cdfgam gamma
cdfgev generalized extreme-value
cdfglo generalized logistic
cdfgpa generalized Pareto
cdfgno generalized normal
cdfgum Gumbel (extreme-value type I)
cdfkap kappa
cdfln3 three-parameter lognormal
cdfnor normal
cdfpe3 Pearson type III
cdfwak Wakeby
cdfwei Weibull

Examples

# Compare sample L-moments of Ozone from the airquality data
# with the L-moments of a GEV distribution fitted to the data
data(airquality)
smom <- samlmu(airquality$Ozone, nmom=6)
gevpar <- pelgev(smom)
pmom <- lmrgev(gevpar, nmom=6)
print(smom)
print(pmom)

lmrd L-moment ratio diagram

Description

Draws an L-moment ratio diagram.
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Usage

lmrd(x, y, distributions = "GLO GEV GPA GNO PE3", twopar,
xlim, ylim, pch=3, cex, col, lty, lwd=1,
legend.lmrd = TRUE, xlegend, ylegend,
xlab = expression(italic(L) * "-skewness"),
ylab = expression(italic(L) * "-kurtosis"), ...)

Arguments

x Numeric vector of L-skewness values.
Alternatively, if argument y is omitted, x can be an object that contains both L-
skewness and L-kurtosis values. It can be a vector with elements named "t_3"
and "t_4" (or "tau_3" and "tau_4"), a matrix or data frame with columns
named "t_3" and "t_4" (or "tau_3" and "tau_4"), or an object of class "regdata"
(as defined in package lmomRFA).

y Numeric vector of L-kurtosis values.

distributions Indicates the three-parameter distributions whose L-skewness–L-kurtosis rela-
tions are to be plotted as lines on the diagram. The following distribution iden-
tifiers are recognized, in upper or lower case:

GLO generalized logistic
GEV generalized extreme-value
GPA generalized Pareto
GNO generalized normal
PE3 Pearson type III
WAK.LB lower bound of L-kurtosis for given L-skewness,

for the Wakeby distribution.
ALL.LB lower bound of L-kurtosis for given L-skewness,

for all distributions.

The argument should be either a character vector each of whose elements is one
of the above abbreviations or a character string containing one or more of the
abbreviations separated by blanks. The specified L-skewness–L-kurtosis curves
will be plotted.
If no three-parameter distributions are to be plotted, specify distributions to
be FALSE or the empty string, "".

twopar Two-parameter distributions whose (L-skewness, L-kurtosis) values are to be
plotted as points on the diagram. The following distribution identifiers are rec-
ognized, in upper or lower case:

E or EXP exponential
G or GUM Gumbel
L or LOG logistic
N or NOR normal
U or UNI uniform

The argument should be either a character vector each of whose elements is
one of the above abbreviations or a character string containing one or more of
the abbreviations separated by blanks. L-skewness–L-kurtosis points for the
specified distributions will be plotted and given one-character labels.



24 lmrd

The default is to plot the two-parameter distributions that are special cases of
the three-parameter distributions specified in argument distributions. Thus
for example if distributions="GPA PE3", the default for twopar is "EXP NOR
UNI": NOR is a special case of PE3, UNI of GPA, EXP of both GPA and PE3.
If no two-parameter distributions are to be plotted, specify twopar to be FALSE
or the empty string, "".

xlim x axis limits. Default: c(0, 0.6), expanded if necessary to cover the range of
the data.

ylim y axis limits. Default: c(0, 0.4), expanded if necessary to cover the range of
the data.

pch Plotting character to be used for the plotted (L-skewness, L-kurtosis) points.

cex Symbol size for plotted points, like graphics parameter cex.

col Vector specifying the colors. If it is of length 1 and x is present, it will be used
for the plotted points. Otherwise it will be used for the lines on the plot. For the
default colors for the lines, see the description of argument lty below.

lty Vector specifying the line types to be used for the lines on the plot.
By default, colors and line types are matched to the distributions given in argu-
ment distributions, as follows:

GLO blue, solid line
GEV green, solid line
GPA red, solid line
GNO black, solid line
PE3 cyan, solid line
WAK.LB red, dashed line
ALL.LB black, dashed line

The green and cyan colors are less bright than the standard "green" and "cyan";
they are defined to be "#00C000" and "#00E0E0", respectively.

lwd Vector specifying the line widths to be used for the lines on the plot.

legend.lmrd Controls whether a legend, identifying the L-skewness–L-kurtosis relations of
the three-parameter distributions, is plotted. Either logical, indicating whether
a legend is to be drawn, or a list specifying arguments to the legend function.
Default arguments include bty="n", which must be overridden if a legend box
is to be drawn; other arguments set by default are x, y, legend, col, lty, and
lwd.
Not used if distributions=FALSE.

xlegend x coordinate of the upper left corner of the legend. Default: the minimum x
value. Not used if distributions=FALSE or legend.lmrd=FALSE.

ylegend y coordinate of the upper left corner of the legend. Default: the maximum y
value. Not used if distributions=FALSE or legend.lmrd=FALSE.

xlab X axis label.

ylab Y axis label.

... Additional arguments are passed to the matplot function that draws the axis
box and the lines for three-parameter distributions.
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Details

lmrd calls a sequence of graphics functions: matplot for the axis box and the curves for three-
parameter distributions; points for the points for two-parameter distributions and text for their
labels; legend for the legend; and points for the (x, y) data points.

Note that the only graphics parameters passed to points are col (if of length 1), cex, and pch.
If more complex features are required, such as different colors for different points, follow lmrd
by an additional call to points, e.g. follow lmrd(t3, t4) by points(t3, t4, col=c("red",
"green")).

Value

A list, returned invisibly, describing what was plotted. Useful for customization of the legend, as in
one of the examples below. List elements:

lines List containing elements describing the plotted distribution curves (if any). Each
element is a vector with the same length as distributions. List elements
distributions, col.lines, lty, lwd.

twopar Character vector containing the 1-character symbols for the two-parameter dis-
tributions that were plotted.

points List containing elements describing the plot (if any) of the data points. List
elements col.pts, pch, cex.

If any of the above items was not plotted, the corresponding list element is NULL.

Author(s)

J. R. M. Hosking <jrmhosking@gmail.com>

See Also

For adding to an L-moment ratio diagram: lmrdpoints, lmrdlines.

Examples

data(airquality)
lmrd(samlmu(airquality$Ozone))

# Tweaking a few graphics parameters makes the graph look better
# (in the author's opinion)
lmrd(samlmu(airquality$Ozone), xaxs="i", yaxs="i", las=1)

# An example that illustrates the sampling variability of L-moments
#
# Generate 50 random samples of size 30 from the Gumbel distribution
# - stored in the rows of matrix mm
mm <- matrix(quagum(runif(1500)), nrow=50)
#
# Compute the first four sample L-moments of each sample
# - stored in the rows of matrix aa
aa <- apply(mm, 1, samlmu)
#
# Plot the L-skewness and L-kurtosis values on an L-moment ratio
# diagram that also shows (only) the population L-moment ratios
# of the Gumbel distribution
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lmrd(t(aa), dist="", twopar="G", col="red")

# L-moment ratio diagram with curves for GLO, GEV, GPA, and Weibull.
# The Weibull curve is added manually. A legend is added,
# using information returned from lmrd().
#
# - Draw the diagram, with the GLO, GEV, and GPA curves
info <- lmrd(distributions="GLO GEV GPA", xaxs="i", yaxs="i", las=1, legend=FALSE)
#
# - Compute L-skewness and L-kurtosis values for Weibull
sa <- sapply(seq(0, 0.6, by=0.01),

function(tau3) lmrwei(pelwei(c(0,1,tau3)), nmom=4)[3:4])
#
# - Plot the Weibull curve
lmrdlines(sa["tau_3",], sa["tau_4",], col="magenta", lwd=2)
#
# - Add a legend
legend("topleft", bty="n",

legend = c(info$lines$distributions, "WEI"),
col = c(info$lines$col.lines, "magenta"),
lwd = c(info$lines$lwd, 3))

lmrdpoints Add points or lines to an L-moment ratio diagram

Description

lmrdpoints adds points, and lmrdlines adds connected line segments, to an L-moment ratio
diagram.

Usage

lmrdpoints(x, y=NULL, type="p", ...)
lmrdlines(x, y=NULL, type="l", ...)

Arguments

x Numeric vector of L-skewness values.

y Numeric vector of L-kurtosis values. May be omitted: see “Details” below.

type Character indicating the type of plotting. Can be any valid value for the type
argument of plot.default.

... Further arguments (graphics parameters), passed to points or lines.

Details

The functions lmrdpoints and lmrdlines are equivalent to points and lines respectively, except
that if argument y is omitted, x is assumed to be an object that contains both L-skewness and L-
kurtosis values. As in lmrd, it can be a vector with elements named "t_3" and "t_4" (or "tau_3"
and "tau_4"), a matrix or data frame with columns named "t_3" and "t_4" (or "tau_3" and
"tau_4"), or an object of class "regdata" (as defined in package lmomRFA).
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Author(s)

J. R. M. Hosking <jrmhosking@gmail.com>

See Also

lmrd, points, lines.

Examples

# Plot L-moment ratio diagram of Wind from the airquality data set
data(airquality)
lmrd(samlmu(airquality$Wind), xlim=c(-0.2, 0.2))
# Sample L-moments of each month's data
( lmom.monthly <- with(airquality,

t(sapply(5:9, function(mo) samlmu(Wind[Month==mo])))) )
# Add the monthly values to the plot
lmrdpoints(lmom.monthly, pch=19, col="blue")

# Draw an L-moment ratio diagram and add a line for the
# Weibull distribution
lmrd(xaxs="i", yaxs="i", las=1)
weimom <- sapply( seq(0, 0.9, by=0.01),

function(tau3) lmrwei(pelwei(c(0,1,tau3)), nmom=4) )
lmrdlines(t(weimom), col='darkgreen', lwd=2)

lmrp L-moments of a general probability distribution

Description

Computes the L-moments or trimmed L-moments of a probability distribution given its cumulative
distribution function (for function lmrp) or quantile function (for function lmrq).

Usage

lmrp(pfunc, ..., bounds=c(-Inf,Inf), symm=FALSE, order=1:4,
ratios=TRUE, trim=0, acc=1e-6, subdiv=100, verbose=FALSE)

lmrq(qfunc, ..., symm=FALSE, order=1:4, ratios=TRUE, trim=0,
acc=1e-6, subdiv=100, verbose=FALSE)

Arguments

pfunc Cumulative distribution function.

qfunc Quantile function.

... Arguments to pfunc or qfunc.

bounds Either a vector of length 2, containing the lower and upper bounds of the distri-
bution, or a function that calculates these bounds given the distribution parame-
ters as inputs.
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symm For lmrq, a logical value indicating whether the distribution is symmetric about
its median.
For lmrp, either the logical value FALSE or NA to indicate that the distribution is
not symmetric, or a numeric value to indicate that the distribution is symmetric
and that the specified value is the center of symmetry.
If the distribution is symmetric, odd-order L-moments are exactly zero and
the symmetry is used to slightly speed up the computation of even-order L-
moments.

order Orders of the L-moments and L-moment ratios to be computed.

ratios Logical. If FALSE, L-moments are computed; if TRUE (the default), L-moment
ratios are computed.

trim Degree of trimming. If a single value, symmetric trimming of the specified
degree will be used. If a vector of length 2, the two values indicate the degrees
of trimming at the lower and upper ends of the “conceptual sample” (Elamir and
Seheult, 2003) of order statistics that is used to define the trimmed L-moments.

acc Requested accuracy. The function will try to achieve this level of accuracy, as
relative error for L-moments and absolute error for L-moment ratios.

subdiv Maximum number of subintervals used in numerical integration.

verbose Logical. If FALSE, only the values of the L-moments and L-moment ratios are
returned. If TRUE, more details of the numerical integration are returned: see
“Value” section below.

Details

Computations use expressions in Hosking (2007): eq. (7) for lmrp, eq. (5) for lmrq. Integrals in
those expressions are computed by numerical integration.

Value

If verbose=FALSE and ratios=FALSE, a numeric vector containing the L-moments.

If verbose=FALSE and ratios=TRUE, a numeric vector containing the L-moments (of orders 1 and
2) and L-moment ratios (of orders 3 and higher).

If verbose=TRUE, a data frame with columns as follows:

value L-moments (if ratios=FALSE), or L-moments and L-moment ratios (if ratios=TRUE).

abs.error Estimate of the absolute error in the computed value.

message "OK" or a character string giving the error message resulting from the numerical
integration.

Arguments of cumulative distribution functions and quantile functions

pfunc and qfunc can be either the standard R form of cumulative distribution function or quantile
function (i.e. for a distribution with r parameters, the first argument is the variate x or the probability
p and the next r arguments are the parameters of the distribution) or the cdf... or qua... forms
used throughout the lmom package (i.e. the first argument is the variate x or probability p and
the second argument is a vector containing the parameter values). Even for the R form, however,
starting values for the parameters are supplied as a vector start.

If bounds is a function, its arguments must match the distribution parameter arguments of pfunc:
either a single vector, or a separate argument for each parameter.
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Warning

Arguments bounds, symm, order, ratios, trim, acc, subdiv, and verbose cannot be abbreviated
and must be specified by their full names (if abbreviated, the names would be matched to the
arguments of pfunc or qfunc).

Note

In package lmom versions 1.6 and earlier, the “Details” section stated that “Integrals in those ex-
pressions are computed by numerical integration, using the R function integrate”. As of version
2.0, numerical integration uses an internal function that directly calls (slightly modified versions of)
Fortran routines in QUADPACK (Piessens et al. 1983). R’s own integrate function uses C code
“based on” the QUADPACK routines, but in R versions 2.12.0 through 3.0.1 did not in every case
reproduce the results that would have been obtained with the Fortran code (this is R bug PR#15219).

Author(s)

J. R. M. Hosking <jrmhosking@gmail.com>

References

Elamir, E. A. H., and Seheult, A. H. (2003). Trimmed L-moments. Computational Statistics and
Data Analysis, 43, 299-314.

Hosking, J. R. M. (2007). Some theory and practical uses of trimmed L-moments. Journal of
Statistical Planning and Inference, 137, 3024-3039.

Piessens, R., deDoncker-Kapenga, E., Uberhuber, C., and Kahaner, D. (1983). Quadpack: a Sub-
routine Package for Automatic Integration. Springer Verlag.

See Also

lmrexp to compute (untrimmed) L-moments of specific distributions.

samlmu to compute (trimmed or untrimmed) L-moments of a data sample.

pelp and pelexp, to compute the parameters of a distribution given its (trimmed or untrimmed)
L-moments.

Examples

## Generalized extreme-value (GEV) distribution
## - three ways to get its L-moments
lmrp(cdfgev, c(2,3,-0.2))
lmrq(quagev, c(2,3,-0.2))
lmrgev(c(2,3,-0.2), nmom=4)

## GEV bounds specified as a vector
lmrp(cdfgev, c(2,3,-0.2), bounds=c(-13,Inf))

## GEV bounds specified as a function -- single vector of parameters
gevbounds <- function(para) {

k <- para[3]
b <- para[1]+para[2]/k
c(ifelse(k<0, b, -Inf), ifelse(k>0, b, Inf))

}
lmrp(cdfgev, c(2,3,-0.2), bounds=gevbounds)
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## GEV bounds specified as a function -- separate parameters
pgev <- function(x, xi, alpha, k)

pmin(1, pmax(0, exp(-((1-k*(x-xi)/alpha)^(1/k)))))
pgevbounds <- function(xi,alpha,k) {

b <- xi+alpha/k
c(ifelse(k<0, b, -Inf), ifelse(k>0, b, Inf))

}
lmrp(pgev, xi=2, alpha=3, k=-0.2, bounds=pgevbounds)

## Normal distribution
lmrp(pnorm)
lmrp(pnorm, symm=0)
lmrp(pnorm, mean=2, sd=3, symm=2)
# For comparison, the exact values
lmrnor(c(2,3), nmom=4)

# Many L-moment ratios of the exponential distribution
# This may warn that "the integral is probably divergent"
lmrq(qexp, order=3:20)

# ... nonetheless the computed values seem accurate:
# compare with the exact values, tau_r = 2/(r*(r-1)):
cbind(exact=2/(3:20)/(2:19), lmrq(qexp, order=3:20, verbose=TRUE))

# Of course, sometimes the integral really is divergent
## Not run:
lmrq(function(p) (1-p)^(-1.5))

## End(Not run)

# And sometimes the integral is divergent but that's not what
# the warning says (at least on the author's system)
lmrp(pcauchy)

# Trimmed L-moments for Cauchy distribution are finite
lmrp(pcauchy, symm=0, trim=1)

# Works for discrete distributions too, but often requires
# a larger-than-default value of 'subdiv'
lmrp(ppois, lambda=5, subdiv=1000)

pel-functions Parameter estimation for specific distributions by the method of L-
moments

Description

Computes the parameters of a probability distribution as a function of the L-moments. The follow-
ing distributions are recognized:

pelexp exponential
pelgam gamma
pelgev generalized extreme-value
pelglo generalized logistic
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pelgpa generalized Pareto
pelgno generalized normal
pelgum Gumbel (extreme-value type I)
pelkap kappa
pelln3 three-parameter lognormal
pelnor normal
pelpe3 Pearson type III
pelwak Wakeby
pelwei Weibull

Usage

pelexp(lmom)
pelgam(lmom)
pelgev(lmom)
pelglo(lmom)
pelgno(lmom)
pelgpa(lmom, bound = NULL)
pelgum(lmom)
pelkap(lmom)
pelln3(lmom, bound = NULL)
pelnor(lmom)
pelpe3(lmom)
pelwak(lmom, bound = NULL, verbose = FALSE)
pelwei(lmom, bound = NULL)

Arguments

lmom Numeric vector containing the L-moments of the distribution or of a data sam-
ple.

bound Lower bound of the distribution. If NULL (the default), the lower bound will be
estimated along with the other parameters.

verbose Logical: whether to print a message when not all parameters of the distribution
can be computed.

Details

Numerical methods and accuracy are as described in Hosking (1996, pp. 10–11). Exception: if
pelwak is unable to fit a Wakeby distribution using all 5 L-moments, it instead fits a generalized
Pareto distribution to the first 3 L-moments. (The corresponding routine in the LMOMENTS For-
tran package would attempt to fit a Wakeby distribution with lower bound zero.)

Value

A numeric vector containing the parameters of the distribution.

Author(s)

J. R. M. Hosking <jrmhosking@gmail.com>
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References

Hosking, J. R. M. (1996). Fortran routines for use with the method of L-moments, Version 3.
Research Report RC20525, IBM Research Division, Yorktown Heights, N.Y.

See Also

pelp for parameter estimation of a general distribution specified by its cumulative distribution func-
tion or quantile function.

lmrexp, etc., to compute the L-moments of a distribution given its parameters.

For individual distributions, see their cumulative distribution functions:

cdfexp exponential
cdfgam gamma
cdfgev generalized extreme-value
cdfglo generalized logistic
cdfgpa generalized Pareto
cdfgno generalized normal
cdfgum Gumbel (extreme-value type I)
cdfkap kappa
cdfln3 three-parameter lognormal
cdfnor normal
cdfpe3 Pearson type III
cdfwak Wakeby
cdfwei Weibull

Examples

# Sample L-moments of Ozone from the airquality data
data(airquality)
lmom <- samlmu(airquality$Ozone)

# Fit a GEV distribution
pelgev(lmom)

pelp Parameter estimation for a general distribution by the method of L-
moments

Description

Computes the parameters of a probability distribution as a function of the L-moments or trimmed
L-moments.

Usage

pelp(lmom, pfunc, start, bounds = c(-Inf, Inf),
type = c("n", "s", "ls", "lss"),
ratios = NULL, trim = NULL, method = "nlm", acc = 1e-5,
subdiv = 100, ...)
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pelq(lmom, qfunc, start, type = c("n", "s", "ls", "lss"),
ratios = NULL, trim = NULL, method = "nlm", acc = 1e-5,
subdiv = 100, ...)

Arguments

lmom Numeric vector containing the L-moments of the distribution or of a data sam-
ple.

pfunc Cumulative distribution function of the distribution.

qfunc Quantile function of the distribution.

start Vector of starting values for the parameters.

bounds Either a vector of length 2, containing the lower and upper bounds of the distri-
bution, or a function that calculates these bounds given the distribution parame-
ters as inputs.

type Type of distribution, i.e. how it is parametrized. Must be one of the following:

"ls" The distribution has a location parameter and a scale parameter.

"lss" The distribution has a location parameter and a scale parameter, and is
symmetric about its median.

"s" The distribution has a scale parameter but not a location parameter.

"n" The distribution has neither a location parameter nor a scale parameter.

For more details, see the “Distribution type” section below.

ratios Logical or NULL. If FALSE, lmom should contain L-moments; if TRUE, lmom
should contain L-moment ratios. If NULL and lmom has names, the contents
of lmom will be inferred from these names - see section “Inferring ‘ratios’ and
‘trim”’ below. The default value (if ratios is NULL and lmom has no names) is
TRUE.

trim The degree of trimming corresponding to the L-moments in lmom. Can be a
single value or a vector length 2, as for samlmu. Can also be NULL: in this case if
lmom has names, the degree of trimming will be inferred from these names - see
section “Inferring ‘ratios’ and ‘trim”’ below. The default value (if trim is NULL
and lmom has no names) is 0.

method Method used to estimate the shape parameters (i.e. all parameters other than
the location and scale parameters, if any). Valid values are "nlm" (the default),
"uniroot" (which is valid only if the distribution has at most one shape param-
eter), and any of the values of the method argument of function optim. See the
“Details” section below.

acc Requested accuracy for the estimated parameters. This will be absolute accu-
racy for shape parameters, relative accuracy for a scale parameter, and absolute
accuracy of the location parameter divided by the scale parameter for a location
parameter.

subdiv Maximum number of subintervals used in the numerical integration that com-
putes L-moments of the distribution. Passed to functions lmrp or lmrq, which
perform this integration.

... Further arguments will be passed to the optimization function (nlm, uniroot, or
optim).
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Details

For shape parameters, numerical optimization is used to find parameter values for which the pop-
ulation L-moments or L-moment ratios are equal to the values supplied in lmom. Computation of
L-moments or L-moment ratios uses functions lmrp (for pelp) or lmrq (for pelq). Numerical
optimization uses R functions nlm (if method="nlm"), uniroot (if method="uniroot"), or optim
with the specified method (for the other values of method). Function uniroot uses one-dimensional
root-finding, while functions nlm and optim try to minimize a criterion function that is the sum of
squared differences between the population L-moments or L-moment ratios and the values supplied
in lmom. Location and scale parameters are then estimated noniteratively. In all cases, the calcula-
tion of population L-moments and L-moment ratios is performed by function lmrp or lmrq (when
using pelp or pelq respectively).

This approach is very crude. Nonetheless, it is often effective in practice. As in all numerical
optimizations, success may depend on the way that the distribution is parametrized and on the
particular choice of starting values for the parameters.

Value

A list with components:

para Numeric vector containing the estimated parameters of the distribution.

code An integer indicating the result of the numerical optimization used to estimate
the shape parameters. It is 0 if there are no shape parameters. In general, values
1 and 2 indicate successful convergence of the iterative procedure, a value of
3 indicates that the iteration may not have converged, and values of 4 or more
indicate that the iteration did not converge. Specifically, code is:
For method "nlm", the code component of the return value from nlm.
For method "uniroot", 1 if the estimated precision of the shape parameter is
less than or equal to acc, and 4 otherwise.
For the other methods, the convergence component of the return value from
optim.

Further details of arguments

The length of lmom should be (at least) the highest order of L-moment used in the estimation pro-
cedure. For a distribution with r parameters this is 2r − 2 if type="lss" and r otherwise.

pfunc and qfunc can be either the standard R form of cumulative distribution function or quantile
function (i.e. for a distribution with r parameters, the first argument is the variate x or the probability
p and the next r arguments are the parameters of the distribution) or the cdf... or qua... forms
used throughout the lmom package (i.e. the first argument is the variate x or probability p and
the second argument is a vector containing the parameter values). Even for the R form, however,
starting values for the parameters are supplied as a vector start.

If bounds is a function, its arguments must match the distribution parameter arguments of pfunc:
either a single vector, or a separate argument for each parameter.

It is assumed that location and scale parameters come first in the set of parameters of the distribution.
Specifically: if type="ls" or type="lss", it is assumed that the first parameter is the location
parameter and that the second parameter is the scale parameter; if type="s" it is assumed that the
first parameter is the scale parameter.

It is important that the length of start be equal to the number of parameters of the distribution.
Starting values for location and scale parameters should be included in start, even though they
are not used. If start has the wrong length, it is possible that meaningless results will be returned
without any warning being issued.
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Distribution type

The type argument affects estimation as follows. We assume that location and scale parameters are
ξ and α respectively, and that the shape parameters (if there are any) are collectively designated by
θ.

If type="ls", then the L-moment ratios τ3, τ4, . . . depend only on the shape parameters. If there
are any shape parameters, they are estimated by equating the sample L-moment ratios of orders 3, 4,
etc., to the population L-moment ratios and solving the resulting equations for the shape parameters
(using as many equations as there are shape parameters). The L-moment λ2 is a multiple of α, the
multiplier being a function only of θ. α is estimated by dividing the second sample L-moment by
the multiplier function evaluated at the estimated value of θ. The L-moment λ1 is ξ plus a function
of α and θ. ξ is estimated by subtracting from the first sample L-moment the function evaluated at
the estimated values of α and θ.

If type="lss", then the L-moment ratios of odd order, τ3, τ5, . . ., are zero and the L-moment ratios
of even order, τ4, τ6, . . ., depend only on the shape parameters. If there are any shape parameters,
they are estimated by equating the sample L-moment ratios of orders 4, 6, etc., to the population
L-moment ratios and solving the resulting equations for the shape parameters (using as many equa-
tions as there are shape parameters). Parameters α and ξ are estimated as in case when type="ls".

If type="s", then the L-moments divided by λ1, i.e. λ2/λ1, λ3/λ1, . . ., depend only on the
shape parameters. If there are any shape parameters, they are estimated by equating the sample
L-moments (divided by the first sample L-moment) of orders 2, 3, etc., to the corresponding pop-
ulation L-moments (divided by the first population L-moment) and solving the resulting equations
(as many equations as there are shape parameters). The L-moment λ1 is a multiple of α, the mul-
tiplier being a function only of θ. α is estimated by dividing the first sample L-moment by the
multiplier function evaluated at the estimated value of θ.

If type="n", then all parameters are shape parameters. They are estimated by equating the sample
L-moments of orders 1, 2, etc., to the population L-moments and solving the resulting equations
for the parameters (using as many equations as there are parameters).

Inferring ‘ratios’ and ‘trim’

If ratios or trim is NULL, appropriate values will be inferred by inspecting the names of lmom. It
is assumed that lmom was generated by a call to samlmu, lmrp, or lmrq; in this case its names will
reflect the values of ratios and trim used in that call. If in this case lmom has no names, default
values ratios=TRUE and trim=0 will be used.

This inference is made in order to reduce the need to specify the orders of trimming repetitively.
For example, a distribution with quantile function qfunc can be fitted to (1,1)-trimmed L-moments
of data in x by

lmom <- samlmu(x, trim=1)
fit <- pelq(lmom, qfunc, start=...)

There is no need to specify trim both in the call to samlmu and the call to pelq.

Author(s)

J. R. M. Hosking <jrmhosking@gmail.com>

See Also

pelexp for parameter estimation of specific distributions.
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Examples

## Gamma distribution -- rewritten so that its first parameter
## is a scale parameter
my.pgamma <- function(x, scale, shape) pgamma(x, shape=shape, scale=scale)
pelp(c(5,2), my.pgamma, start=c(1,1), bounds=c(0,Inf), type="s")
# We can also do the estimation suppressing our knowledge
# that one parameter is a shape parameter.
pelp(c(5,2), my.pgamma, start=c(1,1), bounds=c(0,Inf), type="n")
rm(my.pgamma)

## Kappa distribution -- has location, scale and 2 shape parameters
# Estimate via pelq
pel.out <- pelq(c(10,5,0.3,0.15), quakap, start=c(0,1,0,0), type="ls")
pel.out
# Check that L-moments of estimated distribution agree with the
# L-moments input to pelq()
lmrkap(pel.out$para)
# Compare with the distribution-specific routine pelkap
pelkap(c(10,5,0.3,0.15))
rm(pel.out)

# Similar results -- what's the advantage of the specific routine?
system.time(pelq(c(10,5,0.3,0.15), quakap, start=c(0,1,0,0), type="ls"))
system.time(pelkap(c(10,5,0.3,0.15)))

# Caution -- pelq() will not check that estimates are reasonable
lmom <- c(10,5,0.2,0.25)
pel.out <- pelq(lmom, quakap, start=c(0,1,0,0), type="ls")
pel.out
lmrkap(pel.out$para) # should be close to lmom, but tau_3 and tau_4 are not
# What happened? pelkap will tell us
try(pelkap(lmom))
rm(lmom, pel.out)

## Inverse Gaussian -- don't have explicit estimators for this
## distribution, but can use numerical methods
#
# CDF of inverse gaussian distribution
pig <- function(x, mu, lambda) {

temp <- suppressWarnings(sqrt(lambda/x))
xx <- pnorm(temp*(x/mu-1))+exp(2*lambda/mu+pnorm(temp*(x/mu+1),

lower.tail=FALSE, log.p=TRUE))
out <- ifelse(x<=0, 0, xx)
out

}
# Fit to ozone data
data(airquality)
(lmom<-samlmu(airquality$Ozone))
pel.out <- pelp(lmom[1:2], pig, start=c(10,10), bounds=c(0,Inf))
pel.out
# First four L-moments of fitted distribution,
# for comparison with sample L-moments
lmrp(pig, pel.out$para[1], pel.out$para[2], bounds=c(0,Inf))
rm(pel.out)

## A Student t distribution with location and scale parameters
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#
qstu <- function(p, xi, alpha, df) xi + alpha * qt(p, df)
# Estimate parameters. Distribution is symmetric: use type="lss"
pelq(c(3,5,0,0.2345), qstu, start=c(0,1,10), type="lss")
# Doesn't converge (at least on the author's system) --
# try a different parametrization
qstu2 <- function(p, xi, alpha, shape) xi + alpha * qt(p, 1/shape)
# Now it converges
pelq(c(3,5,0,0.2345), qstu2, start=c(0,1,0.1), type="lss")
# Or try a different optimization method
pelq(c(3,5,0,0.2345), qstu, start=c(0,1,10), type="lss",

method="uniroot", lower=2, upper=100)

## With trimmed L-moments, we can fit this distribution even when
## it does not have a finite mean ('df' less than 1)
set.seed(123456)
dat <- qstu(runif(1000), xi=3, alpha=5, df=0.75)
lmom <- samlmu(dat, trim=1)
lmom
# Note that pelq() infers 'trim=1' from the names of 'lmom'
pelq(lmom, qstu, start=c(0,1,10), type="lss", method="uniroot",

lower=0.51, upper=100)

rm(qstu, qstu2, dat, lmom)

samlmu Sample L-moments

Description

Computes the “unbiased” sample (trimmed) L-moments and L-moment ratios of a data vector.

Usage

samlmu(x, nmom=4, sort.data=TRUE, ratios=sort.data, trim=0)
samlmu.s(x, nmom=4, sort.data=TRUE, ratios=sort.data, trim=0)
.samlmu(x, nmom=4)

Arguments

x A numeric vector.

nmom Number of L-moments to be found.

sort.data Logical: whether the x vector needs to be sorted.

ratios Logical. If FALSE, L-moments are computed; if TRUE (the default), L-moment
ratios are computed.

trim Degree of trimming. If a single value, symmetric trimming of the specified
degree will be used. If a vector of length 2, the two values indicate the degrees
of trimming at the lower and upper ends of the “conceptual sample” (Elamir and
Seheult, 2003) of order statistics that is used to define the trimmed L-moments.
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Details

samlmu and samlmu.s are functionally identical. samlmu calls a Fortran routine internally, and
is usually faster. samlmu.s is written entirely in the S language; it is provided so that users can
conveniently see how the calculations are done.

.samlmu is a “bare-bones” version for use in programming. It gives an error if x contains missing
values, computes L-moment ratios and not L-moments, does not give a warning if all the elements
of x are equal, and returns its result in an unnamed vector.

Sample L-moments are defined in Hosking (1990). Calculations use the algorithm given in Hosking
(1996, p.14).

Trimmed sample L-moments are defined as in Hosking (2007), eq. (15) (a small extension of Elamir
and Seheult (2003), eq. (16)). They are calculated from the untrimmed sample L-moments using
the recursions of Hosking (2007), eqs. (12)-(13).

Value

If ratios is TRUE, a numeric vector containing the L-moments and L-moment ratios, in the order
ℓ1, ℓ2, t3, t4, etc. If ratios is FALSE, a numeric vector containing the L-moments in the order ℓ1,
ℓ2, ℓ3, ℓ4, etc.

Note

The term “trimmed” is used in a different sense from its usual meaning in robust statistics. In
particular, the first trimmed L-moment is in general not equal to any trimmed mean of the data
sample.

Author(s)

J. R. M. Hosking <jrmhosking@gmail.com>

References

Elamir, E. A. H., and Seheult, A. H. (2003). Trimmed L-moments. Computational Statistics and
Data Analysis, 43, 299-314.

Hosking, J. R. M. (1990). L-moments: analysis and estimation of distributions using linear combi-
nations of order statistics. Journal of the Royal Statistical Society, Series B, 52, 105-124.

Hosking, J. R. M. (1996). Fortran routines for use with the method of L-moments, Version 3.
Research Report RC20525, IBM Research Division, Yorktown Heights, N.Y.

Hosking, J. R. M. (2007). Some theory and practical uses of trimmed L-moments. Journal of
Statistical Planning and Inference, 137, 3024-3039.

Examples

data(airquality)
samlmu(airquality$Ozone, 6)

# Trimmed L-moment ratios
samlmu(airquality$Ozone, trim=1)
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