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1 Introduction

tsDyn is an R package for the estimation of a number of nonlinear time series

models. The package is at an early stage, and may presumably change signifi-

cantly in the near future. However, it is quite usable in the current version.

Each function in the package has at least a minimal help page, with one

or more working examples and detailed explanation of function arguments and

returned values. In this document we try to give an overall guided tour of

package contents, with some additional notes which are generally difficult to

put in the context of a manual.

This guide is divided into 3 main sections:

� Explorative analysis tools

� Nonlinear autoregressive models

� A case study

2 Explorative analysis

2.1 Bivariate and trivariate relations

A first explorative analysis should include inspecting the distribution of (xt, xt−l)

and that of (xt, xt−l1 , xt−l2) for some lags l, l1, l2. This can be done easily in

R in a variety of ways. The tsDyn package provide functions autopairs and

autotriples for this purpose.

The autopairs function displays, in essence, a scatterplot of time series xt ver-

sus xt−lag. The main arguments to the function are the time series and the

desired lag. The scatterplot may be also processed to produce bivariate kernel

density estimations, as well as nonparametric kernel autoregression estimations.

The type of output is governed by the argument type. Possibile values, along

with their meanings, are:

lines directed lines

points simple scatterplot

levels iso-density levels

persp density perspective plot

image density image map

regression kernel autoregression line superposed to scatterplot

For kernel density and regression estimation, you can specify also the kernel

window h. A typical call to that function can be:
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R code
autopairs(x, lag=, type=, h=)

All arguments (except the time series x) have default values.

Similar to autopairs, there is the autotriples function. This shows xt

versus (xt−lag1, xt−lag2), so that the user has to specify time series x and lags

lag1 and lag2. The scatterplot can be processed to produce kernel regression

estimates. Plotting possibilities are:

levels iso-values lines

persp perspective plot

image image map

lines directed lines

points simple scatterplot

2.2 Linearity

An interesting tool for inspecting possible nonlinearities in the time series is the

locally linear autoregressive fit plot, proposed by Casdagli [1]. Suppose you think

that the dynamical system underlying your time series is best reconstructed with

embedding dimension m and time delay d. Then the locally linear autoregressive

fit plot displays the relative error made by forecasting time series values with

linear models of the form:

xt+s = φ0 + φ1xt + . . .+ φmxt−(m−1)d

estimated on points in the sphere of radius ε around xmt for a range of values

of ε. A minimum attained at relatively small values of ε may indicate that a

global linear model would be inappropriate for the approximation of the time

series dynamics.

For this analysis tsDyn proposes the function llar which accepts, among

others, the following arguments:

x time series

m, d, steps embedding parameters (see the above model formulation)

The function returns a ‘llar’ object, which can be plotted with the generic

plot method. So, a typical usage would be:

R code
obj <- llar(log(lynx), m=3)

plot(obj)
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However, the obj object can be explicitely converted in an ordinary data.frame:

R code
obj <- data.frame(obj)

with variables:

R code
names(obj)

output
[1] "RMSE" "eps" "frac" "avfound"

where ‘RMSE’ stands for Relative Mean Square Error, and eps is enough self-

explaining. You can explore this object with usual R commands dedicated to

data.frames, such as:

R code
plot(RMSE~eps, data=obj, type="l", log="x")
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2.3 Tests (experimental)

tsDyn implements conditional mutual independence and linearity tests as de-

scribed in Manzan [9]. Function implementations are rather basic, and little

tested. Use them carefully!

The delta.test function performs a bootstrap test of independence of xt

versus xt−md conditional on intermediate observations {xt−d, . . . , xt−(m−1)d}.
The test statistic, available with the function delta, is based on the sample

correlation integral, and calls internally the d2 function provided by the tseri-

esChaos package. Among others things, the test requires the specification of a

neighborhood window ε.

Function arguments are the time series x, a vector of embedding dimensions m,

time delay d, a vector of neighborhood windows eps, the number of bootstrap

replications B. However, default values are available for m, d, eps and B, so

that a typical call can be:

R code
delta.test(x)

The return value is a matrix of p-values, labelled with their associated embed-

ding dimensions and neighborhood windows (normally multiple values are tried

simultaneously).

The delta.lin.test function performs a bootstrap test of linear dipendence

of xt versus xt−md conditional on intermediate observations {xt−d, . . . , xt−(m−1)d}.
The test statistic is available with the function delta.lin. The function argu-

ments and returned values are the same as those of delta.test.
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3 Nonlinear autoregressive time series models

Consider the discrete-time univariate stochastic process {Xt}t∈T . Suppose Xt

is generated by the map:

Xt+s = f(Xt, Xt−d, . . . , Xt−(m−1)d; θ) + εt+s (1)

with {εt}t∈T white noise, εt+s indipendent w.r.t. Xt+s, and with f a generic

function from Rm to R. This class of models is frequently referenced in the liter-

ature with the acronym NLAR(m), which stands for NonLinear AutoRegressive

of order m.

In (1), we have implicitely defined the embedding dimension m, the time

delay d and the forecasting steps s. The vector θ indicates a generic vector of

parameters governing the shape of f , which we would estimate on the basis of

some empirical evidence (i.e., an observed time series {x1, x2, . . . , xN}).
In tsDyn some specific NLAR models are implemented. For a list of currently

available models, type:

R code
availableModels()

output
[1] "linear" "nnetTs" "setar" "lstar" "star" "aar" "lineVar"

[8] "VECM" "TVAR" "TVECM"

Each model can be estimated using a function which takes the name of the

model as indicated by availableModels. I.e., use linear for fitting a linear

model.

All those functions returns an object of base class nlar, from which infor-

mations can be extracted using some common methods. Among others:

print(obj) #prints basic infos on fitted model and estimated parameters

summary(obj) #if possible, shows more detailed infos and diagnostics on estimated model

plot(obj) #shows common diagnostic plots

Another method that can be useful for inspecting the estimated model prop-

erties is the predict method:

R code
x.new <- predict(obj, n.ahead = )

This function attempts to extend of n.ahead observations of the original time

series used for estimating the model encapsulated in obj using the so called
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skeleton of the fitted model. Assuming that from (1) we estimated f as f̂ =

f(·; θ̂), using the time series x = {x1, x2, . . . , xN}, we have:

x̂N+1 = f̂(xN−s, xN−s−d, . . . , xN−s−(m−1)d)

x̂N+2 = f̂(xN−s+1, xN−s+1−d, . . . , xN−s+1−(m−1)d)

. . .

x̂N+S = f̂(xN−s+(S−1), xN−s+(S−1)−d, . . . , xN−s+(S−1)−(m−1)d)

A detailed description of some actually implemented models follows.

3.1 Linear models

Xt+s = φ+ φ0Xt + φ1Xt−d + . . .+ φmXt−(m−1)d + εt+s (2)

It’s a classical AR(m) model, and its specification doesn’t require additional

hyper-parameters. Estimation is done via CLS (Conditional Least Squares).

The summary command returns asymptotics standard errors for the estimated

coefficients, based on the normality assumption of residuals.

Note that in R there are plenty of functions for AR (and, more generally,

ARMA) models estimation, with different estimation methods, such as ML,

CLS, Yule-Walker, . . .. If you really need to fit linear models, use these methods

directly.

A interesting reparametrization of the model can be done using differences,

as in the ADF test for unit roots:

∆Xt+s = φ+ ρXt + ζ1∆Xt−d + . . .+ ζm−1∆Xt−(m−2)d + εt+s (3)

We have (see Hamilton [5]):

� ρ = φ0 + φ1 + . . .+ φm

� ζi = −(φj+1 + φj+2 + . . .+ φm) for j = 1, 2, . . . ,m− 1

It has the major advantage that the stationarity condition that all the roots

of the polynomial in (2) lying in the unit root circle is in the ADF representation

simply that −1 < ρ < 0.

This can be set in tsDyn using the argument type to ADF and using one lag

less in m:

R code
usual <- linear(lynx, m=3)

adf<- linear(lynx, m=2, type="ADF")
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Note that it is only a reparametrization, the model estimated being the same:

R code
all.equal(deviance(adf), deviance(usual))

output
[1] TRUE

R code
all.equal(residuals(usual), residuals(adf))

output
[1] TRUE

3.2 SETAR models

Xt+s =


φ1 + φ10Xt + φ11Xt−d + . . .+ φ1LXt−(L−1)d + εt+s Zt ≤ th

φ2 + φ20Xt + φ21Xt−d + . . .+ φ2HXt−(H−1)d + εt+s Zt > th

(4)

with Zt a threshold variable. How is one to define Zt? Strictly speaking, in

SETAR models Zt should be one of {Xt, Xt−d, Xt−(m−1)d}. We can define the

threshold variable Zt via the threshold delay δ, such that

Zt = Xt−δd

Using this formulation, you can specify SETAR models with:

R code
obj <- setar(x, m=, d=, steps=, thDelay= )

where thDelay stands for the above defined δ, and must be an integer number

between 0 and m− 1.

For greater flexibility, you can also define the threshold variable as an arbitrary

linear combination of lagged time series values:

Zt = β1Xt + β2Xt−1 + . . .+ βmXt−(m−1)d

In R this is implemented as follows:

R code
obj <- setar(x, m=, d=, steps=, mTh= )

where mTh stands for β, and takes the form of a vector of real coefficients of

length m.

Finally, Zt can be an external variable. This is obtained with the call:
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R code
obj <- setar(x, m=, d=, steps=, thVar= )

where thVar is the vector containing the threshold variable values.

Models with two thresholds and hence three regime are aslo availabe through

the argument nthresh, its default value being 1.

R code
obj <- setar(x, m=, d=, steps=, thDelay=, nthresh=2)

Another hyper-parameter one can specify is the threshold value th, via the

additional argument th. If not specified, this is estimated by fitting the model for

a grid of different, by default all values of th, and taking the best fit as the final th

estimate. This is done calling internally selectSETAR() with criterion="SSR".

Note that, conditional on {Zt ≤ th}, the model is linear. So, for a fixed

threshold value, the CLS estimation is straightforward.

The summary command for this model returns asymptotic standard errors

for the estimated φ coefficients, based on the assumption that εt are normally

distributed.

The threshold variable isn’t the only additional parameter governing the

TAR model. One can specify the low and high regime autoregressive orders L

and H. These can be specified with the arguments mL and mH, respectively:

R code
obj <- setar(x, m=, d=, steps=, thDelay = , mL =, mH =)

If not specified, mL and mH defaults to m. One can decide also only to select a

few values between 1:mL and 1:mH. This is possible using ML and MH. Hence to

have a first regime with lag 1 and 3, the second with all 3, would be: ML=c(1,3)

and MH=1:3.

R code
obj <- setar(x, m=, d=, steps=, thDelay = , ML =, MH =)

As suggested in Enders and Granger (1997)[3], the threshold variable can be

in differences, leading to the so-called Momentum-TAR (M-TAR). In this case,

the regime switching depends not on the position of the variable at time t − 1

but on its signs at t − 1. Hence, on can estimate whethera variable behaves

differently whether it was previously increasing or decreasing. A M-TAR can

be specified setting the argument model="MTAR". Note that when the number

of lags m is equal to the delay d, there is one less observation in the series1.

1This is for now handled not so properly and may result in failures in the different methods
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An interesting specification of the model in terms of another representation

is possible with type = c("level", "diff", "ADF"). This will either set all

variables in levels, in difference or as in the specification of the ADF test:

Note that using type=level or ADF results in the same model fit but is a

convenient way to test for a unit root, as the value of the variable in levels

should be smaller than one.

3.3 LSTAR models

The LSTAR model can be viewed as a generalization of the above defined SE-

TAR model:

Xt+s = (φ1 + φ10Xt + φ11Xt−d + . . .+ φ1LXt−(L−1)d)(1−G(Zt, γ, th))

+(φ2 + φ20Xt + φ21Xt−d + . . .+ φ2HXt−(H−1)d)G(Zt, γ, th) + εt+s

with G the logistic function, and Zt the threshold variable. For Zt, L and H

specification, the same convention as that of SETAR models is followed. In

addition, for LSTAR models one has to specify some starting values for all the

parameters to be estimated: (φ, γ, th).

Estimation is done by analytically determining φ1 and φ2 (through linear

regression) and then minimizing residuals sum of squares with respect to th and

γ. These two steps are repeated until convergence is achieved.

3.4 Neural Network models

A neural network model with linear output, D hidden units and activation

function g, is represented as:

xt+s = β0 +

D∑
j=1

βjg(γ0j +

m∑
i=1

γijxt−(i−1)d) (5)

For the implementation the nnet package is used, so please refer to the nnet

package documentation for more details.

The only additional argument for specifying this model is the number of

hidden units size, which stands for the above defined D:

R code
obj <- nnetTs(x, m=, d=, steps=, size=)

The estimation is done via CLS. No additional summary informations are

available for this model.
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3.5 Additive Autoregressive models

A non-parametric additive model (a GAM, Generalized Additive Model), of the

form:

xt+s = µ+

m∑
i=1

si(xt−(i−1)d) (6)

where si are smooth functions represented by penalized cubic regression splines.

They are estimated, along with their degree of smoothing, using the mgcv pack-

age [12].

No additional parameters are required for this model:

R code
obj <- aar(x, m=, d=, steps=)

Some diagnostic plots and summaries are provided for this model, adapted

from those produced by mgcv.

3.6 Model selection

A common task in time series modelling is fine tuning of the hyper-parameters.

R is a complete programming language, so the user can easily define his error

criterion, fit a set of models and chose the best between them. However, the

tsDyn package provides some helpful functions for this task.

For SETAR models, there is the selectSETAR function. The time series, the

embedding parameters and a vector of values for each provided hyper-parameter

is passed to this function. The routine then tries to fit the model for the full grid

of hyper-parameter values, and gives as output a list of the best combinations

found. So, for example:

R code
x <- log10(lynx)

selectSETAR(x, m=3, mL=1:3, mH=1:3, thDelay=0:2)

output
Searching on 73 possible threshold values within regimes with sufficient ( 15% ) number of observations

Searching on 219 combinations of thresholds ( 73 ), thDelay ( 3 ), mL ( 1 ) and MM ( 3 )

Results of the grid search for 1 threshold

thDelay mL mH th pooled-AIC

1 2 1 1 2.940018 -15.612619

2 2 1 1 2.907411 -12.252530

3 2 1 1 3.000000 -10.638946

4 2 1 1 2.894316 -9.038100

5 2 1 1 2.980912 -7.812850
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6 2 1 1 2.879669 -6.462867

7 2 1 1 2.828660 -4.661813

8 2 1 1 2.820858 -4.382119

9 2 1 1 2.835056 -3.043105

10 2 1 1 2.866878 -2.127289

tries to fit 3× 3× 3× 5 models, one for each combination of mL,mH,thDelay and

th, and returns the best combinations w.r.t. the AIC criterion.

Totally analogous are the selectLSTAR and selectNNET functions, for which

we refer to the online documentation.

4 Case study

We herein analyse the Canadian lynx data set. This consists of annual records

of the numbers of the Canadian lynx trapped in the Mackenzie River district of

North-west Canada for the period 1821-1934.

The time series, named lynx, is available in a default R installation, so one

can type directly, in an R session:

R code
str(lynx)

output
Time-Series [1:114] from 1821 to 1934: 269 321 585 871 1475 ...

R code
summary(lynx)

output
Min. 1st Qu. Median Mean 3rd Qu. Max.

39.0 348.2 771.0 1538.0 2566.8 6991.0

R code
plot(lynx)
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Here we will roughly follow the analysis in Tong [11].

4.1 Explorative analysis

First, we log transform the data:

R code
x <- log10(lynx)

Plot of the time series and time-inverted time series:

R code
par(mfrow=c(2,1), mar=c(0,0,0,0))

plot(x, ax=F)

box()

plot(x[length(x):1], type="l", ax=F)

box()
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Nonparametric regression function of Xt versus Xt−1 and of Xt versus Xt−3

(kernel estimation):

R code
par(mfrow=c(2,1), mar=c(2,2,0,0))

autopairs(x, lag=1, type="regression")

autopairs(x, lag=3, type="regression")
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For lag 3 (bottom plot), a linear approximation for the regression function

may be questionable.

The marginal histogram of data shows bimodality:

R code
hist(x, br=13)
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Global and partial autocorrelation:

R code
par(mfrow=c(2,1), mar=c(2,4,0,0))
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The tseriesChaos package offers some other explorative tools tipycal of

nonlinear time series analysis. The Average Mutual Information (see online

help for further explanation):

R code
library(tseriesChaos)

mutual(x)
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Recurrence plot (see online help):

R code
recurr(x, m=3, d=1, levels=c(0,0.2,1))

0.0

0.2

0.4

0.6

0.8

1.0

1840 1880 1920

1840

1860

1880

1900

1920

Recurrence plot

time

tim
e

From this plot, deterministic cycles appears from the embedding-reconstructed

underlying dynamics.
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Directed lines are a tipycal tool for time series explorations. The lag.plot

function in the base stats package does this well:

R code
lag.plot(x, lags=3, layout=c(1,3))
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Especially for lag 2, a cycle is again evident. Moreover, the void space in the

middle is a typical argument for rejecting the bivariate normality of (Xt, Xt−l).

What follows is the application of still-experimental code for testing the

conditional mutual independence and linearity for lags 2 and 3:

R code
delta.test(x)

output
eps

m 0.2792 0.5584 0.8376 1.1168

2 0.02 0.02 0.02 0.02

3 0.18 0.02 0.02 0.02

R code
delta.lin.test(x)

output
eps

m 0.2792 0.5584 0.8376 1.1168

2 0.42 0.18 0.56 0.48

3 0.28 0.34 0.24 0.52

P-values are reported, labelled with their embedding dimensions m and window

values ε. We reject conditional independence quite easily. There is some trouble

instead for deciding to reject or not linearity. See Manzan [9] for a detailed

discussion on these tests.
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4.2 Model selection

The first model proposed in the literature for these data was an AR(2):

Xt = 1.05 + 1.41Xt−1 − 0.77Xt−2 + εt

with v(εt) = σ2 = 0.04591.

This can be estimated with tsDyn using the command:

R code
mod.ar <- linear(x, m=2)

mod.ar

output
Non linear autoregressive model

AR model

Coefficients:

const phi.1 phi.2

1.0576005 1.3842377 -0.7477757

As an improvement to the AR model, we may consider applying a SETAR(2;

2,2) model with threshold delay δ = 1. In R:

R code
mod.setar <- setar(x, m=2, mL=2, mH=2, thDelay=1)

mod.setar

output
Non linear autoregressive model

SETAR model ( 2 regimes)

Coefficients:

Low regime:

const.L phiL.1 phiL.2

0.5884369 1.2642793 -0.4284292

High regime:

const.H phiH.1 phiH.2

1.165692 1.599254 -1.011575

Threshold:

-Variable: Z(t) = + (0) X(t)+ (1)X(t-1)

-Value: 3.31

Proportion of points in low regime: 69.64% High regime: 30.36%
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So, the fitted model may be written as:

Xt+1 =

{
0.588 + 1.264Xt − 0.428Xt−1 Xt−1 ≤ 3.31

1.166 + 1.599Xt − 1.012Xt−1 Xt−1 > 3.31

For an automatic comparison, we may fit different linear and nonlinear mod-

els and directly compare some measures of their fit:

R code
mod <- list()

mod[["linear"]] <- linear(x, m=2)

mod[["setar"]] <- setar(x, m=2, thDelay=1)

mod[["lstar"]] <- lstar(x, m=2, thDelay=1)

output
Using maximum autoregressive order for low regime: mL = 2

Using maximum autoregressive order for high regime: mH = 2

Performing grid search for starting values...

Starting values fixed: gamma = 11.15385 , th = 3.337486 ; SSE = 4.337664

Optimization algorithm converged

Optimized values fixed for regime 2 : gamma = 11.15383 , th = 3.339199 ; SSE = 4.337643

R code
mod[["nnetTs"]] <- nnetTs(x, m=2, size=3)

mod[["aar"]] <- aar(x, m=2)

Now the mod object contains a labelled list of fitted nlar models. As an

example, we can compare them in term of the AIC and MAPE index:

R code
sapply(mod, AIC)

output
linear setar lstar nnetTs aar

-333.8737 -358.3740 -356.6509 -344.4731 -328.0813

R code
sapply(mod, MAPE)

output
linear setar lstar nnetTs aar

0.06801955 0.05648596 0.05580035 0.05709281 0.05951108

From this comparison, the SETAR model seems to be the best.

More detailed diagnostics can be extracted:

18



R code
summary(mod[["setar"]])

output
Non linear autoregressive model

SETAR model ( 2 regimes)

Coefficients:

Low regime:

const.L phiL.1 phiL.2

0.5884369 1.2642793 -0.4284292

High regime:

const.H phiH.1 phiH.2

1.165692 1.599254 -1.011575

Threshold:

-Variable: Z(t) = + (0) X(t)+ (1)X(t-1)

-Value: 3.31

Proportion of points in low regime: 69.64% High regime: 30.36%

Residuals:

Min 1Q Median 3Q Max

-0.571121 -0.109431 0.017641 0.116468 0.516270

Fit:

residuals variance = 0.03814, AIC = -358, MAPE = 5.649%

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

const.L 0.588437 0.143307 4.1061 7.844e-05 ***

phiL.1 1.264279 0.065256 19.3741 < 2.2e-16 ***

phiL.2 -0.428429 0.077487 -5.5291 2.260e-07 ***

const.H 1.165692 0.876606 1.3298 0.1863928

phiH.1 1.599254 0.108966 14.6767 < 2.2e-16 ***

phiH.2 -1.011575 0.265011 -3.8171 0.0002255 ***

---

Signif. codes: 0

Threshold

Variable: Z(t) = + (0) X(t) + (1) X(t-1)

19



Value: 3.31

More diagnostic plots can be displayed using the command:

R code
plot(mod[["setar"]])

4.3 Out-of-sample forecasting

Fit models on first 104 observations:

R code
set.seed(10)

mod.test <- list()

x.train <- window(x, end=1924)

x.test <- window(x, start=1925)

mod.test[["linear"]] <- linear(x.train, m=2)

mod.test[["setar"]] <- setar(x.train, m=2, thDelay=1)

mod.test[["lstar"]] <- lstar(x.train, m=2, thDelay=1, trace=FALSE, control=list(maxit=1e5))

mod.test[["nnet"]] <- nnetTs(x.train, m=2, size=3, control=list(maxit=1e5))

output
# weights: 13

initial value 1009.386247

iter 10 value 5.610020

iter 20 value 5.422071

iter 30 value 5.408916

iter 40 value 5.319344

iter 50 value 5.080818

iter 60 value 4.862858

iter 70 value 4.595352

iter 80 value 4.437777

iter 90 value 4.309198

iter 100 value 4.270213

iter 110 value 4.249430

iter 120 value 4.233955

iter 130 value 4.219969

iter 140 value 4.215552

iter 150 value 4.215540

final value 4.215539

converged
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R code
mod.test[["aar"]] <- aar(x.train, m=2)

Compare forecasts with real last 10 observed values:

R code
frc.test <- lapply(mod.test, predict, n.ahead=10)

plot(x.test,ylim=range(x))

for(i in 1:length(frc.test))

+ lines(frc.test[[i]], lty=i+1, col=i+1)

legend(1925,2.4, lty=1:(length(frc.test)+1), col=1:(length(frc.test)+1), legend=c("observed",names(frc.test)))

Time

x.
te

st

1926 1928 1930 1932 1934

2.
0

2.
5

3.
0

3.
5

observed
linear
setar
lstar
nnet
aar

From this visual comparison, the SETAR(2; 2,2) model seems to be one of

the bests.

4.4 Inspecting model skeleton

An interesting task can be inspecting the fitted model skeleton.

This can be achieved by comparing the forecasting results under each model.

R code
x.new <- predict(mod[["linear"]], n.ahead=100)

lag.plot(x.new, 1)
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A fixed point, i.e. the only possible stationary solution with a linear model.

R code
x.new <- predict(mod[["setar"]], n.ahead=100)

lag.plot(x.new, 1)
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A stable periodic cycle.

R code
x.new <- predict(mod[["nnetTs"]], n.ahead=100)

lag.plot(x.new, 1)
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Appears to be a quasiperiodic cycle lying on an invariant curve.

5 Sensitivity on initial conditions

In the previous section we observed skeletons with cyclical or limit fixed point

behaviour.

Neural networks and SETAR models can explain also different types of at-

tractors. For this data set, Tong [11] showed that particular types of SETAR

models can yeld to fixed limit points as well as unstable orbits and possibly

chaotic systems.

For example, a fixed limit point:

R code
mod.point <- setar(x, m=10, mL=3, mH=10, thDelay=0, th=3.12)

lag.plot(predict(mod.point, n.ahead=100))
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Unstable orbit:

R code
mod.unstable <- setar(x, m=9, mL=9, mH=6, thDelay=4, th=2.61)

lag.plot(predict(mod.unstable, n.ahead=100))

25



2.4 2.6 2.8 3.0 3.2 3.4

2.
6

2.
8

3.
0

3.
2

lag 1

pr
ed

ic
t(

m
od

.u
ns

ta
bl

e,
 n

.a
he

ad
 =

 1
00

)

1

2

3

4 5

6

7

8

910

11

12

13
14

15
16

17
1819

20
21222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899

Possibly chaotic systems:

R code
mod.chaos1 <- setar(x, m=5, mL=5, mH=3, thDelay=1, th=2.78)

lag.plot(predict(mod.chaos1, n.ahead=100))
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R code
mod.chaos2 <- setar(x, m=5, mL=5, mH=3, thDelay=1, th=2.95)

lag.plot(predict(mod.chaos2, n.ahead=100))
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For a given fitted model, we can try estimating the maximal Lyapunov expo-

nent with the Kantz algorithm using the lyap_k function in the tseriesChaos

package [10, 6]. This function takes as input an observed time series, so we can

procede as follows:

1. generate N observations from the model

2. add a little observational noise (otherwise the Kantz algorithm will fail)

3. apply the lyap_k function to the generated time series

Follows the R code for analysing the selected SETAR(2; 2,2) model of the

previous paragraph and the possibly chaotic SETAR(2; 5,3) just seen above.

R code
N <- 1000

x.new <- predict(mod[["setar"]], n.ahead=N)

x.new <- x.new + rnorm(N, sd=sd(x.new)/100)

ly <- lyap_k(x.new, m=2, d=1, t=1, k=2, ref=750, s=200, eps=sd(x.new)/10)

output
Finding nearests

Keeping 741 reference points

Following points
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R code
plot(ly)
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There is no scaling region, so the maximal Lyapunov exponent can assumed

to be ≤ 0.

R code
x.new <- predict(mod.chaos2, n.ahead=N)

x.new <- x.new + rnorm(N, sd=sd(x.new)/100)

ly <- lyap_k(x.new, m=5, d=1, t=1, k=2, ref=750, s=200, eps=sd(x.new)/10)

output
Finding nearests

Keeping 727 reference points

Following points

R code
plot(ly)
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Here there is a scaling region. The final λ estimate for this time series is the

slope of the plotted curve in that region:

R code
lyap(ly,start=6,end=70)

output
(Intercept) lambda

-4.50794748 0.02055926

At this point a natural question can be: why not use directly the original

time series as input to lyap_k instead of model-generated observations? The

answer here is that we have a too short time series for succesfully applying the

Kantz algorithm, so a preliminary modelling for generating more observations

is necessary.

6 Annex A: Implementation details

This section is devoted to document some points in the the implementation and

is intended rather for developers. Users will hopefully not need it.

6.1 nlar.struct

Until Version 0.6 the building of data was organized as follows:

� setar, star and others all called nlar.struct

� nlar.struct calls embedd from package tseriesChaos, and stores it, re-

turning xx, yy, m and d after some checks.
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xxyy <- embedd(x, lags=c((0:(m-1))*(-d), steps) )

extend(list(), "nlar.struct",

x=x, m=m, d=d, steps=steps, series=series,

xx=xxyy[,1:m,drop=FALSE], yy=xxyy[,m+1], n.used=length(x))

� But to use xx and yy the values are recomputed with new function getXX(str)

used on str instead of using the returned value str$xx. It has been im-

plemented as a class:

getXXYY <- function(obj, ...) UseMethod("getXXYY")

getXXYY.nlar.struct <- function(obj, ...) {

x <- obj$x

m <- obj$m

d <- obj$d

steps <- obj$steps

embedd(x, lags=c((0:(m-1))*(-d), steps) )

}

getXX <- function(obj, ...)

getXXYY(obj,...)[ , 1:obj$m , drop=FALSE]

getYY <- function(obj, ...)

getXXYY(obj, ...)[ , obj$m+1]

Extension to MTAR models and ADF specification Extension to MTAR and

ADF required use of both levels and lags in the same specification. That means,

one needs also to obtain the differenced series. This will affect the end sample

size.

In the usual case, end sample size t with be equal to t = T −m. It would be

different (T-m-thDelay) with thDelay > m but it is excluded. In some cases,

the MTAR and ADF specification will lead to reduce the size of the end sample

with 1 less observation, if

� MTAR: the lag of the transition delay in the MTAR is: thDelay ==

(m− 1)
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� ADF and diff model: allways

To do this, some workarounds were needed, that are for now rather unsatis-

factory. Similar functions as getXX and getYY have been created for the lags,

see:

getdXXYY <- function(obj, ...) UseMethod("getdXXYY")

getdXXYY.nlar.struct <- function(obj,same.dim=FALSE, ...) {

x <- obj$x

m<-if(same.dim) obj$m-1 else obj$m

d <- obj$d

steps <- obj$steps

embedd(x, lags=c((0:(m-1))*(-d), steps) )

}

getdXX <- function(obj, ...)

diff(getdXXYY(obj,...))[ , 1:obj$m , drop=FALSE]

getdYY <- function(obj, ...)

diff(getdXXYY(obj, ...))[ , obj$m+1]

getdX1 <- function(obj, ...)

getdXXYY(obj,...)[ -1, 1, drop=FALSE]

But when there is one less observation (see cases above), problems arise. So

setar looks like:

SeqmaxTh<-seq_len(maxTh+1)

if(model=="TAR"){

if(type =="level")

z <- getXX(str)[,SeqmaxTh]

else

z<-getXX(str)[-1,SeqmaxTh]

}

else{

if(max(thDelay)==m-1){

if(type =="level"){

z<-getdXX(str)[, SeqmaxTh]

xx<-xx[-1,, drop=FALSE]
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yy<-yy[-1]

str$xx<-xx

str$yy<-yy

}

else

z<-getdXX(str)[, SeqmaxTh]

}

else{

if(type =="level")

z<-getdXX(str,same.dim=TRUE)[,SeqmaxTh]

else

z<-getdXX(str)[,SeqmaxTh]

}

}

The biggest problem is that sometimes the xx vector need to be cut...

z<-getXX(str)[-1,SeqmaxTh]

And so there are currently some bugs arising:

R code
plot(setar(lynx, m=1, model="MTAR"))

plot(setar(lynx, m=3, type="ADF"))

#both won't work

Adding arguments ML, MM Args ML, MH (and MM when nthresh= 2) have been

added to allow to have holes in the lag structure. They are surely conflicting

with arg d, that is, if arg d is not 1.
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