
Round robin analyses in R: How to use TripleR

Felix D. Schönbrodt∗ Stefan C. Schmukle† Mitja D. Back‡

March 16, 2016

Contents

1 Installing R and TripleR . 2

2 Getting the data into the right format . 2

3 Importing your data into R . 4

4 How to do the analyses . 5
4.1 Univariate manifest analysis . 6
4.2 Univariate latent analyses . 6
4.3 Bivariate manifest analysis . 7
4.4 Bivariate latent analysis . 8
4.5 Multiple groups . 9
4.6 Missing values . 10
4.7 Inspecting the results object . 12

5 Plots . 13

6 Formatting the output . 16

7 Subsequent analyses . 19
7.1 Assumed similarity and self-other agreement: Correlations with self-ratings 20
7.2 Calculating partial correlations with external variables: Treating groups as fixed effects 21
7.3 Calculating partial correlations with external variables: Treating groups as random effects - the multi-

level approach . 22
7.4 Subsequent analyses of relationship effects . 22

8 Exporting results . 23

9 FAQ . 23
9.1 How can I calculate a bivariate analysis between one manifest variable and a latent construct indicated

by two variables? . 23
9.2 This long data format really sounds good. But unfortunately my data already are in the wide format -

how can I convert them into the long format? . 23
9.3 I have to run many, many round robin analyses in a huge data set. What is the most convenient way

to do this? . 24
9.4 An error occurs: ‘Aggregation requires fun.aggregate: length used as default’ 26
9.5 My original multi group data set has X participants - the effects of the RR analysis, however, only have

Y (Y<X) rows! . 26
9.6 A comparison with SOREMO.exe . 26

References . 27

∗© March 16, 2016, Felix Schönbrodt, Department of Psychology, Ludwig-Maximilians-University, Germany. This package partly was
written during a Google Summer of Code 2010 project. Comments on this document may be sent to the author at felix@nicebread.de

†University of Leipzig, Germany
‡University of Münster, Germany

1

TripleR1 provides functions with a simple, yet powerful interface to calculate round robin analyses in R. We assume
that you are already familiar with social relations analyses. If not, a good starter would be David Kenny’s website2,
or some introductory articles (e.g., Back & Kenny,2010; D. Kenny, Kashy, & Cook,2006, D. A. Kenny & La Voie,1984;
especially Ch. 8; D. Kenny,1994, for detailed description of the model and the formulae).

If you have already done your round robin study, this document will explain how to get your data into the right
format, how to tell TripleR what analyses to do, and how to work with the results. In social relations analyses (SRAs),
two notations for the different roles are common. If the investigated phenomenon is a behavior, one usually speaks of
actors and partners. If the investigated phenomenon is interpersonal perception, one speaks of perceivers and targets.
Both groups of labels are interchangeable; in the remainder of this document, we will generally call them perceivers
and targets, as all demo data sets are about interpersonal perceptions.

1 Installing R and TripleR

There are numerous tutorial on the web on how to install R and additional packages in several operating systems.
Hence, in this section we only provide a very short introduction on how to do this.

1. Go to http://cran.r-project.org/ and download the R installer file for your preferred operating system. Detailed
instructions for installation can be obtained from the R-Website (http://www.r-project.org).

2. TripleR is installed from within R. So launch the R console (which was installed in step 1). You can install the
latest stable version of TripleR from CRAN by typing install.packages("TripleR", dependencies=TRUE)

into the R console. TripleR depends on some other packages (reshape, plyr, and ggplot2), which have to
be installed on your system as well. The parameter dependencies=TRUE in the install command forces R to
install these additional packages automatically. Please note, that the installation of some packages, for example
ggplot2, may take several minutes in which the system seems to be unresponsive or crashed - please be patient.

3. TripleR is loaded into R by typing library(TripleR). It is possible that R prints following warning message
when you load TripleR: The following object(s) are masked from package:plyr:round_any. You can
safely ignore this warning. Typing ?TripleR opens the help file for TripleR, in which you find a link to this pdf
among other things. Typing ?RR opens the help file for the function RR, which is used for performing social
relations analyses for Round Robin groups.

4. If you directly type your commands into the R console, it is not possible to save these commands. Thus, it
may be useful to open the R editor by using ‘Menu -> File -> New script’. Code of the R editor can be saved
and marked commands can be copied into the R console by using Ctrl+R (Cmd-R on Mac OS). If you use R
more often, there are many more convenient script editors or graphical user interfaces available that can be used
together with R (for an overview see: http://www.sciviews.org/_rgui/).

2 Getting the data into the right format

In dyadic data analyses, one often finds two data formats: either the “wide format”, in which each row is one participant,
multiple variables or measurements are stored in multiple columns. Concerning round robin data, this would lead to
a quadratic matrix with perceivers as rows and targets as columns. If we have a group of 5 people who rate how much
they like each other, the data matrix would look like:

A B C D E

A NA 3 1 0 5

B 2 NA 5 4 1

C 4 1 NA 6 4

D 0 1 0 NA 4

E 2 2 5 3 NA

The most flexible data format, however is the “long format”. In this format each observation is one row, which
would look like:

actor.id partner.id value

1 A A NA

2 B A 2

3 C A 4

1When you use TripleR in your research, please cite it as Schönbrodt, F. D., Back, M. D., & Schmukle, S. C. (2012). TripleR: An R
package for social relations analyses based on round-robin designs. Behavior Research Methods, 44, 455-470. doi:10.3758/s13428-011-0150-4

2http://davidakenny.net/kenny.htm

2

4 D A 0

5 E A 2

6 A B 3

7 B B NA

8 C B 1

9 D B 1

10 E B 2

11 A C 1

12 B C 5

13 C C NA

14 D C 0

15 E C 5

16 A D 0

17 B D 4

18 C D 6

19 D D NA

20 E D 3

21 A E 5

22 B E 1

23 C E 4

24 D E 4

25 E E NA

The long format has several advantages:

• Several variables can be stored in one data structure (instead of putting each variable into another quadratic
matrix)

• Several groups can be stored in the same data structure by an column indicating the group id

• Data input can be easier, as the order of rows in long format is arbitrary. Each data row is uniquely identified
by their perceiver ID and target ID, hence it does not matter whether data entries are grouped along the target
id (as in the example above). You can also group them along the perceiver id (which could be favorable, as for
example the data from one perceiver are typed in one block), or do not group them at all. If you find a lost
questionnaire, you can just append it at the end of the long format data frame, regardless of what happend in
between.

If the example data set from above would be extended to multiple groups and multiple variables, it would look
like:

actor.id partner.id value value2 group.id

1 A A NA 2 1

2 B A 2 6 1

3 C A 4 1 1

4 D A 0 4 1

5 E A 2 3 1

6 A B 3 2 1

7 B B NA 3 1

8 C B 1 5 1

9 D B 1 3 1

10 E B 2 3 1

11 A C 1 2 1

12 B C 5 6 1

13 C C NA 1 1

14 D C 0 4 1

15 E C 5 3 1

16 A D 0 2 1

17 B D 4 3 1

18 C D 6 5 1

19 D D NA 3 1

20 E D 3 3 1

21 A E 5 2 1

22 B E 1 6 1

23 C E 4 1 1

24 D E 4 4 1

25 E E NA 3 1

3

26 F F NA 2 2

27 G F 6 3 2

28 H F 2 5 2

29 I F 3 3 2

30 J F 5 3 2

31 F G 3 2 2

32 G G NA 6 2

33 H G 3 1 2

34 I G 6 4 2

35 J G 2 3 2

36 F H 5 2 2

37 G H 4 3 2

38 H H NA 5 2

39 I H 2 3 2

40 J H 0 3 2

41 F I 1 2 2

42 G I 6 6 2

43 H I 4 1 2

44 I I NA 4 2

45 J I 5 3 2

46 F J 5 2 2

47 G J 1 3 2

48 H J 1 5 2

49 I J 6 3 2

50 J J NA 3 2

Note: The rows where perceivers == targets (which contain NAs in all measured variables) could have been
omitted in the long format. They are only kept for illustration. Furthermore, if you assess self ratings (which would
naturally be stored in these fields) they can stay in the data set. These values are automatically set to NA prior to
performing the SRAs.

To summarize, for TripleR we need data in the long format. We need at least 3 columns: the perceiver ID, the
target ID, and the variable. If multiple variables are assessed, they are coded in a separate column. If multiple groups
are assessed, the group id goes into another column. Actor and partner ids have to be unique within each group (i.e.,
person in different groups can have the same id. To avoid confusions, however, it might be preferable to assign person
ids which are unique for the whole data set). Throughout this documentation, the column indicating the perceiver ID
is called perceiver.id (the other id columns respectively). Note, however, that you can assign any other name to
these columns.

If you have your data in wide format, it is relatively easy to convert this data to long format. See section 9.2 for
instructions on how to do this conversion.

3 Importing your data into R

There are may different ways to import your own data into R. One way is to export your data from your statistic
software (e.g. SPSS) as csv-file, and import this csv-file into R. First, you should set the working directory of R to
the folder in which you have your data by typing:

of course you have to adjust the path

setwd("C:/Data/RR-analyses")

Then you can import your csv-file by typing:

owndata <- read.csv("owndata.csv")

If your csv-file uses a comma as decimal and a semicolon as separator (which is the default in some countries) you
may try:

owndata <- read.csv2("owndata.csv")

In general, you can import data very flexibly with the commands read.csv and read.table. You find more
information about these commands by typing ?read.table.

It may also be possible to import your data directly by using the package foreign. foreign is a recommended package
and therefore already installed in your R distribution. For example, you can open an SPSS-file directly by typing:

4

library(foreign)

We would always recommend to set 'to.data.frame' to TRUE, as the resulting object is much

more versatile ...

dat <- read.spss("SPSSfile.sav", to.data.frame = TRUE)

However, read.spss can only read save files from older SPSS versions (up to version 15). Newer versions of SPSS
(or PASW files) cannot be processed. In this case, you need to export the data out of SPSS or PASW using the
csv-format, and re-import the csv-file into R using read.csv.

For introductions on how to import data from SPSS files and other formats, or how to export data from SPSS or
other programs into the widely used csv-format, please consult one of the numerous tutorials on the web, for example:

• http://cran.r-project.org/doc/manuals/R-data.html

• http://stat.ethz.ch/R-manual/R-devel/library/foreign/html/read.spss.html

• http://www.statmethods.net/input/importingdata.html

If you have successfully imported your data into R, you can look at the data by typing edit(owndata), print the
first lines by typing head(owndata) and get basic descriptive statistics by typing summary(owndata).

4 How to do the analyses

TripleR is capable of doing 4 different types of analyses3:

• Univariate manifest analyses (i.e., one measured variable)

• Univariate latent analyses, where two manifest variables are indicators for one latent construct (in the current
version, only two manifest variables are possible. Future versions may be able to process an unlimited number
of indicators)

• Bivariate manifest analyses (i.e., two measured variables, which are correlated within the SRM)

• Bivariate latent analyses, where each two manifest variables define one latent construct

All of these analyses are possible in a single group (in this case, within group tests for significance are employed),
or with multiple groups (in this case, between group t-tests, weighted for group size - 1, are employed).

In the following paragraphs, all four analyses will be shown. Therefore, we load a built in data set from the package.
This data set comes from the ‘Mainz Freshman Study’, which assessed liking (‘How much do you like X?’) and meta-
liking (‘How much, do you think, does X like you?’) in a large single group of 54 freshmen, at zero acquaintance. As
these analyses are about interpersonal perceptions, we will ask TripleR to set labels to the ‘perceiver/target’-mode. A
convenient short cut to achieve this styling is the function RR.style. You can call this function once at the beginning
of your script, and all subsequent analyses will be labelled accordingly. For details see ?RR.style.

load the package

library(TripleR)

RR.style("perception")

load a data set in long format

data(likingLong)

inspect the data set

head(likingLong, 15)

perceiver.id target.id liking_a liking_b metaliking_a metaliking_b

1 1 1 NA NA NA NA

2 2 1 4 5 3 2

3 3 1 4 4 4 4

4 4 1 3 3 3 3

5 5 1 5 5 3 3

6 6 1 3 4 4 3

7 7 1 5 4 3 3

8 8 1 4 3 3 3

3Please make sure that you use the most recent version of TripleR (this document was built using TripleR 1.5). You can check the
installed version using sessionInfo().

5

9 9 1 3 4 3 3

10 10 1 3 3 2 2

11 11 1 3 3 3 3

12 12 1 3 3 3 3

13 13 1 3 3 3 3

14 14 1 5 4 3 3

15 15 1 4 3 3 3

As we can see, both liking and meta-liking have been assessed with two indicators, which allows a latent analyses.
But first let’s do an univariate analysis:

4.1 Univariate manifest analysis

All analyses can be run with one function: RR. For details, you definitely should check the help entry for this function
(type ?RR into the R console). Most parameters of the function are specified via a formula interface. The formula
for univariate manifest analysis in a single group4 would be: liking_a ~perceiver.id * target.id. The measured
variables are defined in the left part of the formula (left of the ~sign). The right part defines, which columns in the
data frame indicate the perceiver, the target, and the group id. These three variables are always given in this order.
Actor and partner id are separated by a *, which indicates that these factors are fully crossed (as in the lm notation).
The group id is separated by a |, as in the lattice notation.

After the formula, the data frame has to specified, on which the formula will be applied. Unlike as in the lm

notation, the data object has to be specified explicitly by data=.... Hence, the final command for a univariate
manifest analysis is:

RR1 <- RR(liking_a ~perceiver.id * target.id, data=likingLong)

The <- operator assigns a value to a variable. In this case, we create a new variable called RR1 (this is an arbitrary
name, and could also have been called xyz1 or PartyAnimal2000). The return value of the function call RR() then is
stored in this new variable.

Please note: all variable names in the formula (i.e., liking_a, perceiver.id, and target.id) refer to column names in
the specified data frame. They do not have to be like this - if your data frame has other column names your formula
might look like DV ~a*p, or anything else.

When we run the command, an object of the class RR is returned. If we print the object, a summary of the analysis
is printed:

RR.style("perception")

RR1 <- RR(liking_a ~ perceiver.id * target.id, data = likingLong)

RR1

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Univariate analysis of one round robin variable"

[1] "Univariate analyses for: liking_a"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.172 0.194 0.035 4.914 0.000

target variance 0.105 0.119 0.022 4.727 0.000

relationship variance 0.609 0.687 0.017 36.827 0.000

error variance NA NA NA NA NA

perceiver-target covariance 0.014 0.105 0.020 0.703 0.485

relationship covariance 0.080 0.131 0.017 4.809 0.000

[1] "Perceiver effect reliability: .937"

[1] "Target effect reliability: .901"

NULL

4.2 Univariate latent analyses

If you have two indicators to assess a latent construct, error variance can be separated from relationship variance (in
the univariate manifest case, error variance is mixed up in the relationship variance component). Two indicators for
one latent construct are separated by a /. In the current data set, we have two indicators for liking, hence the analysis
would look like:

4All examples in the following four sections refer to single group analyses. To perform analyses with multiple groups, please consult
section 4.5

6

RR2 <- RR(liking_a/liking_b ~ perceiver.id * target.id, data = likingLong)

RR2

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Latent construct analysis of one construct measured by two round robin variables"

[1] "Univariate analyses for: liking_a/liking_b"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.161 0.164 0.036 4.525 0.000

target variance 0.105 0.107 0.023 4.678 0.000

relationship variance 0.507 0.518 0.016 31.294 0.000

error variance 0.206 0.211 NA NA NA

perceiver-target covariance 0.012 0.094 0.021 0.573 0.569

relationship covariance 0.079 0.156 0.016 4.887 0.000

[1] "Perceiver effect reliability: .865"

[1] "Target effect reliability: .893"

[1] "Relationship effect reliability: .852"

NULL

As you can see, the error variance component changed from NA to a meaningful value. For the error component
no significance tests are provided5.

4.3 Bivariate manifest analysis

If you have two different variables (each assessing another construct), bivariate SRAs can be performed. Two different
variables are separated by a + on the left hand side of the formula. In the current example, we can examined the
relationship between liking and meta-liking, by typing:

RR3 <- RR(liking_a + metaliking_a ~ perceiver.id * target.id, data = likingLong)

RR3

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Bivariate analysis of two variables, each measured by one round robin variable"

[1] "Univariate analyses for: liking_a"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.172 0.194 0.035 4.914 0.000

target variance 0.105 0.119 0.022 4.727 0.000

relationship variance 0.609 0.687 0.017 36.827 0.000

error variance NA NA NA NA NA

perceiver-target covariance 0.014 0.105 0.020 0.703 0.485

relationship covariance 0.080 0.131 0.017 4.809 0.000

[1] "Perceiver effect reliability: .937"

[1] "Target effect reliability: .901"

NULL

##

[1] "Univariate analyses for: metaliking_a"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.140 0.233 0.028 4.953 0.000

target variance 0.027 0.044 0.007 4.005 0.000

relationship variance 0.436 0.723 0.012 36.767 0.000

error variance NA NA NA NA NA

perceiver-target covariance 0.002 0.031 0.010 0.195 0.846

relationship covariance 0.062 0.143 0.012 5.247 0.000

[1] "Perceiver effect reliability: .944"

[1] "Target effect reliability: .764"

NULL

##

[1] "Bivariate analyses:"

estimate standardized se t.value p.value

perceiver-perceiver covariance 0.072 0.462 0.025 2.900 0.005

5Please note, that our definition of “error variance” differs from that from Kenny: error variance in TripleR is the sum of all three
unstable variances (unstable perceiver, unstable target, and unstable relationship variance), while in the SOREMO manual only unstable
relationship variance is treated as error variance.

7

target-target covariance 0.049 0.920 0.011 4.310 0.000

perceiver-target covariance 0.014 0.206 0.011 1.258 0.214

target-perceiver covariance 0.000 0.003 0.018 0.021 0.983

intrapersonal relationship covariance 0.289 0.560 0.011 25.498 0.000

interpersonal relationship covariance 0.067 0.129 0.011 5.893 0.000

In this case, we get three different outputs: univariate analyses for each of the both variables, and a third section
containing the bivariate analyses (i.e., all possible covariances between the social relations effects from both variables).

4.4 Bivariate latent analysis

In this case, two latent constructs are measured by two indicators each. In the current example, we have two indicators
for liking and for metaliking. Applying the same logic as before, the command now is:

RR4 <- RR(liking_a/liking_b + metaliking_a/metaliking_b ~ perceiver.id * target.id, data = likingLong)

if you type the formula *don't* type the '+' sign - in the R print out it only indicates

that the command continues in the second line

RR4

$univariate

$univariate[[1]]

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Latent construct analysis of one construct measured by two round robin variables"

[1] "Univariate analyses for: liking_a/liking_b"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.161 0.164 0.036 4.525 0.000

target variance 0.105 0.107 0.023 4.678 0.000

relationship variance 0.507 0.518 0.016 31.294 0.000

error variance 0.206 0.211 NA NA NA

perceiver-target covariance 0.012 0.094 0.021 0.573 0.569

relationship covariance 0.079 0.156 0.016 4.887 0.000

[1] "Perceiver effect reliability: .865"

[1] "Target effect reliability: .893"

[1] "Relationship effect reliability: .852"

NULL

##

$univariate[[2]]

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Latent construct analysis of one construct measured by two round robin variables"

[1] "Univariate analyses for: metaliking_a/metaliking_b"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.148 0.217 0.031 4.730 0.000

target variance 0.026 0.038 0.007 3.980 0.000

relationship variance 0.357 0.522 0.012 30.776 0.000

error variance 0.153 0.223 NA NA NA

perceiver-target covariance 0.000 0.002 0.011 0.014 0.989

relationship covariance 0.071 0.197 0.012 6.075 0.000

[1] "Perceiver effect reliability: .899"

[1] "Target effect reliability: .761"

[1] "Relationship effect reliability: .841"

NULL

##

##

$bivariate

type estimate standardized se

sesaf actor-actor covariance 0.091737622 0.59330340 0.02722245

sesbg partner-partner covariance 0.048567501 0.92809821 0.01132879

sesag actor-partner covariance 0.007382948 0.11407774 0.01092695

sesbf partner-actor covariance 0.003979599 0.03183066 0.01901573

sesch intrapersonal relationship covariance 0.329513319 0.77420495 0.01153366

seschs interpersonal relationship covariance 0.075332206 0.17699608 0.01153366

biSEVAR t.value p.value

sesaf 0.0007410617 3.3699255 1.408514e-03

sesbg 0.0001283414 4.2870876 7.684571e-05

8

sesag 0.0001193983 0.6756639 5.021917e-01

sesbf 0.0003615981 0.2092793 8.350326e-01

sesch 0.0001330253 28.5697137 0.000000e+00

seschs 0.0001330253 6.5315100 2.556583e-08

##

$anal.type

[1] "Bivariate analysis of two constructs, each measured by two round robin variables"

##

$minVar

[1] 0

##

$se

[1] "LashleyBond"

##

attr(,"class")

[1] "RR"

attr(,"group.size")

[1] 54

Now we get a comparable output to the bivariate manifest analysis, only that now the error variance can be
separated from the relationship variance.

4.5 Multiple groups

Using the formula interface, analyses with multiple groups can be performed as well. The only extension is, that the
variable which identifies group membership is specified at the end of the formula after a | sign. For example, we load
another built in data set which consists of 10 groups. Two variables are measured: ex is a round robin extraversion
rating, ne is a neuroticism rating (self ratings for both variables also are included). As this data set contains missing
values, we have to specify that the routine for handling these missing values should be applied by setting the parameter
na.rm=TRUE (for more details on missing values, see 4.6).

data(multiGroup)

RR1m <- RR(ex ~ perceiver.id * target.id | group.id, data = multiGroup, na.rm = TRUE)

Warning: ex : 4 participant(s) have been excluded from group 2 due to exceedingly missing data; id(s) =

90202, 90204, 90208, 90217 .

Warning: ex : 3 participant(s) have been excluded from group 5 due to exceedingly missing data; id(s) =

90509, 90504, 90521 .

Warning: ex : 4 participant(s) have been excluded from group 6 due to exceedingly missing data; id(s) =

90606, 90608, 90614, 90616 .

Warning: ex : 1 participant(s) have been excluded from group 8 due to exceedingly missing data; id(s) =

90811 .

Warning: ex : 1 participant(s) have been excluded from group 9 due to exceedingly missing data; id(s) =

90918 .

Warning: ex : 1 participant(s) have been excluded from group 12 due to exceedingly missing data; id(s) =

91213 .

Warning: ex : 6 participant(s) have been excluded from group 14 due to exceedingly missing data; id(s) =

91404, 91405, 91406, 91408, 91424, 91421 .

Warning: ex : 4 participant(s) have been excluded from group 18 due to exceedingly missing data; id(s) =

91807, 91808, 91810, 91821 .

Warning: ex : 4 participant(s) have been excluded from group 20 due to exceedingly missing data; id(s) =

92002, 92009, 92013, 92019 .

RR1m

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Univariate analysis of one round robin variable in multiple groups (significance test based on Lashley & Bond,

[1] "Univariate analyses for: ex"

[1] "Group descriptives: n = 10 ; average group size = 21.7 ; range: 19 - 24"

estimate standardized se t.value p.value

perceiver variance 0.236 0.103 0.029 8.140 0.000

target variance 0.845 0.370 0.092 9.197 0.000

relationship variance 1.204 0.527 0.027 44.810 0.000

error variance NA NA NA NA NA

perceiver-target covariance -0.011 -0.024 0.036 -0.302 0.763

relationship covariance 0.106 0.088 0.027 3.963 0.000

9

[1] "Perceiver effect reliability: .801"

[1] "Target effect reliability: .935"

NULL

##

##

Partial correlations with self ratings (controlled for group membership):

r t df p

self rating with Perceiver effect (assumed similarity) .307 4.634 206.000 .000

self rating with Target effect (self-other agreement) .609 11.012 206.000 .000

Any formula explained above can be extended by the multi group parameter. Concerning the output, no differences
can be seen (except the second line of the output, which always displays the type of analysis: "Univariate analysis

of one round robin variable in multiple groups").
If multiple groups are provided, SRAs are computed within each single group. Variance components are then

calculated as the weighted average across groups (weighted with N - 1). For significance testing, as recommended by
Lashley and Bond (1997), by default the standard error is similarly computed as weighted average across groups (i.e.,
the standard error is computed as the square root of the weighted mean of the squared group-specific standard errors).
It also possible to obtain the results for the between-group t-test for calculating significance which was suggested by
Kenny and La Voie (1984) and is used in the software SOREMO. To obtain these standard errors, one has to specify
se = "SOREMO" in the command line. However, particularly in case of a small number of groups, the significance test
based on Lashley and Bond (1997) gives more accurate results.

Another difference is the results object: all univariate analyses are contained (although, not displayed by the print
function) in the results. More details on the results object can be found in the section 4.7.

4.6 Missing values

Missing values can be handled in TripleR. Missing values are defined as non-existing measurements outside of the
diagonal (which is missing anyway). By default, calculations are aborted if missing values are outside the diagonale
of the round robin matrix. To allow missing values, add the argument na.rm=TRUE (see 4.5 for an example).

You can inspect the distribution of missing values by using the plot_missings command (see Figure 1). It takes
the same parameters as an univariate manifest RR analysis; for details see the help files.

If missing values are allowed by setting na.rm=TRUE, TripleR performs following three steps:

• Participants which have too few data are removed both as perceivers and targets. Completely missing rows
occur if participants do not rate anybody, for example because they were missing during data collection; missing
columns might occur if participants cannot rate an unknown person. With a parameter (minData), this step
can be adjusted to be more or less restrictive. minData defines the minimum of data points outside the diagonal
which have to be present in each row or column. For example, one can define that at least two measurements
(minData=2) should be present in each row or column.

• Missing values outside the diagonal are imputed as the average of the corresponding row and column mean1.
Based on these imputed matrices, perceiver, target, and relationship effects are computed. Subsequently, rela-
tionship effects which were missing in the original data set are set as a missing value again.

• In the case of multiple variables (i.e., latent or bivariate analyses), participants are excluded listwise to ensure
that all analyses are based on the same data set.

Based on extensive simulations we tentatively conclude that relatively small deviations from the true value can be
expected if:

• For groups of 4 people <= 1 missing value

• For groups of 5 people <= 2 missing values

• For groups of 6 people <= 4 missing values

• For groups of 7 people <= 6 missing values

• For groups of 8 people <= 8 missing values

• For groups of 9 people <= 10 missing values

• Maximum 20% missing values for groups with 10 or more people

10

print(plot_missings(ex ~ perceiver.id * target.id | group.id, data = multiGroup, show.ids = FALSE))

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

12 13 14 18

2 20 5 6

8 9

target.id

pe
rc

ei
ve

r.i
d

Missing?
●

●

no

yes

Missing values

Figure 1: Plot of missing values

11

More information on the handling of missing data and simulation studies can be found in (Schönbrodt, Back, &
Schmukle,2012).

As an example, we can analyze another built in data set with missing values:

data(multiGroup)

by default, minData is set to 1 (i.e., at least one observation per row and column has to

be present)

RR1miss <- RR(ex ~ perceiver.id * target.id | group.id, data = multiGroup, na.rm = TRUE)

be more restrictive

RR1miss <- RR(ex ~ perceiver.id * target.id | group.id, data = multiGroup, na.rm = TRUE, minData = 10)

4.7 Inspecting the results object

When a round robin analysis is performed (and stored in an object), not all information is displayed. When the
object is printed (either by calling print(object), e.g. print(RR1), or by simple writing the name of the object into
the R prompt, e.g. RR1), a custom print function is called, which displays the table of variance components, effects
reliability estimates, and some other information. During the calculation, however, much more results are computed
and stored in the object.

To see the structure of the object type str(object):

str(RR1)

List of 13

$ effects :'data.frame': 54 obs. of 3 variables:

..$ id : Factor w/ 54 levels "1","10","11",..: 1 2 3 4 5 6 7 8 9 10 ...

..$ liking_a.p: atomic [1:54] -0.477 -0.367 -0.406 0.152 0.663 ...

.. ..- attr(*, "type")= chr "actor"

.. ..- attr(*, "reliability")= num 0.937

..$ liking_a.t: atomic [1:54] 0.26389 0.07728 0.00107 -0.40349 -0.33725 ...

.. ..- attr(*, "type")= chr "partner"

.. ..- attr(*, "reliability")= num 0.901

$ effectsRel :'data.frame': 2862 obs. of 4 variables:

..$ actor.id : Factor w/ 54 levels "1","2","3","4",..: 1 10 1 11 1 12 1 13 1 14 ...

..$ partner.id : Factor w/ 54 levels "1","2","3","4",..: 10 1 11 1 12 1 13 1 14 1 ...

..$ dyad : Factor w/ 1431 levels "1_01","1_02",..: 1 1 2 2 3 3 4 4 5 5 ...

..$ relationship: num [1:2862] 0.2196 -0.0767 0.2958 -0.0375 -0.2996 ...

$ effects.gm :'data.frame': 54 obs. of 3 variables:

..$ id : Factor w/ 54 levels "1","10","11",..: 1 2 3 4 5 6 7 8 9 10 ...

..$ liking_a.p: atomic [1:54] 2.7 2.81 2.77 3.33 3.84 ...

.. ..- attr(*, "type")= chr "actor"

..$ liking_a.t: atomic [1:54] 3.44 3.26 3.18 2.78 2.84 ...

.. ..- attr(*, "type")= chr "partner"

$ varComp :'data.frame': 6 obs. of 7 variables:

..$ type : Factor w/ 6 levels "actor variance",..: 1 4 6 3 2 5

..$ estimate : num [1:6] 0.1717 0.1053 0.6088 NA 0.0141 ...

..$ standardized: num [1:6] 0.194 0.119 0.687 NA 0.105 ...

..$ se : num [1:6] 0.0349 0.0223 0.0165 NA 0.02 ...

..$ SEVAR : num [1:6] 0.001221 0.000497 0.000273 NA 0.000401 ...

..$ t.value : num [1:6] 4.914 4.727 36.827 NA 0.703 ...

..$ p.value : num [1:6] 4.49e-06 8.62e-06 0.00 NA 4.85e-01 ...

$ relMat.av : num [1:54, 1:54] NA 0.0715 0.1292 -0.4478 -0.7362 ...

..- attr(*, "group.id")= chr "1"

..- attr(*, "varname")= chr "liking_a"

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:54] "1" "10" "11" "12" ...

.. ..$: chr [1:54] "1" "10" "11" "12" ...

$ relMat.diff: num [1:54, 1:54] NA -0.296 -0.333 -0.296 -0.741 ...

..- attr(*, "group.id")= chr "1"

..- attr(*, "varname")= chr "liking_a"

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:54] "1" "10" "11" "12" ...

12

.. ..$: chr [1:54] "1" "10" "11" "12" ...

$ group.size : int 54

$ latent : logi FALSE

$ anal.type : chr "Univariate analysis of one round robin variable"

$ n.NA : int 0

$ SEVAR : Named num [1:6] 0.001221 0.000497 0.000273 NA 0.000401 ...

..- attr(*, "names")= chr [1:6] "sesaa2" "sesbb2" "sescc2" "" ...

$ minVar : num 0

$ se : chr "LashleyBond"

- attr(*, "class")= chr "RRuni"

- attr(*, "group.size")= int 54

- attr(*, "varname")= chr "liking_a"

- attr(*, "self")= logi FALSE

Multiple data structures are stored in the object in list mode. Some objects are for internal use, others, however,
are very important for subsequent analyses (see section 7). You can access all stored objects via the $ operator. For
example, the perceiver and target effects are stored in the effects object:

head(RR1$effects)

id liking_a.p liking_a.t

1 1 -0.4768519 0.263888889

10 10 -0.3671652 0.077279202

11 11 -0.4063390 0.001068376

12 12 0.1520655 -0.403490028

13 13 0.6627493 -0.337250712

14 14 0.4141738 0.488247863

Following data objects might be relevant for subsequent analyses:

effects The perceiver and target effects. You access each effect by another $ operator; the effects have the same name
like the original variable with a suffix for perceiver and target effect. Default suffixes are ‘.a’ for actor and ‘.p’
for partner effect (if RR.style is set to behavior), or ‘.p’ for perceiver and ‘.t’ for target effect (if RR.style is
set to perception). For example, if your original variable is called liking, you can access the perceiver effect
by RR1$effects$liking.p. If self ratings are present in the data set, they are also returned with the default
suffix .s. You can inspect the effects by typing str(RR1$effects). In latent analyses, effects are returned as
the average of the two underlying manifest effects.

effects.gm Actor and partner effects with group mean added.

effectsRel A data frame in long format which corresponds to the n x n matrix of relationship effects

varComp A data frame with the absolute and standardized variance components and their respective significance
tests (this object is printed int the print function of an RR object).

group.var In the multi group case: display the group variance.

In section 7 (Subsequent Analyses) it is explained how follow up analyses using the perceiver and target effects,
and the variance components can be done.

5 Plots

Several plots can be made from the result objects. Simply type plot(RR_object) to see the standard variance plot
associated with each analysis. The main difference between plots is whether you have multiple groups or a single
round robin group.

see Figure 1

plot(RR1)

see Figure 2

plot(RR1m)

You can also try different parameters:

13

0.00

0.25

0.50

0.75

1.00

1

S
ta

nd
ar

di
ze

d
va

ria
nc

e
co

m
po

ne
nt

Variance Component

perceiver variance

relationship variance

target variance

Figure 2: Variance decomposition of a single round robin group

14

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

perceiver
variance

target
variance

relationship
variance

error
variance

perceiver−target
covariance

relationship
covariance

es
tim

at
e

Group size

10

Multiple round robin groups:
Absolute (co−)variance estimates

and 95 %−CI (weighted for group size)

Figure 3: Variance decomposition of multiple round robin groups, latent analysis

15

measure =behavior (default) or perception: changes the labels of the plots

geom (single groups) = bar (default) or pie: show variance components as stacked bars or as a pie chart

geom (multiple groups) = scatter (default) or bar: show variance components of all groups as scatter plots with
confidence intervals or as a bar charts

connect (multiple groups) = FALSE (default) or TRUE: connect the dots of each group in the scatter plot (usually
this looks very cluttered and should not be turned on)

conf.level (multiple groups) (defaults to 0.95) defines the size of the confidence interval in the scatter plot

Hence you can try several combinations of these parameters, e.g.:

plot(RR1, measure = "perception", geom = "pie")

plot(RR1, measure = "behavior", geom = "pie")

plot(RR1m, measure = "perception", geom = "bar")

plot(RR1m, conf.level = 0.5, connect = TRUE)

The plot function returns a ggplot2 object, which in turn can be altered (e.g., you can change the title, the axes
labels, the colors, etc.). For more information, please consult the ggplot2 documentation.

6 Formatting the output

As mentioned above, two nomenclatures have been established, depending on whether behaviors or interpersonal
perceptions are assessed. While internally always the labels actor and partner are used, the summary output can
be customized by specifying whether the measure is a behavior or a perception (default is behavior). In bivari-
ate analyses, both variables can be specified, e.g. measure1=‘behavior’, measure2=‘perception’, or all other
combinations.

Possible combinations are for the univariate case: measure=c(‘behavior’, ‘perception’); and for the bivari-
ate case: measure1 = c(‘behavior’, ‘perception’), measure2 = c(‘behavior’, ‘perception’), and the spe-
cial case measure1=‘perception’, measure2=‘metaperception’ (in the latter, special labels are used for bivariate
covariances, see output below).

print(RR1, measure1 = "perception")

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Univariate analysis of one round robin variable"

[1] "Univariate analyses for: liking_a"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.172 0.194 0.035 4.914 0.000

target variance 0.105 0.119 0.022 4.727 0.000

relationship variance 0.609 0.687 0.017 36.827 0.000

error variance NA NA NA NA NA

perceiver-target covariance 0.014 0.105 0.020 0.703 0.485

relationship covariance 0.080 0.131 0.017 4.809 0.000

[1] "Perceiver effect reliability: .937"

[1] "Target effect reliability: .901"

NULL

print(RR4, measure1 = "behavior", measure2 = "perception")

$univariate

$univariate[[1]]

[1] "Round-Robin object ('RR'), calculated by TripleR"

16

[1] "Latent construct analysis of one construct measured by two round robin variables"

[1] "Univariate analyses for: liking_a/liking_b"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.161 0.164 0.036 4.525 0.000

target variance 0.105 0.107 0.023 4.678 0.000

relationship variance 0.507 0.518 0.016 31.294 0.000

error variance 0.206 0.211 NA NA NA

perceiver-target covariance 0.012 0.094 0.021 0.573 0.569

relationship covariance 0.079 0.156 0.016 4.887 0.000

[1] "Perceiver effect reliability: .865"

[1] "Target effect reliability: .893"

[1] "Relationship effect reliability: .852"

NULL

##

$univariate[[2]]

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Latent construct analysis of one construct measured by two round robin variables"

[1] "Univariate analyses for: metaliking_a/metaliking_b"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.148 0.217 0.031 4.730 0.000

target variance 0.026 0.038 0.007 3.980 0.000

relationship variance 0.357 0.522 0.012 30.776 0.000

error variance 0.153 0.223 NA NA NA

perceiver-target covariance 0.000 0.002 0.011 0.014 0.989

relationship covariance 0.071 0.197 0.012 6.075 0.000

[1] "Perceiver effect reliability: .899"

[1] "Target effect reliability: .761"

[1] "Relationship effect reliability: .841"

NULL

##

##

$bivariate

type estimate standardized se

sesaf actor-actor covariance 0.091737622 0.59330340 0.02722245

sesbg partner-partner covariance 0.048567501 0.92809821 0.01132879

sesag actor-partner covariance 0.007382948 0.11407774 0.01092695

sesbf partner-actor covariance 0.003979599 0.03183066 0.01901573

sesch intrapersonal relationship covariance 0.329513319 0.77420495 0.01153366

seschs interpersonal relationship covariance 0.075332206 0.17699608 0.01153366

biSEVAR t.value p.value

sesaf 0.0007410617 3.3699255 1.408514e-03

sesbg 0.0001283414 4.2870876 7.684571e-05

sesag 0.0001193983 0.6756639 5.021917e-01

sesbf 0.0003615981 0.2092793 8.350326e-01

sesch 0.0001330253 28.5697137 0.000000e+00

seschs 0.0001330253 6.5315100 2.556583e-08

##

$anal.type

[1] "Bivariate analysis of two constructs, each measured by two round robin variables"

##

$minVar

[1] 0

##

$se

[1] "LashleyBond"

##

attr(,"class")

[1] "RR"

attr(,"group.size")

[1] 54

17

print(RR4, measure1 = "perception", measure2 = "metaperception")

$univariate

$univariate[[1]]

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Latent construct analysis of one construct measured by two round robin variables"

[1] "Univariate analyses for: liking_a/liking_b"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.161 0.164 0.036 4.525 0.000

target variance 0.105 0.107 0.023 4.678 0.000

relationship variance 0.507 0.518 0.016 31.294 0.000

error variance 0.206 0.211 NA NA NA

perceiver-target covariance 0.012 0.094 0.021 0.573 0.569

relationship covariance 0.079 0.156 0.016 4.887 0.000

[1] "Perceiver effect reliability: .865"

[1] "Target effect reliability: .893"

[1] "Relationship effect reliability: .852"

NULL

##

$univariate[[2]]

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Latent construct analysis of one construct measured by two round robin variables"

[1] "Univariate analyses for: metaliking_a/metaliking_b"

[1] "Round robin analysis for a single group; using the formula of Lashley & Bond (1997)."

estimate standardized se t.value p.value

perceiver variance 0.148 0.217 0.031 4.730 0.000

target variance 0.026 0.038 0.007 3.980 0.000

relationship variance 0.357 0.522 0.012 30.776 0.000

error variance 0.153 0.223 NA NA NA

perceiver-target covariance 0.000 0.002 0.011 0.014 0.989

relationship covariance 0.071 0.197 0.012 6.075 0.000

[1] "Perceiver effect reliability: .899"

[1] "Target effect reliability: .761"

[1] "Relationship effect reliability: .841"

NULL

##

##

$bivariate

type estimate standardized se

sesaf actor-actor covariance 0.091737622 0.59330340 0.02722245

sesbg partner-partner covariance 0.048567501 0.92809821 0.01132879

sesag actor-partner covariance 0.007382948 0.11407774 0.01092695

sesbf partner-actor covariance 0.003979599 0.03183066 0.01901573

sesch intrapersonal relationship covariance 0.329513319 0.77420495 0.01153366

seschs interpersonal relationship covariance 0.075332206 0.17699608 0.01153366

biSEVAR t.value p.value

sesaf 0.0007410617 3.3699255 1.408514e-03

sesbg 0.0001283414 4.2870876 7.684571e-05

sesag 0.0001193983 0.6756639 5.021917e-01

sesbf 0.0003615981 0.2092793 8.350326e-01

sesch 0.0001330253 28.5697137 0.000000e+00

seschs 0.0001330253 6.5315100 2.556583e-08

##

$anal.type

[1] "Bivariate analysis of two constructs, each measured by two round robin variables"

##

$minVar

[1] 0

##

$se

[1] "LashleyBond"

##

attr(,"class")

[1] "RR"

attr(,"group.size")

18

[1] 54

As you can see, typical labels from different research traditions, like ‘generalized reciprocity metaperception’ or
‘perceiver meta-accuracy’ are automatically printed to ease interpretation of the results.

A convenient short cut to achieve this styling is the function RR.style. You can call this function once at the
beginning of your script, and all subsequent analyses will be labelled accordingly. For details see ?RR.style.

7 Subsequent analyses

Usually one does not only want to know about the variance components and the within-SRM correlations. Often, we
want to correlate the perceiver and target effects with the self-ratings, with external personality questionnaires, or
demographic variables. To do this, we can extract the perceiver/ target effects from the RR-object, combine them
with the other data (e.g., questionnaire scales) in another data frame, and do which ever analysis we like.

Be careful: in RR objects one cannot be sure about the order and the completeness of the effects. That means,
perceivers can be reordered and their order might be different from that in the original data set. Furthermore, if some
participants are only perceivers or only targets they are removed prior to to the social relations analyses, and do not
appear in the actor/ partner effects. Hence, merging of RR effects and other data always has to be done using the
merge command. As non-round robin variables usually are assigned to the perceiver ID, consequently merging should
be done along the perceiver ID).

The data set multiGroup contains round robin ratings and self ratings of extraversion, which will serve as an
extended example:

calculate the SRM

data(multiGroup)

RR.style("perception")

RR1m <- RR(ex ~ perceiver.id * target.id | group.id, data = multiGroup, na.rm = TRUE)

Warning: ex : 4 participant(s) have been excluded from group 2 due to exceedingly missing data; id(s) =

90202, 90204, 90208, 90217 .

Warning: ex : 3 participant(s) have been excluded from group 5 due to exceedingly missing data; id(s) =

90509, 90504, 90521 .

Warning: ex : 4 participant(s) have been excluded from group 6 due to exceedingly missing data; id(s) =

90606, 90608, 90614, 90616 .

Warning: ex : 1 participant(s) have been excluded from group 8 due to exceedingly missing data; id(s) =

90811 .

Warning: ex : 1 participant(s) have been excluded from group 9 due to exceedingly missing data; id(s) =

90918 .

Warning: ex : 1 participant(s) have been excluded from group 12 due to exceedingly missing data; id(s) =

91213 .

Warning: ex : 6 participant(s) have been excluded from group 14 due to exceedingly missing data; id(s) =

91404, 91405, 91406, 91408, 91424, 91421 .

Warning: ex : 4 participant(s) have been excluded from group 18 due to exceedingly missing data; id(s) =

91807, 91808, 91810, 91821 .

Warning: ex : 4 participant(s) have been excluded from group 20 due to exceedingly missing data; id(s) =

92002, 92009, 92013, 92019 .

extract the effects

eff <- RR1m$effects

head(eff)

id group.id ex.p ex.t ex.s

1 90201 2 -0.59649123 0.6892231 1.1428571

2 90203 2 0.73934837 -0.5939850 1.1428571

3 90205 2 0.04511278 0.5213033 0.1428571

4 90206 2 -0.49373434 0.7443609 0.1428571

5 90207 2 0.03007519 -1.7794486 -1.8571429

6 90209 2 -0.16541353 2.3107769 2.1428571

As perceiver and target effects are corrected for group membership in g groups, according to Kenny et al. (2006)
partial correlations should be used when these effects are correlated with external (non-SRM) variables (i.e. external
variables like self ratings also have to be controlled for group membership). ‘Controlling for group membership’ by g-1
dummy variables is equivalent to group centering all measures. As the self ratings returned by RR$effects already

19

are centered on group level, all variables (perceiver & target effects, self ratings) already are controlled for group
membership.

Correlations between group centered variables and partial correlations between their non-centered counterparts
controlled for group membership are exactly the same. However, when controlling for group membership, one loses
g-1 degrees of freedom, hence their test of significance is more conservative.

For the calculation of these partial correlations, you can either export the calculated effects to another software
which can calculate partial correlations (for export, see section 8), or you can calculate these partial correlations in R.

7.1 Assumed similarity and self-other agreement: Correlations with self-ratings

In data sets where self ratings are provided (in the diagonal of the round-robin matrix), the output prints correlations
between self ratings and perceiver and target effects (also see function selfCor). In the case of multiple groups, these
correlations are controlled for group membership, but are not disattenuated for perceiver/target effect unreliability
(for an example on how to disattenuate these correlations, see below). In the following you find an example of such
an analysis for the multiGroup data set:

data(multiGroup)

RR.style("p")

a single group

RR1 <- RR(ex ~ perceiver.id * target.id | group.id, data = multiGroup[multiGroup$group.id ==

"2",], na.rm = TRUE)

Warning: ex : 4 participant(s) have been excluded from group 2 due to exceedingly missing data; id(s) =

90202, 90204, 90208, 90217 .

selfCor(RR1)

NULL

##

##

Correlations with self ratings:

r t df p

self rating with Perceiver effect (assumed similarity) .393 1.862 19.000 .078

self rating with Target effect (self-other agreement) .527 2.705 19.000 .014

multiple groups

RR2 <- RR(ex ~ perceiver.id * target.id | group.id, data = multiGroup, na.rm = TRUE)

Warning: ex : 4 participant(s) have been excluded from group 2 due to exceedingly missing data; id(s) =

90202, 90204, 90208, 90217 .

Warning: ex : 3 participant(s) have been excluded from group 5 due to exceedingly missing data; id(s) =

90509, 90504, 90521 .

Warning: ex : 4 participant(s) have been excluded from group 6 due to exceedingly missing data; id(s) =

90606, 90608, 90614, 90616 .

Warning: ex : 1 participant(s) have been excluded from group 8 due to exceedingly missing data; id(s) =

90811 .

Warning: ex : 1 participant(s) have been excluded from group 9 due to exceedingly missing data; id(s) =

90918 .

Warning: ex : 1 participant(s) have been excluded from group 12 due to exceedingly missing data; id(s) =

91213 .

Warning: ex : 6 participant(s) have been excluded from group 14 due to exceedingly missing data; id(s) =

91404, 91405, 91406, 91408, 91424, 91421 .

Warning: ex : 4 participant(s) have been excluded from group 18 due to exceedingly missing data; id(s) =

91807, 91808, 91810, 91821 .

Warning: ex : 4 participant(s) have been excluded from group 20 due to exceedingly missing data; id(s) =

92002, 92009, 92013, 92019 .

c1 <- selfCor(RR2)

NULL

##

##

Partial correlations with self ratings (controlled for group membership):

r t df p

self rating with Perceiver effect (assumed similarity) .307 4.634 206.000 .000

self rating with Target effect (self-other agreement) .609 11.012 206.000 .000

20

In this analysis, we find a considerable self-other agreement of extraversion ratings rex.target,ex.self = 0.609.
Correlations which are calculated by SOREMO.exe are by default disattenuated for perceiver and/or target effect

unreliability. To replicate these results, you have to disattenuate the obtained correlations by following formula:
rdisatt = rraw ∗ 1√

Reltargeteffect

Hence, the disattenuated correlation rex.target,ex.self would be 0.609 ∗ 1
√

0.935
= 0.629.

7.2 Calculating partial correlations with external variables: Treating groups as fixed
effects

Probably, you have other external variables except the self rating. These are variables which are not assessed with
the round robin design, but rather individual variables like self ratings of personality, or demographic variables. The
variable narc (= narcissism) in the data set multiNarc is such a variable: it is a self rating of narcissism. The function
parCor now helps to calculate the partial correlation between an SRM effect and this external variable, controlled for
group membership:

data(multiGroup)

data(multiNarc)

show the first lines of multiNarc:

head(multiNarc)

id narc

90201 90201 7

90205 90205 6

90207 90207 3

90209 90209 12

90210 90210 8

90212 90212 6

RR.style("p")

calculate SRA effects for extraversion ratings

RR1 <- RR(ex ~ perceiver.id * target.id | group.id, multiGroup, na.rm = TRUE)

Warning: ex : 4 participant(s) have been excluded from group 2 due to exceedingly missing data; id(s) =

90202, 90204, 90208, 90217 .

Warning: ex : 3 participant(s) have been excluded from group 5 due to exceedingly missing data; id(s) =

90509, 90504, 90521 .

Warning: ex : 4 participant(s) have been excluded from group 6 due to exceedingly missing data; id(s) =

90606, 90608, 90614, 90616 .

Warning: ex : 1 participant(s) have been excluded from group 8 due to exceedingly missing data; id(s) =

90811 .

Warning: ex : 1 participant(s) have been excluded from group 9 due to exceedingly missing data; id(s) =

90918 .

Warning: ex : 1 participant(s) have been excluded from group 12 due to exceedingly missing data; id(s) =

91213 .

Warning: ex : 6 participant(s) have been excluded from group 14 due to exceedingly missing data; id(s) =

91404, 91405, 91406, 91408, 91424, 91421 .

Warning: ex : 4 participant(s) have been excluded from group 18 due to exceedingly missing data; id(s) =

91807, 91808, 91810, 91821 .

Warning: ex : 4 participant(s) have been excluded from group 20 due to exceedingly missing data; id(s) =

92002, 92009, 92013, 92019 .

merge variables

dat <- merge(RR1$effects, multiNarc, by = "id")

parCor(x, y, z): partial correlation between x and y, controlled for group memberhsip z

parCor(dat$ex.t, dat$narc, dat$group.id)

$par.cor

[1] 0.7620022

##

$t.value

[1] 15.91813

##

$df

21

[1] 183

##

$p

[1] 0

7.3 Calculating partial correlations with external variables: Treating groups as random
effects - the multilevel approach

Using the approach of group centering, groups are treated as fixed factors. Both conceptually and by means of
computations it might be preferable to treat groups as random factors (which, however, requires a sufficient number
of groups). When using a multilevel approach, we would like to keep the group variance in our dependent variable (as
the multilevel modeling takes care of this), hence we use the effects with group mean added (effects.gm) and the
raw self ratings. Using a multilevel modeling approach, the calculation would look like the following:

library(lme4)

eff.gm <- RR1m$effects.gm

scale all continuous variables to obtain standardized estimates

eff.gm[, 3:5] <- apply(eff.gm[, 3:5], 2, scale)

Allow the intercept to vary between groups (this is equivalent to the fixed effects

approach, only with random effects). Additionally, allow slopes to vary:

lmer(ex.s ~ ex.t + (ex.t | group.id), eff.gm)

Linear mixed model fit by REML ['lmerMod']

Formula: ex.s ~ ex.t + (ex.t | group.id)

Data: eff.gm

REML criterion at convergence: 525.5937

Random effects:

Groups Name Std.Dev. Corr

group.id (Intercept) 0.000e+00

ex.t 3.483e-11 NaN

Residual 8.012e-01

Number of obs: 217, groups: group.id, 10

Fixed Effects:

(Intercept) ex.t

7.893e-17 6.009e-01

The multilevel analysis reveals a self-other agreement of extraversion ratings βex.target,ex.self = .601. As there is no
random variance of the group level in this analysis (and also no random variance of the slopes), the result is virtually
the same as in the fixed effects analysis.

For principal reasons, the lme4 package does not report p values, as it is not clear how to compute the degrees of
freedoms in multilevel models6. For practical reasons, however, with sufficient degrees of freedom the t distribution
converges to the z distribution. Hence, the reported t value still can be examined. Some authors argue that absolute
t values > 2 can be judged as significant, regardless of the actual df (e.g., Baayen, Davidson, & Bates,2008;Kliegl,
Masson, & Richter,2010).

7.4 Subsequent analyses of relationship effects

For subsequent analyses of relationship effects, please note that in contrast to perceiver and target effects, relationship
effects have another structure: they are nested in each dyad. Hence, in this case a dyadic data analysis such as
the actor-partner interdendence model (APIM) has to be conducted (see Kenny, Kashy & Cook, 2006, p. 210).
Relationship effects are group centered and can be retrieved from the RR object by typing RR1m$effectsRel.

Relationship effects are sorted according to each dyad:

head(RR1m$effectsRel)

group.id perceiver.id target.id dyad relationship

1 2 90201 90203 2_01 0.9095238

2 2 90203 90201 2_01 0.2904762

3 2 90201 90205 2_02 0.7942356

6https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html, also see several lengthy discussions on the R-sig-ME mailing list

22

4 2 90205 90201 2_02 0.9847118

5 2 90201 90206 2_03 -0.4288221

6 2 90206 90201 2_03 -0.4764411

8 Exporting results

If you like to process your SRA results with another software, you can easily export any table-like data structure as a
comma-separated-value file. Please note that the RR results object is a complex structure with many nested objects.
hence, you have to export effects and variance components separately:

RR1 <- RR(liking_a ~ perceiver.id * parter.id, data = liking_a)

head(RR1$effects)

write.csv(RR1$effects, file = "RR1_effects.csv")

write.csv(RR1$varComp, file = "RR1_varComp.csv")

These csv files then can be imported to SPSS or other programs. You can also export tab-delimited files
(?write.table), or xlsx files with the package dataframes2xls (?write.xlsx).

9 FAQ

9.1 How can I calculate a bivariate analysis between one manifest variable and a latent
construct indicated by two variables?

A natural application of the formula interface would be:

RR1 <- RR(liking_a + metaliking_a / metaliking_b ~perceiver.id * target.id, data=likingLong)

This approach, however, does not work in the current version of TripleR. However, you can do the analysis by first
creating a new variable for the latent construct by taking the mean of both indicators for metaliking. Then, you can
perform a normal bivariate manifest analysis:

RR1 <- RR(liking_a + metaliking_latent ~perceiver.id * target.id, data=likingLong)

9.2 This long data format really sounds good. But unfortunately my data already are
in the wide format - how can I convert them into the long format?

Converting data from wide to long is relatively easy in R. If you have quadratic matrices, TripleR provides a function
which converts these data into long format. For example, in the package is a built in data set (liking_a), which is in
wide format:

data(liking_a)

head(liking_a)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24

1 NA 3 3 2 2 4 3 3 2 3 3 2 2 3 2 3 2 3 2 3 2 2 3 3

2 4 NA 3 4 3 4 3 2 2 3 2 3 3 3 4 3 2 3 3 4 4 4 3 4

3 4 3 NA 3 3 3 4 3 2 3 2 3 1 4 2 4 0 3 2 3 2 3 3 2

4 3 3 3 NA 4 2 1 2 3 2 2 4 2 3 2 3 2 4 4 3 3 3 2 2

5 5 4 4 4 NA 4 3 2 3 3 4 3 2 4 3 4 3 4 4 4 2 3 3 4

6 3 3 4 3 4 NA 5 5 3 4 5 4 4 5 4 5 4 4 5 5 4 5 4 3

V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46

1 3 3 3 3 3 2 2 3 1 3 3 3 2 2 3 3 3 3 3 3 2 3

2 3 4 4 3 4 4 4 4 4 4 4 2 3 4 4 4 4 4 4 3 4 3

3 1 2 3 2 3 2 4 2 4 4 3 2 3 3 3 2 4 3 2 4 3 2

4 3 3 3 3 3 3 2 3 4 3 3 3 2 4 3 3 3 3 3 4 3 2

5 3 4 4 4 3 3 3 4 4 2 4 4 4 4 3 3 4 4 4 3 3 3

6 3 4 5 5 4 4 5 4 3 5 4 5 5 4 4 4 5 4 4 5 3 4

V47 V48 V49 V50 V51 V52 V53 V54

1 3 3 3 3 3 3 3 3

2 4 4 3 4 3 4 4 4

3 3 4 4 3 3 4 4 3

4 3 3 3 3 3 3 3 2

5 3 2 4 3 2 3 3 3

6 3 5 4 4 5 5 5 5

23

To convert this into long format you can use the function matrix2long:

long <- matrix2long(liking_a)

str(long)

'data.frame': 2916 obs. of 3 variables:

$ actor.id : int 1 2 3 4 5 6 7 8 9 10 ...

$ partner.id: int 1 1 1 1 1 1 1 1 1 1 ...

$ value : int NA 4 4 3 5 3 5 4 3 3 ...

Now you can run the SRAs as usual using the data frame long. If you assessed multiple variables (and now have
a separate matrix for each variable), you have to get each variable into long format and then combine all long data
frames using merge (in the final data frame, each variable should be a separate column):

data(liking_a)

data(liking_b)

long_a <- matrix2long(liking_a, var.id = "liking_a")

long_b <- matrix2long(liking_b, var.id = "liking_b")

long <- merge(long_a, long_b, by = c("actor.id", "partner.id"))

str(long)

'data.frame': 2916 obs. of 4 variables:

$ actor.id : int 1 1 1 1 1 1 1 1 1 1 ...

$ partner.id: int 1 10 11 12 13 14 15 16 17 18 ...

$ liking_a : int NA 3 3 2 2 3 2 3 2 3 ...

$ liking_b : int NA 2 2 1 2 3 3 3 2 3 ...

If you have multiple groups, all transformed long data frames are combined row wise and an additional column is
necessary to indicate the group id. In lack of appropriate demo data, for the following example imagine that liking_a
is the liking rating in group A, and liking_b is the liking rating in another group B. Hence, one would combine both
as following:

data(liking_a)

data(liking_b)

long_a <- matrix2long(liking_a, var.id = "liking")

long_b <- matrix2long(liking_b, var.id = "liking")

add group id

long_a$group.id <- 1

long_b$group.id <- 2

long2 <- rbind(long_a, long_b)

str(long2)

'data.frame': 5832 obs. of 4 variables:

$ actor.id : int 1 2 3 4 5 6 7 8 9 10 ...

$ partner.id: int 1 1 1 1 1 1 1 1 1 1 ...

$ liking : int NA 4 4 3 5 3 5 4 3 3 ...

$ group.id : num 1 1 1 1 1 1 1 1 1 1 ...

Be careful: rbind only works if all column names are identical in the data frames which are combined. Hence, you
have to make sure that all long data frames have the same structure before applying rbind to them. Furthermore,
you should note that performing RR in this last example is not overly sensible, as running a between group t-test with
only two groups is rather debatable.

The function matrix2long essentially is a wrapper for the much more powerful functions from the reshape package.
If you do a lot of data manipulation and conversions from wide to long format or vice versa, you definitely should dig
into this package.

9.3 I have to run many, many round robin analyses in a huge data set. What is the
most convenient way to do this?

Imagine you assessed 50 variables in round robin style, and want to extract the effects for all variables and to store
them in a new data frame (e.g., for subsequent analyses). Of course, you can type the RR command 50 times, but
there are more convenient ways to do this.

24

You can construct the formula by a loop, and iterate through all measured variables, and combine the results at
the end. As an example, let’s take the likingLong data set, which has 4 round robin variables:

data(likingLong)

str(likingLong)

'data.frame': 2916 obs. of 6 variables:

$ perceiver.id: int 1 2 3 4 5 6 7 8 9 10 ...

$ target.id : int 1 1 1 1 1 1 1 1 1 1 ...

$ liking_a : int NA 4 4 3 5 3 5 4 3 3 ...

$ liking_b : int NA 5 4 3 5 4 4 3 4 3 ...

$ metaliking_a: int NA 3 4 3 3 4 3 3 3 2 ...

$ metaliking_b: int NA 2 4 3 3 3 3 3 3 2 ...

If we want to extract the effects for all 4 variables, we could either type:

RR(liking_a ~ perceiver.id * target.id, data = likingLong)

RR(liking_b ~ perceiver.id * target.id, data = likingLong)

RR(metaliking_a ~ perceiver.id * target.id, data = likingLong)

RR(metaliking_b ~ perceiver.id * target.id, data = likingLong)

Or, we do it in a loop, store the results and combine them at the end:

varnames <- colnames(likingLong)[3:6]

run a RR analysis for each variable and store results in a list

res_list <- list()

for (v in 1:length(varnames)) {

f1 <- formula(paste(varnames[v], "~perceiver.id*target.id"))

RR1 <- RR(f1, data = likingLong)

res_list <- c(res_list, list(RR1$effects))

}

now combine all effects in a single data frame; merge by id

library(reshape)

res <- merge_recurse(res_list, by = "id")

As you can see, there’s a new data frame with all perceiver and target effects. On this data frame you can run
subsequent analyses, for example correlations:

str(res)

'data.frame': 54 obs. of 9 variables:

$ id : Factor w/ 54 levels "1","10","11",..: 1 2 3 4 5 6 7 8 9 10 ...

$ liking_a.p : num -0.477 -0.367 -0.406 0.152 0.663 ...

$ liking_a.t : num 0.26389 0.07728 0.00107 -0.40349 -0.33725 ...

$ liking_b.p : num -0.228 -0.265 -0.498 0.099 0.404 ...

$ liking_b.t : num 0.253 0.309 -0.016 -0.401 -0.244 ...

$ metaliking_a.p: num -0.251 -0.173 -0.478 0.348 1.085 ...

$ metaliking_a.t: num 0.00855 0.10434 -0.03348 -0.2443 -0.21154 ...

$ metaliking_b.p: num -0.0958 -0.338 -0.3219 0.0894 0.7098 ...

$ metaliking_b.t: num 0.0524 0.2176 0.067 -0.1328 -0.2532 ...

round(cor(res[, 2:9]), 2)

liking_a.p liking_a.t liking_b.p liking_b.t metaliking_a.p metaliking_a.t

liking_a.p 1.00 0.11 0.85 0.14 0.47 0.19

liking_a.t 0.11 1.00 0.04 0.95 0.01 0.85

liking_b.p 0.85 0.04 1.00 0.08 0.55 0.12

liking_b.t 0.14 0.95 0.08 1.00 0.03 0.88

metaliking_a.p 0.47 0.01 0.55 0.03 1.00 0.04

metaliking_a.t 0.19 0.85 0.12 0.88 0.04 1.00

metaliking_b.p 0.43 0.03 0.63 0.07 0.90 0.08

metaliking_b.t 0.10 0.77 0.01 0.84 -0.05 0.92

metaliking_b.p metaliking_b.t

25

liking_a.p 0.43 0.10

liking_a.t 0.03 0.77

liking_b.p 0.63 0.01

liking_b.t 0.07 0.84

metaliking_a.p 0.90 -0.05

metaliking_a.t 0.08 0.92

metaliking_b.p 1.00 -0.03

metaliking_b.t -0.03 1.00

For convenience, this short script is also implemented as a function in TripleR (?getEffects), which reduces the
code to one or two lines. The function works both with single and multiple groups.

res <- getEffects(~perceiver.id * target.id, data = likingLong, varlist = c("liking_a", "liking_b",

"metaliking_a", "metaliking_b"))

[1] "Calculate: liking_a"

[1] "Calculate: liking_b"

[1] "Calculate: metaliking_a"

[1] "Calculate: metaliking_b"

str(res)

'data.frame': 54 obs. of 9 variables:

$ id : Factor w/ 54 levels "1","10","11",..: 1 2 3 4 5 6 7 8 9 10 ...

$ liking_a.p : num -0.477 -0.367 -0.406 0.152 0.663 ...

$ liking_a.t : num 0.26389 0.07728 0.00107 -0.40349 -0.33725 ...

$ liking_b.p : num -0.228 -0.265 -0.498 0.099 0.404 ...

$ liking_b.t : num 0.253 0.309 -0.016 -0.401 -0.244 ...

$ metaliking_a.p: num -0.251 -0.173 -0.478 0.348 1.085 ...

$ metaliking_a.t: num 0.00855 0.10434 -0.03348 -0.2443 -0.21154 ...

$ metaliking_b.p: num -0.0958 -0.338 -0.3219 0.0894 0.7098 ...

$ metaliking_b.t: num 0.0524 0.2176 0.067 -0.1328 -0.2532 ...

9.4 An error occurs: ‘Aggregation requires fun.aggregate: length used as default’

This error most probably occurs when you specify a data set which has a multi group structure, but you forgot to
define the group id in the formula (i.e., the | group.id part is missing).

9.5 My original multi group data set has X participants - the effects of the RR analysis,
however, only have Y (Y<X) rows!

This happens, whenever single groups are excluded from the SRA. SRAs need a minimum group size of 4 participants.
If your data set contains groups with 3 or fewer members, this group is excluded from the analyses, and no effects are
calculated. A warning message informs you which groups have been excluded.

9.6 A comparison with SOREMO.exe

David Kenny describes how to estimate SRMs with other software programs
(http://www.davidakenny.net/doc/srmsoftware.doc) and also provides a data set. We can do the analysis in TripleR
as well:

library(TripleR)

library(foreign)

dat <- read.spss("http://www.davidakenny.net/doc/contribute.sav", to.data.frame = TRUE)

RR.Kenny <- RR(l1 ~ Actor * Partner | Group, data = dat, se = "SOREMO")

RR.Kenny

[1] "Round-Robin object ('RR'), calculated by TripleR"

[1] "Univariate analysis of one round robin variable in multiple groups (significance test based on SOREMO; Kenny &

[1] "Univariate analyses for: l1"

[1] "Group descriptives: n = 24 ; average group size = 4 ; range: 4 - 4"

estimate standardized se t.value p.value

26

perceiver variance 0.233 0.335 0.054 4.307 0.000

target variance 0.240 0.345 0.045 5.330 0.000

relationship variance 0.222 0.320 0.030 7.316 0.000

error variance NA NA NA NA NA

perceiver-target covariance 0.059 0.250 0.047 1.244 0.226

relationship covariance 0.014 0.063 0.034 0.414 0.682

[1] "Perceiver effect reliability: .732"

[1] "Target effect reliability: .738"

NULL

Group variance is not printed in the standard RR-output, but it can be accessed by:

RR.Kenny$group.var

[1] -0.09060487

If you compare these results with Table 1 from the srmsoftware.doc document, you will see that all results are
identical to SOREMO.

References

Baayen, R., Davidson, D., & Bates, D. (2008). Mixed-effects modeling with crossed random effects for subjects and
items. Journal of Memory and Language, 59 (4), 390-412.

Back, M., & Kenny, D. (2010). The social relations model: How to understand dyadic processes. Social and Personality

Psychology Compass, 4 (10), 855-870.
Kenny, D. (1994). Interpersonal perceptions: A social relations analysis. New York: Guilford Press.
Kenny, D., Kashy, D., & Cook, W. (2006). Dyadic data analysis. New York: Guilford.
Kenny, D. A., & La Voie, L. (1984). The social relations model. In L. Berkowitz (Ed.), Advances in experimental

social psychology (p. 142–182). Academic Press.
Kliegl, R., Masson, M. E. J., & Richter, E. M. (2010). A linear mixed model analysis of masked repetition priming.

Visual Cognition, 18 (5), 655-681.
Lashley, B. R., & Bond, C. F. (1997). Significance testing for round robin data. Psychological Methods , 2 (3), 278–291.
Schönbrodt, F. D., Back, M. D., & Schmukle, S. C. (2012). Tripler: An r package for social relations analyses based

on round-robin designs. Behavior Research Methods, 44 (2), 455–470. 10.3758/s13428-011-0150-4

27

	Installing R and TripleR
	Getting the data into the right format
	Importing your data into R
	How to do the analyses
	Univariate manifest analysis
	Univariate latent analyses
	Bivariate manifest analysis
	Bivariate latent analysis
	Multiple groups
	Missing values
	Inspecting the results object

	Plots
	Formatting the output
	Subsequent analyses
	Assumed similarity and self-other agreement: Correlations with self-ratings
	Calculating partial correlations with external variables: Treating groups as fixed effects
	Calculating partial correlations with external variables: Treating groups as random effects - the multilevel approach
	Subsequent analyses of relationship effects

	Exporting results
	FAQ
	How can I calculate a bivariate analysis between one manifest variable and a latent construct indicated by two variables?
	This long data format really sounds good. But unfortunately my data already are in the wide format - how can I convert them into the long format?
	I have to run many, many round robin analyses in a huge data set. What is the most convenient way to do this?
	An error occurs: `Aggregation requires fun.aggregate: length used as default'
	My original multi group data set has X participants - the effects of the RR analysis, however, only have Y (Y<X) rows!
	A comparison with SOREMO.exe

	References

