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Abstract

The Tweedie compound Poisson distribution is a subclass of the exponential dispersion fam-
ily with a power variance function, in which the value of the power index lies in the interval
(1,2). Tt is well known that the Tweedie compound Poisson density function is not analytically
tractable, and numerical procedures that allow the density to be accurately and fast evaluated
did not appear until fairly recently. Unsurprisingly, there has been little statistical literature
devoted to full maximum likelihood inference for Tweedie compound Poisson mixed models. To
date, the focus has been on estimation methods in the quasi-likelihood framework. Further,
Tweedie compound Poisson mixed models involve an unknown variance function, which has a
significant impact on hypothesis tests and predictive uncertainty measures. The estimation of
the unknown variance function is thus of independent interest in many applications. However,
quasi-likelihood-based methods are not well suited to this task. This paper presents several
likelihood-based inferential methods for the Tweedie compound Poisson mixed model that en-
able estimation of the variance function from the data. These algorithms include the likelihood
approximation method, in which both the integral over the random effects and the compound
Poisson density function are evaluated numerically; and the latent variable approach, in which
maximum likelihood estimation is carried out via the Monte Carlo EM algorithm, without the
need for approximating the density function. In addition, we derive the corresponding Markov
Chain Monte Carlo algorithm for a Bayesian formulation of the mixed model. We demonstrate
the use of the various methods through a numerical example, and conduct an array of simulation
studies to evaluate the statistical properties of the proposed estimators.

Keywords: Adaptive Gauss-Hermite quadrature, Extended quasi-likelihood, Laplace approx-
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1 Introduction

The exponential dispersion model (Jgrgensen 1987) plays an important role in modern applied data
analysis, as it is the underlying response distribution in many commonly used statistical models. A
two-parameter representation of the exponential dispersion model is

p010,6) = a0y exp (0 (1)
where a and k are known functions, 6 is the natural parameter and ¢ > 0 is the dispersion param-
eter. For this family of distributions, we have the well-known relationships E(y) = u = £’(f) and
Var(y) = ¢r”(0) (e.g., see McCullagh and Nelder 1989). Since the mapping from 6 to p is one-to-
one (Barndorff-Nielsen 1978), x”(6) can also be represented as a function of u, denoted by V(u).
This is generally known as the variance function, which uniquely defines an exponential dispersion
model (Jorgensen 1987).

The paper focuses on the exponential dispersion model with a power variance function V(u) =
pP, in which the value of the index parameter p lies in the interval (1,2). This particular distribution
is generated by a compound Poisson-Gamma distribution and has a probability mass at the origin
accompanied by a skewed continuous distribution on the positive real line. Henceforth we refer
to it as the Tweedie compound Poisson distribution, or simply the compound Poisson distribution.
Extensive applications of this distribution, mainly in the context of generalized linear models [GLM],
have been found in a wide range of fields where continuous data with exact zeros regularly arise.
Dunn and Smyth (2005) give an excellent account of the various areas where the Tweedie compound
Poisson distribution has been applied.

Nevertheless, it is well known that the normalizing quantity a(y, ¢, p) (we express the normaliz-
ing quantity as a(y, ¢, p) to emphasize its dependence on the index parameter p) for the compound
Poisson distribution is not analytically tractable, and the density of the compound Poisson distri-
bution cannot be expressed in a closed form. Numerical methods that enable accurate and fast
evaluation of the density function did not appear until fairly recently (Dunn and Smyth 2005,
2008). Not surprisingly, implementations of the compound Poisson mixed models, to date, have
been limited to the penalized quasi-likelihood [PQL] method (Breslow and Clayton 1993), in which
the inferential scheme only requires knowledge of the first two moments. Nevertheless, before the
PQL method can be applied, the variance function, i.e., the index parameter, must be determined.
In many applications, the value of the index parameter is specified beforehand based on expert
judgment. This is only acceptable when the goal of the study is to estimate regression coefficients,
upon which the variance function has negligible effects (e.g., see Davidian and Carroll 1987, Dunn
and Smyth 2005). Problems arise when statistical inference goes beyond mere regression coefficient
estimation. For example, in their paper on variance function estimation, Davidian and Carroll
(1987) state, “how well one models and estimates the variances will have substantial impact on pre-
diction and calibration based on the estimated mean response” and “far from being only a nuisance



parameter, the structural variance parameter can be an important part of a statistical analysis”.
Indeed, the study of Peters et. al (2009) shows that estimation of the index parameter in the
Tweedie compound Poisson GLM is of special interest to the insurance industry, as it has a ma-
terial impact on the uncertainty measures of the predicted outstanding liability, a critical element
used in strategic planning, accounting and risk management by insurance companies.

Methods that enable estimation of the index parameter have appeared for generalized linear
models, in which the index parameter is determined by maximizing the profile extended quasi-
likelihood (Cox and Reid 1987, Nelder and Pregibon 1987), or the profile likelihood evaluated using
the density approximation methods (Dunn and Smyth 2005, 2008). However, two issues complicate
implementing these in the PQL-based compound Poisson mixed models. First, an inherent difficulty
with the extended quasi-likelihood approach is that it cannot handle exact zero values and requires
the response variable to be adjusted away from zero by adding an small positive number (see
Nelder and Pregibon 1987). However, Dunn and Smyth (2005) point out that this adjustment is
inappropriate for modeling the compound Poisson data, as the parameter estimates are extremely
sensitive to the choice of the adjustment. We experience a similar problem when applying the
penalized extended quasi-likelihood method to the compound Poisson mixed model. Second, the
underlying objective function optimized in PQL is not truly an approximation of the likelihood
function (Pinheiro and Chao 2006), which precludes its use in the profile likelihood to make inference
of the index parameter.

The intractable density function and the unknown variance function have presented distinct
challenges to statistical inference problems involving compound Poisson mixed models. In this pa-
per, we derive several likelihood-based methods for compound Poisson mixed models that enable
estimation of the variance function. Given the recent development in numerical approximation
of the compound Poisson density, existing inference methods for mixed models using Laplace ap-
proximation (Tierney and Kadane 1986) and adaptive Gauss-Hermite quadrature [AGQ)] (Liu and
Pierce 1994) can be modified and implemented. These methods evaluate the likelihood by approx-
imating the integral over the distribution of the random effects. The approximated likelihood is
then optimized numerically to produce parameter estimates. In many existing mixed models, the
normalizing quantity in (1.1) does not enter the likelihood to be maximized either because it is
simply a constant involving no parameters (e.g., Bernoulli, Poisson and Binomial), or because it
is a function of only the dispersion parameter which can be profiled out of the likelihood (e.g.,
Normal). In contrast, the Laplace and quadrature approximations of the compound Poisson mixed
model must take into account the normalizing quantity, as it depends, in a complicated way, on
both the dispersion parameter and the index parameter, whose values are to be estimated from the
numerical optimization.

The dependence of the above likelihood approximation methods on the compound Poisson
density implies that they are subject to the degree of accuracy of the density approximation methods,
and further, they will fail when the underlying compound Poisson density evaluation methods
encounter numerical difficulties. For example, the series evaluation method of Dunn and Smyth



(2005) may fail to work in certain regions of parameter space where the number of terms required
to approximate the density to a given level of accuracy is prohibitively large. We consider an
alternative method that treats the unobserved Poisson variable implicit in the compound Poisson
distribution, as well as the model’s random effects, as latent variables (Laird and Ware 1982). The
corresponding maximum likelihood estimation can be carried out via the Monte Carlo EM [MCEM]
algorithm (Wei and Tanner 1990, McCulloch 1997). This latent variable approach avoids the need
to approximate the compound Poisson density numerically. Rather, a Monte Carlo expectation step
is implemented in which samples of the latent variables are drawn from the conditional distribution
of the latent variables on the observed data.

In addition, we derive the Markov Chain Monte Carlo [MCMC] (Gelman et. al 2003) method,
providing a Bayesian formulation of the compound Poisson mixed model (Zeger and Karim 1991).
Corresponding to the above frequentist methods, there are two ways of implementing the MCMC
algorithm: one relying on direct compound Poisson density approximation and the other exploiting
latent variables. The MCEM and MCMC methods are more general than their likelihood approx-
imation method counterparts: they can accommodate various random effect structures or random
effects from non-Normal distributions. However, by their Monte Carlo nature, they are more com-
putationally demanding and subject to Monte Carlo errors.

Details of these algorithms will be presented in section 3 after a brief review of the compound
Poisson distribution and the density approximation method in section 2. Section 4 will apply the
proposed algorithms to a data set analyzed in Dunn and Smyth (2005). In section 5, we conduct
a series of simulation studies to investigate the statistical properties of the proposed algorithms.
Section 6 will provide concluding comments.

2 The compound Poisson distribution

In this section, we briefly review the compound Poisson distribution considered in the paper. In
particular, we describe the series evaluation method (Dunn and Smyth 2005) to approximate the
intractable density function, which is required by certain likelihood-based estimation routines pre-
sented in the next section.

2.1 The compound Poisson distribution as an exponential dispersion model

It can be shown (e.g., see Jorgensen 1987) that the exponential dispersion model, with V(u) = p
for some known value of p € (1,2), collapses to a compound Poisson-Gamma random variable



generated in the following way:

T ..

Y =3 Xi, T ~ Pois(A), X;  Ga(a,7), T L X;, (2.1)

i=1
where Pois()\) denotes a Poisson random variable with mean A, and Ga(a,) denotes a Gamma
random variable with mean and variance equal to ay and a2, respectively. Implicit in this definition
is that if T' = 0 then Y = 0, thereby allowing the distribution to have a probability mass at the
origin. When T" > 0, the response variable Y is the sum of 7"i.i.d Gamma random variables, implying
that YV|T ~ Ga(Ta,~y). As a result, the compound Poisson distribution has a probability mass at
zero accompanied by a skewed continuous distribution on the positive real line. This distinctive
feature makes it ideally suited for modeling continuous data with exact zeros that frequently arise
in many applied fields. Indeed, for certain applications, there is some intuitive appeal to exploit
this distribution, where the underlying data can be considered as generated by a compound process.
For example,

e in actuarial science, Y is the aggregate claim amount for a covered risk, T" the number of
reported claims and X; the insurance payment for the iy, claim;

e in rainfall modeling, Y is the total amount of precipitation in a given period, T' the number
of rain events and X; the intensity of the precipitation for the i, rain event;

e in ecological studies of stock abundance, Y is the total biomass in a certain area, T' the number
of patches of organisms and X; the measured biomass for the i, patch.

By means of deriving and equating the cumulant generating functions for (1.1) and (2.1), we
can work out the relationship between the two sets of parameters in the two representations as:

PP
1= Ao, A= o,
¢(2—p)
o+ 2 2—p
= b o = )
a+1 p—1
M=P L (qy)2P B
¢>=2(_;), v=¢(p- 1" (22)

2.2 Numerical approximation to the density function

From (2.1), the joint distribution of the compound Poisson and the Poisson variables can be derived
as

exp(—A) (0,0)
p(y7t‘)‘7a77) = p(y’tav’)/)p(t‘)\) = {ytaleXp(—y/"/) A exp(—>\) R+ Z+ (23)
T(to)yte ) t! X :



To recover the marginal distribution of Y, we integrate out 7" in (2.3), that is, p(y|\, a,v) =
Yoo Py, tIA, @, 7). Equating this with (1.1) and canceling out common terms, we obtain the
normalizing quantity in (1.1) as

0 t

1 y _1y
“op) = ; (p — Dlegti+e)(2 — p)tIT(ta) ; W (2.4)

It is well known (e.g., see Dunn and Smyth 2005) that the above formula for the normalizing
quantity does not have a closed-form expression. However, methods have been proposed that can
approximate it reasonably well. Dunn and Smyth (2005) show that as a function of ¢, (2.4) is strictly
convex, and that W; decays faster than geometrically on either side of the mode of W}, denoted
tmax. As a result, we can replace the infinite sum with finite sum over important terms. That is,
we can find the limits ¢;, < tmax and ty > tmax such that Wi, and Wi, are less than eW; , _ for
some given threshold €, and evaluate the normalizing quantity as

tu
. 6) = > W (2.5)

t=tr,

Using the Stirling’s formula to replace the Gamma function in (2.4), and taking the derivative with
respect to ¢, we can find the approximate mode ;.5 as

b —
max — M
(2-p)¢

We evaluate the formula for W; in (2.4) at tmax to obtain Wy, , which is then used to determine
the two limits ¢7, and tg.

(2.6)

The above series evaluation method is fairly straightforward to implement, however, Dunn and
Smyth (2005) note that the number of terms required to approximate the density to a given accuracy
could increase without bound in certain regions. An alternative approach (Dunn and Smyth 2008)
evaluates the density by Fourier inversion of the characteristic function, and has better performance
in these situations. Nevertheless, the more complex Fourier inversion method does not dominate
the series evaluation approach universally, as it has been found to be less accurate in other certain
parameter domains. In general, these two methods are regarded as complementary.

3 Compound Poisson linear mixed models

In this section, we consider statistical inference of the compound Poisson linear mixed model.
Suppose that there are N observations. The mixed model assumes that the N x 1 mean response
vector p is stipulated by some linear predictors through a monotonic link function n as

n(pw) = XB + Zb, (3.1)
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Figure 1: Estimates of the two fixed-effects (y and (1), the variance component (0}3) and the
dispersion parameter (¢) using the penalized quasi-likelihood method with a given variance power
p=11,1.2,---,1.9.

where 3 is a J x 1 vector of fixed effects, b a K x 1 vector of random effects, and X and Z are the
associated design matrices. Moreover, the random effects have their own distribution

b~ N(0,%). (32)

This is the typical setup in a mixed model. We have seen in section 2.1 that for a given p, the
compound Poisson distribution is a member of the exponential dispersion family. In such a case,
existing inferential procedures developed for the exponential dispersion family (e.g., McCulloch
and Searle 2001) can be readily applied. However, the index parameter p is generally unknown
beforehand, in which the compound Poisson distribution can no longer be expressed in the form
of the exponential dispersion family. Methods that enable estimation of the index parameter along
with other parameters of interest must be employed.

Existing theory (e.g., Smyth 1996) suggests that for the compound Poisson model, the mean p
is orthogonal to p and ¢, meaning that the mean, and thus the regression coefficients 8 and b, vary
slowly as p and ¢ change. For this reason, it is perhaps reasonable to specify the index parameter
based on expert judgment when the goal of the study is solely to estimate regression coefficients.
However, problems arise when statistical inference goes beyond mere regression coefficient estima-
tion, as the index parameter significantly impacts the estimation of the dispersion parameter, which,
in turn, has a substantial influence on the estimation of asymptotic standard errors of the regression
coefficients, statistical hypothesis tests, and predictive uncertainty measures.
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Figure 2: Plot of the estimates of the index parameter (p) and the dispersion parameter (¢) corre-
sponding to seven different adjustments adopted in the penalized extended quasi-likelihood method.

The impact of the index p on the estimation of the other parameters in a mixed model is
illustrated in Figure 1, in which we fit nine compound Poisson mixed models to a real data set
using the penalized quasi-likelihood method [PQL]| for each value of p € {1.1,1.2,---,1.9}. The
parameter estimates of the two fixed effects (5y and (1), the variance component (o) and the
dispersion parameter (¢) are then plotted against the value of the index parameter used. From
Figure 1, it is noteworthy that the value of the index parameter has a significant impact on the
estimation of the dispersion parameter, but only a slight effect on the estimation of the mean
parameters and the variance component.

The penalized quasi-likelihood method, however, is not equipped to estimate the variance
function. A natural modification, the extended quasi-likelihood (Nelder and Pregibon 1987), can be
exploited, in which the PQL is used to estimate the fixed and random effects, the variance component
and the marginal deviance for a given value of p, and the resulting profiled extended quasi-likelihood
is maximized to produce the estimate of p. Unfortunately, the extended quasi-likelihood involves
a term log(V (y)), which will become infinite if y = 0. To overcome this issue, the observed zeros
are adjusted away from the origin by adding a small positive constant c. However, this adjustment
is inappropriate for the compound Poisson distribution because the resulting parameter estimates
are extremely sensitive to the choice of the adjustment. For example, Figure 2 shows the estimates
of the parameter p and ¢ corresponding to six different values of ¢ used in the penalized extended
quasi-likelihood method [PEQL].



We see that the penalized extended quasi-likelihood method suffers from the dependency on
the ad hoc adjustment and is not well suited for estimating the variance function in the compound
Poisson mixed model. In the following, we derive several likelihood-based methods that enable the
variance function to be estimated from the data. Further, in contrast to the PQL method, these
methods are approximations to the true likelihood, thus permitting the construction of likelihood
ratio tests for comparing nested models.

3.1 Laplace approximation

For convenience in deriving the conditional mode of the random effects needed in the following, we
further express the variance component in (3.2) in terms of the relative covariance factor A such
that

3 = pAA (3.3)
As a result, the specification of the mean vector in (3.1) can be further expressed as
np)=XB+ZAu=XpB+ Z*u, (3.4)
where u ~ N(0, ¢I).

Given this formulation, we have two sets of random variables, the observation Y and the
unobserved (scaled) random effects u, and we are interested at estimating the set of parameters
® = (B,¢,p,A). These parameters are estimated by maximizing the observed likelihood, that is,
the marginal likelihood where the random effects are integrated out from the joint likelihood of
(Y, u):

p(y]®) = / Py, u|©)du = / Py, ©)p(ud)du. (3.5)

Since the integral in (3.5) is often intractable, we evaluate it via the Laplace approximation (Tierney
and Kadane 1986), in which the integrand in (3.5) is replaced by its second-order Taylor series at
the conditional mode of u given the current value of ®. The resulting marginal likelihood is a
function of only ©, which can be maximized using numerical optimization procedures to find the
maximum likelihood estimate of ©.

The conditional mode of u can be located via the widely used Fisher’s scoring algorithm, often
referred to as the penalized iteratively re-weighted least squares in the context of mixed models
(e.g., Bates et. al 2012). To derive the conditional mode, we first note that the joint loglikelihood
of (Y,u) is:

N K u'u
(©;y,u) =logp(y, ul®) = Y _logp(yilu, ©) — - log ¢ — %
=1

(3.6)



where log p(y;|u, ©®) is the conditional loglikelihood of the data given the random effects. Since the
conditional distribution of w is proportional to the joint distribution of (Y, w), the conditional mode
of u can be located by maximizing the joint loglikelihood in (3.6) with respect to u. We denote
g(pn) = 9n/Ou. From (3.6), we can compute the derivative of the joint loglikelihood with respect to
Uy, the ry, element of u, as

MOy, u) i 9log p(yilu, ©) 96; I Omi_ uy

Ou, 90; i Oni Oup &

i=1

_1 f:l( s — 1) g (i) Z5 — u
"0\ & g(ua)PV () T IS )

i=1
Therefore, the gradient can be expressed, in matrix notation, as

H(O;y,u) 1

o ; (2'Wam)(y — 1) —u)., (3.7)

where g(p) is an N x N diagonal matrix whose iy, diagonal element is g(u;) and W is an N x N
diagonal matrix whose i, diagonal element w;; satisfies w;; 1= g(143)?V (u;). Differentiating (3.7)
again with respect to 4’ and taking expectation with respect to the distribution of Y, we can
approximate the Hessian matrix as

(O y,u) 1

%! * o _1 /
e ; (Z Wz +I) - “LL, (3.8)

¢
where L is the Cholesky factor of Z* W Z* + I. With (3.7) and (3.8), we can define an iterative

scheme that eventually leads to the conditional mode of u, where the update of u in each iteration
is given by

Unew = WUog + (Z*/WZ* + I)_1 (Z*le(u)(y — ) — uold> . (3.9)

In the above, the weight matrix W and the mean response p are updated in each iteration based on
the value of u,q. As a result of the definition in (3.3), the dispersion parameter from (3.7) and (3.8)
cancels out and does not enter the scoring algorithm. This is similar to the scoring algorithm in
generalized linear models (McCullagh and Nelder 1989). Convergence of the above scoring algorithm
is declared when the relative change in the linear predictors falls below a threshold.

Denoting the found conditional mode as @, we estimate the variance of @ by inverting the
negative approximated Hessian matrix as

1

Var(a)~ ¢ (LL')" . (3.10)
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With the conditional mode and the approximate Hessian matrix, we compute the Laplace approxi-
mation of the marginal loglikelihood as

1
{(©;y) ~ U(O;y,u) + 5 log [Var(a)]
/A

N ~
= log p(yil©, @) + % —log|L|. (3.11)
i=1

In many existing mixed models, the conditional loglikelihood log p(y;|®, @) is often replaced by
half of the deviance residuals (McCullagh and Nelder 1989), and the normalizing quantity in (1.1)
is left out either because it is simply a constant with no parameters in it (e.g., Bernoulli, Poisson
and Binomial), or because it involves only the dispersion parameter which can be profiled out of the
marginal likelihood (e.g., Normal). The normalizing quantity in the compound Poisson distribution,
however, depends on both the dispersion parameter and the index parameter in a complicated way,
and it must be computed numerically and included in the conditional likelihood. The marginal
loglikelihood in (3.11) is then maximized numerically to produce the estimate of @, subject to the
constraints: ¢ > 0, p € (1,2) and diag(A) > 0.

3.2 Adaptive Gauss-Hermite quadrature

When there are no crossed random effects, the integral in (3.5) can also be approximated using the
more accurate adaptive Gauss-Hermite quadrature [AGQ] (Liu and Pierce 1994), which replaces
the integral by a weighted sum of the integrand at specified knots. These knots are zeros of the
Hermite polynomial, but are transformed so that the integrand is sampled in an appropriate region.
When there is only one knot, the AGQ method collapses to the Laplace approximation.

Specifically, an L-knot AGQ approximation to the integral of a general function g(t) is

L
/g(t)dt ~ V26 Z wy exp(x})g(it + V261;), (3.12)
=1

where x; and w; are the pre-determined zeros and the corresponding weights of the Hermite poly-
nomial, and /i and & are the mode of g(t) and the square root of the variation of g(¢) at its mode,
respectively.

For simplicity in the formulation, we suppose there is a single grouping factor with K levels
so that there is only one random effect u; for each level. Then the data can be partitioned into
K groups so that each group is conditionally independent to each other given the random effects.
We denote p(y;, ur|®) as the joint density of the observations and the random effect for group k,
so that the joint likelihood can be written as p(y, u|®) = [[r—, p(y, ux|©). Therefore, the AGQ

11



approximation to (3.5) is

p(y|®) = / (1 1] ©) du

I/
I

<‘[‘7uk Zwl exp $z (Y, Uk + \/Eé'ukml’@)> , (3.13)

where 4y, is the conditional mode and &,, = /¢/Lyy is the standard deviation of 4y, as found in

(3.9) and (3.10).

3.3 Monte Carlo EM

The above two methods approximate the integral in (3.5) explicitly and in computing the marginal
likelihood, they rely on the capability to directly evaluate the density function of the compound
Poisson distribution. The Monte Carlo EM [MCEM] algorithm (Wei and Tanner 1990) to be
presented here is fundamentally distinct in that latent variables are employed and direct compound
Poisson density evaluation is avoided. Therefore, it is independent of the degree of accuracy in the
density approximation. Moreover, it is a general-purpose optimization procedure that can handle
flexible random effect specifications. For example, the distribution of the random effects are not
necessarily limited to be Normal. For this reason, we specify the distribution of the random effects
as p(b|X), depending on some unknown parameter 3, and re-define ® = (3, ¢, p, ). Throughout
the next two subsections, we use the unscaled random effects b instead of the scaled version u used
in the previous two subsections.

In the MCEM algorithm, both the unobserved Poisson variable T' implicit in the compound
Poisson distribution and the random effects b are treated as latent variables. Thus, the complete
data is (Y, T, b), and the corresponding joint loglikelihood can be derived as

N

(©;y,t,b) =Y logp(yi, t:|©, b) +log p(b|X). (3.14)
i=1

Using the joint distribution of (Y,T') in (2.3), and plugging the expression for (u;, ¢, p) in (2.2), the
first term in (3.14) can be further expressed as

N
> logp(yi, t:1©,b) = Y logp(yi, :1©,b) + > log p(yi, 1:©, b)
i=1 y;=0 y; >0
N 2—p
1 L Yi 2-p
=—= — — — +logF(t,~)+logti!>
¢;2p %(w—l)uﬁl p—1



2—p Yi log ¢
; 1 - —log(2—p) ). 1
+) tz<p_1 S S 0g(2 — p) (3.15)

In the above, the constant term involving only y’s has been dropped out.

In the E-step of the EM algorithm, given the current value of the parameters, ®,4, we take
the expectation of (3.14) with respect to the conditional distribution of the latent variables (T, b)
given the observed data (we refer to this as the posterior distribution in the following discussion):

Q(O;Ou4) = E1 )y [¢(©;y,t,b)]. (3.16)

However, the expectation with respect to the posterior distribution of (T, b) is intractable. We can
resort to a Monte Carlo approach to evaluate it via simulated values from the posterior distribution.
Suppose that we have M simulated samples from the posterior distribution of (T',b), then (3.16)
can be approximated by

M:

O(©: @) = (@ Y.t ,b<m>>, (3.17)

m=1

where ™) and (™ are the my, simulated sample. In particular, we note that #; and u; are
additive in (3.15), implying that the posterior distributions of the two latent variables T' and b are
independent. Therefore, simulations of T and b can be performed separately. The simulation of T
from the posterior is relatively straightforward by noting that it factorizes over i and each ¢; can be
simulated using rejection sampling (e.g., see Robert and Casella 2004). The posterior distribution
for b is more involved, and depending on the form of p(b|X), either rejection sampling (Booth and
Hobert 1999) or Markov Chain Monte Carlo methods (McCulloch 1997) can be used.

In the subsequent M-step, a new estimate of ® is found by maximizing the Monte Carlo estimate
Q(©;©,4). The conditional maximization approach in Meng and Rubin (1993) is used so that we
can update each component of @ sequentially. To update 3, we use the iterative Newton-Raphson
approach from McCulloch (1997):

/Bnew = ﬂold + Eb\Y(X,WX)_lX/Eb\Y[Wg(M)(y - u)]a (318)

where W and g(p) are as defined in (3.7) and computed using the value of ®44. The notation E
represents the Monte Carlo estimate of the expectation. The update of ¢ also has a closed-form
solution:

— N £ 1
% Zz‘:l Eu|Y(:uz ) + Zyl>0 Yi u\Y( p)
Zyi>0 Et|Y( i)

The maximization over 3 is often simple and the solution depends on the form of p(b \ ) and the
structure of 3. For example, if b is Normally distributed and ¥ = ¢*1, then 02, = E by (D'D).

anew = (319)
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Maximization of p is achieved through a constrained optimization procedure with the restriction
p e (1,2).

The E-step and M-step as described in the above will be implemented iteratively and the
algorithm will converge to a local maximum (e.g., see Wei and Tanner 1990).

3.4 Markov Chain Monte Carlo

Markov Chain Monte Carlo [MCMC] is another popular approach to handling mixed models, in
which the model is formulated in a Bayesian setting and inference is made based on simulated
samples from the posterior distribution of the parameters. The MCMC approach is also a gen-
eral algorithm that can accommodate various random effect structures or random effects from
non-Normal distributions. To make inference for the set of parameters ® = (3, ¢,p, X), we draw
simulated samples from the posterior distribution of ® given the data. The simulation is imple-
mented through a Gibbs sampler (Gelman et. al 2003), which sequentially samples parameters from
their lower-dimensional full conditional distributions over many iterations.

There are two ways in formulating the model based on whether the latent Poisson variable
is employed. The first approach does not utilize the latent Poisson variable and similar to the
likelihood approximation methods, it must make direct evaluation of the conditional distribution of
the data on the random effects. That is, we estimate the posterior distribution of (©,b) as:

p(©,bly) o< p(y|B, #, p,b)p(b|X)p(O), (3.20)

where p(©) is the prior distribution for ®. An alternative approach, similar to the MCEM algorithm
above, makes use of the latent Poisson variable and computes the joint posterior distribution of
(©,T,b) as

p(©,t,bly) o< p(y,t|B, ¢,p, b)p(b|X)p(O). (3.21)

In contrast to the first approach, the latter avoids the need for approximating the compound Poisson
density function by simulating the latent variables from the full conditionals. In both cases, we draw
simulations from the joint posterior, maintain the simulated values of ®, and make inference about
® based on these simulated samples.

Indeed, the MCEM algorithm has a close relationship with the latter Gibbs sampler. By
setting M = 1 in the E-step, we obtain one simulated sample of T" and b from the posterior. Then,
we replace each step in the M-step with one simulated sample from the full conditionals. This
constitutes one iteration in the Gibbs sampling.
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Inner zone Outer zone All
Plant Stock Spacing | # Samples Mean RLD | # Samples Mean RLD | # Samples Mean RLD
1 Mark 5x3 40 0.080 51 0.019 91 0.046
2 Mark 5x3 35 0.061 51 0.011 86 0.032
3 Mark 4x2 26 0.061 18 0.006 44 0.039
4 Mark 4x2 26 0.112 15 0.029 41 0.082
5 MM106 5x3 36 0.123 49 0.053 85 0.083
6 MM106 5x3 34 0.106 47 0.099 81 0.102
7 M26 4x2 24 0.100 17 0.098 41 0.099
8 M26 4x2 24 0.146 18 0.061 42 0.110

Table 1: The number of samples and the mean of the root length density [RLD] by plant, root
stock, plant spacing and root zone.

4 Illustrative examples

In this section, we demonstrate the use of the compound Poisson mixed model using the fine
root data set from the study conducted by de Silva et. al (1999). The study examines possible
factors that may affect the length density of fine roots, the main component of the root system
through which vascular plants absorb water and nutrients. Specifically, the aim of their study is
to investigate how the distribution of fine root length density [RLD] is affected by the geometry of
the structural root system and the type of the root stock. Data are collected on eight apple trees,
which are grafted onto one of three different root stocks (Mark, MM106 and M26) and planted at
two different between-row x within-row spacings (4 x 2 meters and 5 x 3 meters). For each of the
apple trees, a number of soil core sampling units are taken from which the fine roots are extracted.
The total length of the fine roots in each core sample is measured, and the RLD is calculated by
dividing the total length (cm) of the fine roots by the volume of the core sample (em?). Each of
these samples is further classified as belonging to an inner or outer zone relative to each plant.

An exploratory data analysis is presented in Table 1, in which the number of samples in the
data and the sample mean of the RLD are shown by tree, root stock, plant spacing and root zone.
It is apparent that this study is not a full factorial design: the Mark root stock is tested at both
plant spacings but the MM106 stock only at the 5 x 3 spacing and the M26 stock only at the 4 x
2 spacing. Further, for each of the plants, the observed sample mean RLD is much larger in the
inner zone than that in the outer zone, this difference being greater for the Mark stock than the
other two.

A distinct feature of this data is that the variable of primary interest, the RLD, has a mixed
distribution: 37.8% of the RLD data are exact zeros while the rest take positive continuous values.
The zeros are corresponding to the soil core samples that contain no fine roots, and accurately
modeling the probability of zero RLD is considered an important part of the study. Noting that
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no transformation to normality is likely to be successful for this data due to the large proportion
of zeros, Dunn and Smyth (2005) exploit the compound Poisson generalized linear model in their
analyses. They specify a model including the stock and zone effects, the factors of primary interest
in the study, as well as their interactions. After these effects are accounted for, the contribution
from plant and spacing is not significant.

Dunn and Smyth (2005) find that the above model provides reasonable estimates of the stock
and zone effects and is helpful to capture the observed pattern of zeros, but further comment that
“a more complete treatment of this data might include fitting a generalized linear mixed model
with plant as a random effect”. Indeed, plant is a blocking factor in the randomized block design of
de Silva et. al (1999), and thus, engenders a source of variation that must be accounted for when
conclusions are drawn about the population, rather than about these particular plants themselves.
Further, including plant as a random effect will account for the correlation induced due to multiple
samples from the same plant.

Laplace and adaptive Gauss-Hermite quadrature. The above mixed model is most conveniently
handled using the cpglmm function available in the R package cplm, which provides the Laplace and
adaptive Gauss-Hermite quadrature methods to estimate the compound Poisson mixed model. For
example, the following estimates the model using a 15-knot adaptive Gauss-Hermite quadrature:

fit <- cpglmm(RLD ~ Stock * Zone + (1 | Plant), data = FineRoot, nAGQ = 15)

The Laplace method is invoked when the number of quadrature knots is set to one (nAGQ = 1).

Monte Carlo EM. In the MCEM algorithm, we draw simulations of both the latent Poisson variable
T and the random effects b via rejection sampling. A zero-truncated Poisson proposal distribu-
tion is exploited when producing samples of the latent Poisson variable T', while a multivariate
t-distribution with 6 degrees of freedom is used for sampling the random effects b. The mean and
variance of the multivariate t-distribution are chosen to match the mode and curvature of the pos-
terior p(bly), respectively. The sample size is set to 100 for the first 40 iterations, and increased
to 3,000 thereafter. To ensure that the algorithm is not stopped prematurely due to Monte Carlo
errors, we perform three separate runs, each starting at a distinct set of initial values. The conver-
gence history of each parameter is monitored and shown in Figure 3 (for the mean parameters, only
the plots for By - B2 are included). It can be seen that within the first 40 iterations, all parameters
have reached the neighborhood of the corresponding maximum likelihood estimates, which are from
the 15-knot quadrature estimation and represented by the horizontal dashed gray lines. At con-
vergence, all three runs result in parameter estimates with three-decimal accuracy, indicating that
Monte Carlo errors are unlikely to be influential in the resulting statistical inference. To achieve
higher accuracy, however, the number of Monte Carlo samples needed may be prohibitively large.
Alternatively, one could construct an automated algorithm that increases the number of the simu-
lated samples as the algorithm progresses by gauging the approximate Monte Carlo error in each
iteration (Booth and Hobert 1999).
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Figure 3: The iteration history for three runs of the MCEM algorithm with distinct starting values.

Markov Chain Monte Carlo. To implement the MCMC procedure, we formulate the model in
a Bayesian setting. In particular, prior distributions for all parameters must be specified. In
order to allow the parameters to be estimated largely from the data, non-informative priors are
exploited: 3; ~ N(0,100%), j = 0,---,5, ¢ ~ U(0,100), p ~ U(1,2), and 0;2 ~ Ga(0.001,1000).
Because of the conjugate Gamma prior, the posterior conditional distribution of o’ 2 is still Gamma,
for which samples could be directly generated. We implement the MCMC algorithm with direct
density approximation in (3.20), and use the random walk Metropolis-Hastings algorithm (Gelman
et al. 2003) for simulations of 3;, j = 0,---,5, by, k =1,---,8, ¢ and p, in which a preliminary
run with 5,000 iterations is used to tune the variances of the Normal proposal distributions so
that the acceptance rate for each parameter is about 50%. The samples from this preliminary
run are discarded and not used in the analysis. We then run 25,000 iterations in three parallel
chains, discarding the burn-in period of the first 5,000 iterations at which point the approximate
convergence is achieved (the potential scale reduction factors of Gelman and Rubin 1992, are below
1.1 for all parameters). To reduce autocorrelation, we use every 20th iteration of each chain. This
results in 1,000 simulation draws per chain and 3,000 simulated samples in total. Inference is then
made using these simulated sample values.

The corresponding parameter estimates from these algorithms are exhibited in Table 2, where
the numbers in parentheses are the estimated standard errors. Estimates from the penalized ex-
tended quasi-likelihood approach are also included for comparison, in which a constant ¢ = 0.001
is added to the zeros when making inference of the index parameter. In all these models, the inner
zone and the root stock M26 serve as the reference level and their estimates are fixed as zero. We see
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PEQL Laplace AGQ MCEM MCMC
Bo | -2.096(0.18) -2.098(0.17) -2.097(0.17) -2.097(0.17) -2.102(0.22)
B1 | -0.068(0.24) -0.066(0.22) -0.067(0.22) -0.066(0.23) -0.066(0.30)
By | -0.462(0.22) -0.463(0.20) -0.463(0.20) -0.464(0.20) -0.462(0.27)
B3 | -0.447(0.29) -0.447(0.26) -0.447(0.26) -0.447(0.27) -0.443(0.26)
Ba | 0.028(0.36) 0.026(0.31) 0.026(0.31) 0.025(0.35) 0.013(0.32)
B | -1.168(0.36) -1.166(0.32) -1.166(0.32) -1.166(0.34) -1.168(0.32)
0] 0.599 0.329 0.329 0.329 0.338
D 1.554 1.413 1.413 1.413 1.418
op 0.063 0.088 0.088 0.088 0.158

Table 2: Parameter estimates (3 - Intercept, £1- MM106, 32 - Mark, 5 - Outer, 34 - Outer:MM106,
Bs - Outer:Mark) for the root length density data using different estimation methods. Approximate
standard errors for the fixed effects are reported in parentheses.

that the estimates across the three likelihood-based algorithms, i.e., Laplace, AGQ and MCEM, are
highly consistent, with negligible difference within the first three decimal places. By comparison,
the penalized extended quasi-likelihood approach produces noticeably different estimates except for
the fixed effects. The discrepancy for the dispersion ¢ and the index p is expected given that their
estimates depend on the value of the constant ¢. In addition, the MCMC estimates are comparable
to the other estimates expect for the variance component, for which the estimate is almost twice
as large. This difference is likely because the likelihood-based methods tend to underestimate the
variance component when the number of groups is small (8 plants in the example), as is shown in
the simulation study in the next section. An advantage of the Bayesian approach is that posterior
distributions of all quantities are readily available. For example, Figure 4 shows the posterior dis-
tribution of the index parameter from the MCMC simulations. We see that the value of the index
parameter mainly lies in the interval (1.35,1.5). Moreover, the parameter estimates suggest that
the estimated RLD is much smaller in the outer zone (f3) than that in the inner zone - the average
RLD in the outer zone is about exp(—0.447) = 64% of that in the inner zone, which is consistent
with the exploratory results in Table 1. However, this effect is only marginally significant (outside
one standard deviation but within two standard deviations from the origin) in the presence of the
interaction terms. For the root stock effect, roots with Mark stock (32) tend to have significantly
lower RLD, averaged at about 30% of that from the other two root stocks, while root stock MM106
(61) and M26 are not statistically distinguishable.
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Figure 4: Posterior distribution of the index parameter from the MCMC approach.

5 Simulation studies

In this section, we conduct two sets of simulation studies to evaluate the statistical properties of
the proposed algorithms for the compound Poisson mixed model. In the first study, we consider the
Laplace and adaptive Gauss-Hermite quadrature methods, and compare them with the widely used
penalized quasi-likelihood algorithm. The simulation is based on simulated covariates, and the aim
is to investigate the performance of the proposed likelihood approximation estimators in different
settings. The second study uses the fine root data set analyzed in the last section and includes the
latent variable approach and the MCMC algorithm.

5.1 Simulation study I

It is understood that the performance of mixed model estimation procedures can depend on such
factors as the magnitude of the variance component and the number of groups/clusters correspond-
ing to the random effects. For this reason, we design and implement two pairs of simulations, each
pair allowing only one of the variance component (o3) and the number of groups (g) to take con-
trasted values while controling all the other factors. This gives rise to four simulation scenarios in
total as below:

l-a: ¢ =20, 0p, = 0.1, p = 1.5;
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1-b: g =20,0,=1, p= 1.5
2-a: g=05,0,=1,p=1.5;

2-b: ¢ =100, 05, =1, p=1.5;

The aim is to investigate not only the general performance of the likelihood approximation estima-
tors, but also how and to what extent the performance may be influenced by the above factors. For
example, comparing the results from 2-a and 2-b enables us to examine the effect of the number of
groups on the variance component estimation.

In all simulations, the sample size of each simulated data set is set to N = 500, and for each
simulation study, a covariate x simulated from a standard Normal distribution is included as the
sole predictor in addition to the intercept. The true parameter values associated with the intercept
and the covariate are set to B8 = (0, 51)’ = (—1,1)’, and the dispersion is set to ¢ = 1. They
are held constant across all simulations. To create a simulation data set, we simulate the random
effects from a Normal distribution with standard deviation o given in each of the above scenarios,
compute the expected values of the response variable using (3.1) with a logarithmic link function,
based on the simulated random effects and the given values of 3, and generate the response variable
from the Tweedie compound Poisson distribution according to (2.1) and (2.2). For each simulation
scenario, we create S = 200 data sets as above. For each data set, we fit a compound Poisson
mixed model with x as the predictor using PQL, Laplace and AGQ, respectively. For the PQL
approach, the true value of the index parameter in each scenario is used. The PEQL approach
is not adopted mainly because its dependence upon the adjustment of the zeros could severely
contaminate the comparison. For the AGQ algorithm, seven knots are specified, which proves to
provide sufficient accuracy for most simulated data sets in the study. Running the simulation in
each scenario results in S = 200 estimates of each parameter (say #). We summarize the simulation
result by the average value (0 = Zle 0;/S), the relative estimation bias ((6 — 6)/0) and the mean
square error (Zle(ei — 0)%/S). These statistics are reported in Table 3.

Several conclusions emerge from these reported statistics. First, all algorithms produce rela-
tively little or no bias in the estimation of the fixed effects 3, where the bias is generally below
6%. In addition, the estimates of the dispersion ¢ and the index p are unbiased under the Laplace
and AGQ methods, the biases across all scenarios being smaller than 2%. The conclusion for the
variance component, however, appears to depend on several factors. Most notably, the result tends
to strongly relate to the magnitude of the variance component: for scenario 1-a with a small vari-
ance component (o, = 0.1), the bias is as high as 20% for the Laplace and AGQ algorithms while
this bias essentially disappears for o, = 1 in scenario 1-b (o, = 1). In addition, when there is a
small number of groups (¢ = 5 in 2-a), the bias could be considerably large, more than 16% in most
cases. On the other hand, increasing the number of groups to 20 (1-b) or 100 (2-b) leads to almost
unbiased estimates.
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Model Bo B ¢ P o | Bo B ¢ P T
Average estimate

l-a: g, = 0.1 1-b: 0, = 1
True -1.000 1.000 1.000 1.500 0.100 | -1.000  1.000 1.000 1.500 1.000
PQL -1.003 1.002 0.985 0.080 | -1.014 1.001 0.932 0.988

Laplace | -1.005 1.002 0.992 1.498 0.079 | -1.027  1.001 0.992 1.498 0.993
AGQ7 | -1.003 1.002 0.992 1.498 0.079 | -1.012  1.001 0.993 1.498 0.987

2-a: g=5 2-b: g =100
True | -1.000 1.000 1.000 1.500 1.000 | -1.000  1.000 1.000 1.500 1.000
PQL | -0.960 1.002 0.980 0.838 | -1.026  0.999 0.788 1.034

Laplace | -0.963 1.002 0.997 1.498 0.839 | -1.058  1.000 0.989 1.498 1.002
AGQT7 | -0.960 1.002 0.997 1.498 0.838 | -1.002  0.999 0.990 1.499 0.998
Relative estimation bias (%)

l-a: g5, = 0.1 1-b: 0, = 1

PQL 0.333 0.187 -1.529 -19.837 | 1.354 0.134  -6.758 -1.166
Laplace | 0.514 0.201 -0.784 -0.133 -20.987 | 2.717 0.118 -0.767 -0.164 -0.724
AGQ7 | 0.315 0.199 -0.786 -0.133 -20.848 | 1.194 0.118 -0.732 -0.160 -1.298
2-a: g=5 2-b: g =100

PQL | -4.038 0.168 -2.035 -16.228 | 2.567 -0.057 -21.204 3.351
Laplace | -3.657 0.179 -0.329 -0.133 -16.096 | 5.830 -0.045 -1.070 -0.146 0.185
AGQT7 | -4.045 0.179 -0.326 -0.132 -16.245| 0.176 -0.139 -0.969 -0.096 -0.223

Mean square error

l-a: 0, = 0.1 1-b: o, = 1

PQL 0.431 0.348 0.690 0.733 | 5.922 0.305 1.019 2.791
Laplace | 0.434 0.347 0.442 0.041 0.706 | 6.022 0.306 0.562 0.046 2.822
AGQ7 | 0.428 0.347 0.442 0.041 0.708 | 5.891 0.306 0.562 0.046 2.778
2-a: g=>5 2-b: g =100

PQL |19.446 0.259 0.818 12.945 | 1.722  0.375 4.831 1.995
Laplace | 19.484 0.258 0.614 0.042 12.944 | 2.004 0.374 0.725 0.045 1.056
AGQT7 | 19.441 0.258 0.614 0.042 12,945 | 1.598 0.373 0.718 0.044 0.995

Table 3: Average values of parameter estimates, relative estimation biases (in 100s) and mean square
errors (in 100s) under different estimation algorithms in each of the four simulation scenarios.
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We also note that using the true value of p, the PQL method produces average estimates that
are consistent with those from the likelihood-based methods. However, the estimates of the variance
component and the dispersion in PQL are worse than those from the likelihood-based methods, as
measured by the mean square errors. In some scenario (e.g., 2-b), the mean square errors of PQL
are twice as large as those of the likelihood-based methods. The difference would have been even
larger if we had allowed the index to be estimated from the data. As for the fixed effects, PQL
is inferior to the quadrature method while slightly more accurate than the Laplace approximation.
Comparison of the two likelihood-based methods reveals that the AGQ approach outperforms the
Laplace approximation in estimating the fixed effects, reducing both the bias and the mean square
error of the Laplace approximation almost across all scenarios. Such improvement is most noticeable
when the number of groups and the variance component are large (2-b), in which the 7-knot AGQ
reduces about 25% of the mean square error of the Laplace approximation. Nevertheless, it is
not guaranteed that the AGQ method yields more accurate random component estimation. The
two likelihood-based methods tend to have comparable performance in most scenarios, with the
Laplace approximation producing somewhat smaller mean square errors of the variance component
in two scenarios of the simulation study. In addition, the two methods perform equally well in
estimating the dispersion and the index parameters, resulting in almost identical mean square
errors in all scenarios. Lastly, we observe that for such application as 2-a where precise estimation
of parameters is difficult due to insufficient between-group information, all three methods tend to
have similar performance.

5.2 Simulation study II

In the second simulation study, we take the design matrix from the fine root length density example,
and investigate the performance of computationally demanding algorithms such as the MCEM
method, which is based on latent variables, and the MCMC method, which is formulated in the
Bayesian setting. We set the true values of the fixed effects (3) to be the maximum likelihood
estimates from Table 2, and (¢, p, 0p)" = (0.3,1.5,1)". We simulate 100 data sets, and in each data
set the response variable is generated in the same fashion as described in the first simulation study.
For each simulated data set, we fit the compound Poisson mixed model using three algorithms:
AGQ, MCEM and MCMC. We use the quadrature method as a reference model. The MCEM
algorithm is run similarly as in the example section: we use 100 samples for the first 40 iterations
and 3,000 samples thereafter. For the MCMC method, we use a preliminary run of 2,000 iterations
to tune the proposal variances in the random walk Metropolis algorithm, after which we run another
11,000 iterations in one chain, burin in the first 1,000 iterations and draw one sample every 10th
iteration. The posterior sample medians are then used to make inference of the parameters.

We summarize the simulation result by the average value, the relative estimation bias, and the
mean square error as before, and report these statistics in Table 4. We first notice that there are
large relative biases for some of the fixed effects. However, this is mainly because the true values of
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Model Bo B B2 B3 B4 Bs ¢ p Tp
Average estimate

True | -2.100 -0.070 -0.460 -0.450 0.030 -1.170 0.300 1.500  1.000
AGQT7 | -2.160 -0.058 -0.368 -0.403 -0.020 -1.209 0.295 1.495  0.745
MCEM | -2.165 -0.056 -0.368 -0.403 -0.020 -1.209 0.295 1.495  0.746
MCMC | -2.130 -0.116  -0.429 -0.408 -0.014 -1.204 0.302 1.499 1.051
Relative estimation bias (%)

AGQT7 | 2.875 -16.962 -20.014 -10.425 -165.596 3.315 -1.559 -0.301 -25.469
MCEM | 3.101 -20.440 -19.894 -10.425 -165.627 3.319 -1.566 -0.302 -25.439
MCMC | 1.422 65.891 -6.825 -9.325 -148.087 2.905 0.689 -0.061  5.142
Mean square error

AGQT7 | 45.648 98.131 54.648  4.714 6.737 6.790 0.074 0.037 14.658
MCEM | 45.809 98470 54.912 4.715 6.740 6.793 0.074 0.037 14.641
MCMC | 67.822 161.714 73.568  4.760 6.817 6.843 0.078 0.036 19.867

Table 4: Average values of parameter estimates, relative estimation biases (in 100s) and mean
square errors (in 100s) under different estimation algorithms in the second simulation study.

these fixed effects are fairly small. As a second measure, we also compute the absolute biases for the
fixed effects, the maximum of which is indeed less than 0.1. Additionally, the maximum likelihood
estimates of the variance component are downwardly biased (25%) because there are only a small
number of groups corresponding to the random effects. In contrast, the MCMC method appears not
to suffer much from this and generates a markedly accurate estimate of the variance component,
the bias being about 5%. This result is in line with that of Browne and Draper (2006), which
finds that the Bayesian estimate of the variance component is approximately unbiased in Normal
hierarchical models. Indeed, all parameter estimates from the MCMC method are less biased than
those from the likelihood-based methods, except for the fixed effect 5;. Nevertheless, judged by the
mean square errors, the Bayesian estimates are not necessarily better. This is perhaps due to the
Monte Carlo errors inherent in the MCMC procedure. For example, Figure 5 shows the distribution
of the estimates of the parameter o, from the quadrature and MCMC methods. We see that a large
portion of the AGQ estimates are below the true value. In contrast, the distribution of the MCMC
estimates is centered around the true value, but more spread out and thick-tailed.

6 Discussion and conclusion

The intractable density function and the unknown variance function have presented considerable
challenges to statistical inference problems involving compound Poisson mixed models. To date, the
focus has been on estimation methods within the quasi-likelihood framework. While fast and easy to
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Figure 5: The distribution of the estimated variance component under the AGQ and MCMC algo-
rithms in the simulation study.

implement, the penalized quasi-likelihood method is not equipped to estimate the variance function.
This can have a considerable impact on hypothesis tests and parameter uncertainty measures in the
compound Poisson mixed models. The natural modification utilizing the extended quasi-likelihood,
however, cannot yield accurate and robust estimation of the variance function owing to the ad hoc
adjustment of observed zeros in order to make the method feasible.

In contrast with the quasi-likelihood-based methods, this paper has presented several likelihood-
based inferential algorithms that enable estimation of the variance function. These methods can be
further categorized into two groups: the likelihood approximation method and the latent variable
approach. Implementing the likelihood approximation methods, such as the Laplace approximation
and the adaptive Gauss-Hermite quadrature, relies on the capability to numerically evaluate the
compound Poisson density. In contrast, the latent variable approach avoids direct density evalu-
ation. Rather, maximum likelihood estimation is carried out via the Monte Carlo EM algorithm.
However, since the E-step in the EM algorithm involves simulating latent variables for Monte Carlo
approximations, the algorithm can be computationally intensive. Implementation of importance
sampling can reduce this computational cost by retaining old samples for use in later iterations. A
related point is the Monte Carlo error inherent in the simulation-based method. Failing to account
for this could cause the algorithm to stop prematurely and has the risk of making incorrect infer-
ence. This risk can be controlled by gauging the Monte Carlo error as in Booth and Hobert (1999)
and Levine and Casella (2001) and increasing the number of Monte Carlo samples as the algorithm
converges. Further, the Monte Carlo EM algorithm has a close relationship with Markov Chain
Monte Carlo methods, and can be turned into a Gibbs sampler with minor modifications.
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Compared to the likelihood approximation methods, the Monte Carlo EM and Markov Chain
Monte Carlo methods can accommodate more general random effect structures or random effects
from non-Normal distributions. Bayesian formulation and estimation of the mixed models also have
the advantage to account for all sources of variability and produce posterior predictive distributions
that are of considerable utility for formal decision making problems. However, these computationally
demanding algorithms are less suited to large-scaled data problems, compared to the likelihood
approximation methods. The Laplace approximation is markedly fast, reasonably accurate and
widely applicable for a range of model structures. The quadrature method, on the other hand,
relies heavily on the compound Poisson density evaluation and is considerably slower. It will become
exceedingly slow when there are multiple random effects and lots of quadrature knots, because of
the need for a large number of density evaluations.

We have also demonstrated the use of these algorithms through a numerical example, and
conducted an array of simulation studies to evaluate their performance. We have found that the
likelihood approximation methods are essentially unbiased for the fixed effects, the dispersion param-
eter and the index parameter, and perform substantially better than the penalized quasi-likelihood
method in estimating the variance component. However, they could still produce downwardly bi-
ased estimation of the variance component when there is a small number of groups or the variance
component is small. In these situations, the MCMC estimates based on posterior medians are
generally less biased.

In situations where there is potentially large bias in the maximum likelihood estimation of the
variance component, it is necessary to modify the estimation procedure by including bias-correction
adjustments (e.g., Liao and Lipsitz 2002). For normal linear mixed models, such bias can be effec-
tively corrected using the restricted maximum likelihood [REML] (Patterson and Thompson 1971).
Extensions of the REML-type estimation to non-normal models generally fall in the framework of
bias correction for profile estimating equations (McCullagh and Tibshirani 1990, Jorgenson and
Knudsen 2004). Notably, Liao and Lipsitz (2002) derive the bias-corrected profile score equation
for the variance component in generalized linear mixed models. Their bias correction procedure
also relies on the MCEM algorithm, and when applied to the compound Poisson mixed models, it
amounts to adjusting the expectation in (3.17) by a Monte Carlo estimate of the bias-correction
term.

A final note is that the likelihood approximation methods presented here, namely, the Laplace
approximation and the adaptive Guass-Hermite quadrature methods, can be readily modified to
work for the exponential dispersion model V() = pP with p > 2. In this case, we evaluate the
conditional likelihood p(y|u) using the density approximation methods derived for p > 2 in Dunn
and Smyth (2005, 2008) and set the constraint in the numerical optimization to be p > 2.
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