
Estimating class-specific genetic parameters with

dmm()

Neville Jackson

2 June 2020
For dmm 2.1-6



Contents

1 Introduction 1

2 Getting started with class specific component estimates 2
2.1 Parameters specific to one factor . . . . . . . . . . . . . . . . . . 2
2.2 Parameters specific to more than one factor . . . . . . . . . . . . 11
2.3 More than one parameter specific to a factor . . . . . . . . . . . 15

3 Limitations and features 15

4 Labelling of variance components 18

5 A dataset with ’known’ results 18

6 Calculating genetic change 23

7 The structure of an object of class dmm when some components
are class-specific 23

1 Introduction

The function dmm() sets up equations which relate the observed covariance of
pairs of individuals or dyads, to their expectation in terms of postulated ge-
netic and environmental variance and covariance components. These equations,
termed dyadic model equations (DME’s), can be solved directly to obtain esti-
mates of variance and covariance components.

In versions of dmm() prior to dmm 2.1-1 the various genetic and environ-
mental variance/covariance components could only be estimated each as a sin-
gle component applying to the whole population represented by the data. Each
component mapped to one column of the W matrix which contains the coeffi-
cients of the dyadic model equations.

From version dmm 2.1-1, components can be estimated separately for each
class of a specific effect which is coded as a factor in the dataframe. Such
components are termed class specific components. Each class specific component
occupies two or more columns of the W matrix, depending on the number of
classes in the specific effect, and results in two or more component estimates.

This document deals with how to use dmm() to obtain class specific com-
ponent estimates, and with how the class specific components translate into
genetic parameters and estimates of genetic change.
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2 Getting started with class specific component
estimates

We assume that the reader is already familiar with use of dmm(). If not con-
sult the document dmmOverview.pdf [1], and get some practice with the usual
nonspecific component estimates before attempting a class-specific case.

We shall use the small demonstration dataset sheep.df. This has three traits,
and three fixed effect factors called ”Sex”, ”Year”, and ”Tb”. ”Year” is year of
birth for each animal, and ”Tb” stands for ”type of birth” which is coded as
”S” for single born animals, and ”T” for twins. Prepare the data ass follows:

> library(dmm)

> data(sheep.df)

> sheep.mdf <- mdf(sheep.df,pedcols=c(1:3),factorcols=c(4:6),ycols=c(7:9),

sexcode=c("M","F"),relmat=c("E","A"))

2.1 Parameters specific to one factor

Assume that we wish to estimate additive genetic variance ”VarG(Ia)” sepa-
rately for each Sex. This is possible even though each individual can only be
of one Sex, because the additive genetic relationship matrix allows the model
fitting to exploit genetic relationships between animals of like and unlike Sex.
The same is not possible for the individual environmental variance component
”VarE(I)”. It can only be estimated ignoring Sex. So we leave ”VarE(I)” as a
”components” argument and put ”VarG(Ia)” as a ”specific.components” argu-
ment in the call to dmm(), as follows

> sheep.fitss <- dmm(sheep.mdf, Ymat ~ 1 + Year + Sex,

components=c("VarE(I)"),

specific.components=list(Sex=c("VarG(Ia)")))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

OLS-b step:

no of fixed effect df (k) = 9

no of traits (l) = 3

Setup antemodel matrices:

No of factors with specific components: 1

No of non-specific components partitioned: 1

No of factors with specific components: 1

No of specific variance components partitioned (per component): 2

No of specific variance and covariance components partitioned (per component): 4

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 37

Rank of X: 9 No of Fixed Effects: 9

DME substep:

2



No of components defined = 5

No of components estimable = 5

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

>

So we see a bit more output tabbing than with a normal (non-specific) dmm run.
It is simply letting us know that it has been given one factor called Sex which
has specific component(s), that there is one non-specific component, and one
specific component, that the specific classes are ”Sex:M” and ”Sex:F”, and that
it will make 4 classes of component called ”Sex:F:F”, ”Sex:F:M”, ”Sex:M:F”,
and ”Sex:M:M”. The first and last of these 4 classes will contain variance
component estimates for each Sex, and the second and third of these 4 classes
will contain cross-sex covariance component estimates.

If that seems complex, it will become clear as we view the results. We
first look at the component estimates exactly as fitted, using the summary()
function.

> summary(sheep.fitss,traitset=c("Cww","Diam")

+ )

Call:

summary.dmm(object = sheep.fitss, traitset = c("Cww", "Diam"))

Coefficients fitted by OLS for fixed effects:

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Cww 4.1000 0.267 3.57615 4.624

Year1982 Cww 0.7667 0.378 0.02583 1.508

Year1983 Cww 0.0441 0.356 -0.65442 0.743

Year1984 Cww 0.3881 0.339 -0.27687 1.053

Year1985 Cww 0.6361 0.323 0.00203 1.270

Year1986 Cww 0.9470 0.328 0.30315 1.591

Year1987 Cww 0.4588 0.333 -0.19334 1.111

Year1988 Cww -0.2237 0.564 -1.32829 0.881

SexM Cww 0.2237 0.178 -0.12614 0.574

Trait Estimate StdErr CI95lo CI95hi

(Intercept) Diam 20.5667 0.565 19.459 21.674

Year1982 Diam 0.7333 0.799 -0.833 2.299

Year1983 Diam -0.3978 0.753 -1.874 1.079

Year1984 Diam -0.4623 0.717 -1.868 0.943

Year1985 Diam -0.0308 0.684 -1.371 1.309

Year1986 Diam 0.9085 0.694 -0.452 2.269

Year1987 Diam 0.2085 0.703 -1.170 1.587

Year1988 Diam -1.6913 1.191 -4.026 0.644
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SexM Diam 0.2246 0.377 -0.515 0.964

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.107 0.0596 -0.01012 0.224

Sex:F:F:VarG(Ia) Cww:Cww 0.119 0.0564 0.00872 0.230

Sex:F:M:VarG(Ia) Cww:Cww 0.199 0.0821 0.03804 0.360

Sex:M:F:VarG(Ia) Cww:Cww 0.199 0.0821 0.03804 0.360

Sex:M:M:VarG(Ia) Cww:Cww 0.332 0.0778 0.17986 0.485

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam 0.0276 0.128 -0.2233 0.279

Sex:F:F:VarG(Ia) Cww:Diam 0.2244 0.121 -0.0127 0.462

Sex:F:M:VarG(Ia) Cww:Diam 0.4124 0.176 0.0668 0.758

Sex:M:F:VarG(Ia) Cww:Diam 0.3711 0.176 0.0254 0.717

Sex:M:M:VarG(Ia) Cww:Diam 0.5040 0.167 0.1765 0.832

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.0276 0.128 -0.2233 0.279

Sex:F:F:VarG(Ia) Diam:Cww 0.2244 0.121 -0.0127 0.462

Sex:F:M:VarG(Ia) Diam:Cww 0.3711 0.176 0.0254 0.717

Sex:M:F:VarG(Ia) Diam:Cww 0.4124 0.176 0.0668 0.758

Sex:M:M:VarG(Ia) Diam:Cww 0.5040 0.167 0.1765 0.832

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.0585 0.268 -0.467 0.584

Sex:F:F:VarG(Ia) Diam:Diam 0.8586 0.254 0.362 1.356

Sex:F:M:VarG(Ia) Diam:Diam 0.5472 0.370 -0.177 1.271

Sex:M:F:VarG(Ia) Diam:Diam 0.5472 0.370 -0.177 1.271

Sex:M:M:VarG(Ia) Diam:Diam 1.4274 0.350 0.741 2.114

>

We see that component ”VarG(Ia)” is estimated for all 4 classes simultneously,
and there is just one overall estimate for ”VarE(I)”. The columns of these tables
do not sum to phenotypic variance ”VarP(I)”, as they would for a nonspecific
case. To get the components summing properly to ”VarP(I)” we need to re-
organize the summary listing into classes. This is done with the new function
csummary() as follows

> csummary(sheep.fitss,traitset=c("Cww","Diam"))

Call:

csummary.specific(object = object, traitset = traitset, componentset = componentset,

bytrait = bytrait, gls = gls, digits = digits)
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Components partitioned by DME from residual var/covariance after OLS-b fit:

Specific class: Sex:F:F

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.107 0.0596 -0.01012 0.224

VarG(Ia) Cww:Cww 0.119 0.0564 0.00872 0.230

VarP(I) Cww:Cww 0.226 0.0359 0.15552 0.296

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam 0.0276 0.1280 -0.2233 0.279

VarG(Ia) Cww:Diam 0.2244 0.1210 -0.0127 0.462

VarP(I) Cww:Diam 0.2521 0.0771 0.1009 0.403

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.0276 0.1280 -0.2233 0.279

VarG(Ia) Diam:Cww 0.2244 0.1210 -0.0127 0.462

VarP(I) Diam:Cww 0.2521 0.0771 0.1009 0.403

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.0585 0.268 -0.467 0.584

VarG(Ia) Diam:Diam 0.8586 0.254 0.362 1.356

VarP(I) Diam:Diam 0.9171 0.162 0.600 1.234

Specific class: Sex:F:M

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww NA NA NA NA

VarG(Ia) Cww:Cww 0.199 0.0821 0.038 0.36

VarP(I) Cww:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam NA NA NA NA

VarG(Ia) Cww:Diam 0.412 0.176 0.0668 0.758

VarP(I) Cww:Diam NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww NA NA NA NA

VarG(Ia) Diam:Cww 0.371 0.176 0.0254 0.717

VarP(I) Diam:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam NA NA NA NA

VarG(Ia) Diam:Diam 0.547 0.37 -0.177 1.27

VarP(I) Diam:Diam NA NA NA NA
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Specific class: Sex:M:F

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww NA NA NA NA

VarG(Ia) Cww:Cww 0.199 0.0821 0.038 0.36

VarP(I) Cww:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam NA NA NA NA

VarG(Ia) Cww:Diam 0.371 0.176 0.0254 0.717

VarP(I) Cww:Diam NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww NA NA NA NA

VarG(Ia) Diam:Cww 0.412 0.176 0.0668 0.758

VarP(I) Diam:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam NA NA NA NA

VarG(Ia) Diam:Diam 0.547 0.37 -0.177 1.27

VarP(I) Diam:Diam NA NA NA NA

Specific class: Sex:M:M

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 0.107 0.0596 -0.0101 0.224

VarG(Ia) Cww:Cww 0.332 0.0778 0.1799 0.485

VarP(I) Cww:Cww 0.439 0.0560 0.3294 0.549

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam 0.0276 0.128 -0.223 0.279

VarG(Ia) Cww:Diam 0.5040 0.167 0.177 0.832

VarP(I) Cww:Diam 0.5317 0.120 0.296 0.767

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.0276 0.128 -0.223 0.279

VarG(Ia) Diam:Cww 0.5040 0.167 0.177 0.832

VarP(I) Diam:Cww 0.5317 0.120 0.296 0.767

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 0.0585 0.268 -0.467 0.584

VarG(Ia) Diam:Diam 1.4274 0.350 0.741 2.114

VarP(I) Diam:Diam 1.4859 0.252 0.992 1.980
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>

So now we have 4 separate variance component summary tables. The first
and last ( called Sex:F:F and Sex:M:M) are the variance components for each
Sex level, and ”VarE(I)” is listed there because it is assumed that the overall
estimate of ”VarE(I)” applies to each Sex level. Because ”VarE(I)” is estimable,
we are able to calculate ”VarP(I)” for these two Sex levels.

The second and third tables ( called Sex:F:M and Sex:M:F) are the cross-
sex component estimates. It can be seen that only ”VarG(Ia)” is estimable as a
cross-sex parameter. ”VarE(I)” and ”VarP(I)” are marked ’NA’ to make clear
that they are not estimable for the cross-sex cases. Note that we retain the two
symmetric cross-sex cases (F:M and M:F) because for the cross-sex-cross-trait
cases they are not the same.

The variance components are now grouped in a way suitable for estimation
of genetic parameters, so if we use the gsummary() function we get the same 4
groupings, but converted to heritabilities and genetic correlations, as follows:

> gsummary(sheep.fitss,traitset=c("Cww","Diam"))

Call:

gsummary.specific(dmmobj = dmmobj, traitset = traitset, componentset = componentset,

bytrait = bytrait, gls = gls, digits = digits)

Components partitioned by DME from residual var/covariance after OLS-b fit:

Specific class: Sex:F:F

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww 0.473 0.239 0.00337 0.942

VarG(Ia) Cww 0.527 0.244 0.05016 1.005

VarP(I) Cww 1.000 0.000 1.00000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.0638 0.222 -0.372 0.499

VarG(Ia) Diam 0.9362 0.289 0.370 1.502

VarP(I) Diam 1.0000 0.000 1.000 1.000

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1 0 1 1

VarG(Ia) Cww:Cww 1 0 1 1

VarP(I) Cww:Cww 1 0 1 1

Traitpair Estimate StdErr CI95lo CI95hi
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VarE(I) Cww:Diam 0.350 0.288 -0.214 0.913

VarG(Ia) Cww:Diam 0.702 0.205 0.300 1.103

VarP(I) Cww:Diam 0.554 0.108 0.342 0.765

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.350 0.288 -0.214 0.913

VarG(Ia) Diam:Cww 0.702 0.205 0.300 1.103

VarP(I) Diam:Cww 0.554 0.108 0.342 0.765

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1 1 -0.96 2.96

VarG(Ia) Diam:Diam 1 0 1.00 1.00

VarP(I) Diam:Diam 1 0 1.00 1.00

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww 0.226 0.0359 0.156 0.296

2 Cww:Diam 0.252 0.0771 0.101 0.403

3 Diam:Cww 0.252 0.0771 0.101 0.403

4 Diam:Diam 0.917 0.1616 0.600 1.234

Specific class: Sex:F:M

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww NA NA NA NA

VarG(Ia) Cww NA NA NA NA

VarP(I) Cww NA 0 NA NA

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam NA NA NA NA

VarG(Ia) Diam NA NA NA NA

VarP(I) Diam NA 0 NA NA

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1 NA NA NA

VarG(Ia) Cww:Cww 1 0 1 1

VarP(I) Cww:Cww 1 NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam NA NA NA NA

VarG(Ia) Cww:Diam 1 0.243 0.524 1.48

VarP(I) Cww:Diam NA NA NA NA
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Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww NA NA NA NA

VarG(Ia) Diam:Cww 0.695 0.175 0.352 1.04

VarP(I) Diam:Cww NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1.000 NA NA NA

VarG(Ia) Diam:Diam 0.494 0 0.494 0.494

VarP(I) Diam:Diam 1.000 NA NA NA

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww NA NA NA NA

2 Cww:Diam NA NA NA NA

3 Diam:Cww NA NA NA NA

4 Diam:Diam NA NA NA NA

Specific class: Sex:M:F

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww NA NA NA NA

VarG(Ia) Cww NA NA NA NA

VarP(I) Cww NA 0 NA NA

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam NA NA NA NA

VarG(Ia) Diam NA NA NA NA

VarP(I) Diam NA 0 NA NA

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1 NA NA NA

VarG(Ia) Cww:Cww 1 0 1 1

VarP(I) Cww:Cww 1 NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam NA NA NA NA

VarG(Ia) Cww:Diam 0.695 0.175 0.352 1.04

VarP(I) Cww:Diam NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww NA NA NA NA

VarG(Ia) Diam:Cww 1 0.243 0.524 1.48

VarP(I) Diam:Cww NA NA NA NA
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Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1.000 NA NA NA

VarG(Ia) Diam:Diam 0.494 0 0.494 0.494

VarP(I) Diam:Diam 1.000 NA NA NA

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww NA NA NA NA

2 Cww:Diam NA NA NA NA

3 Diam:Cww NA NA NA NA

4 Diam:Diam NA NA NA NA

Specific class: Sex:M:M

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww 0.243 0.137 -0.0245 0.511

VarG(Ia) Cww 0.757 0.135 0.4926 1.021

VarP(I) Cww 1.000 0.000 1.0000 1.000

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Diam 0.0394 0.170 -0.294 0.373

VarG(Ia) Diam 0.9606 0.178 0.612 1.309

VarP(I) Diam 1.0000 0.000 1.000 1.000

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1 0 1 1

VarG(Ia) Cww:Cww 1 0 1 1

VarP(I) Cww:Cww 1 0 1 1

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Diam 0.350 0.2876 -0.214 0.913

VarG(Ia) Cww:Diam 0.732 0.1372 0.463 1.001

VarP(I) Cww:Diam 0.658 0.0894 0.483 0.833

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Cww 0.350 0.2876 -0.214 0.913

VarG(Ia) Diam:Cww 0.732 0.1372 0.463 1.001

VarP(I) Diam:Cww 0.658 0.0894 0.483 0.833

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Diam:Diam 1 1 -0.96 2.96

VarG(Ia) Diam:Diam 1 0 1.00 1.00
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VarP(I) Diam:Diam 1 0 1.00 1.00

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww 0.439 0.056 0.329 0.549

2 Cww:Diam 0.532 0.120 0.296 0.767

3 Diam:Cww 0.532 0.120 0.296 0.767

4 Diam:Diam 1.486 0.252 0.992 1.980

>

Again we get 4 separate sets of gsummary() tables. The first and last ( called
Sex:F:F and Sex:M:M) provide the sex-specific heritability estimates and genetic
correlations. The environmental correlations are the same for both these Sex
classes. The phenotypic correlations are not the same, as they are sex-specific
too.

The second and third tables (called Sex:F:M and Sex:M:F) provide estimates
of the cross-sex genetic correlations and everything else is ’NA’. Note that there
are cross-sex-within-trait genetic correlations and cross-sex-cross-trait genetic
correlations.

That is as far as we can go. We cannot use these sex-specific parameters to do
predictions of genetic change under selection, at the moment, because in dmm
version 2.1-2 the gresponse function cannot handle class-specific parameters.
This will be available in future releases.

2.2 Parameters specific to more than one factor

Assume that we now wish to extend the analysis of the sheep.df data , fitting 3
variance components ”VarE(I)”, ”VarG(Ia)”, and ”VarG(Ma)”. We will make
”VarG(Ia)” sex-specific, as above, and we will make ”VarG(Ma)” tb-specific.
”Tb” stands for ’type of birth’ and is a factor with 2 levels, ”S” for single born
lambs, and ”T” for twin born lambs. The call to dmm() is as follows

> sheep.fitssts <- dmm(sheep.mdf,Ymat ~ 1 + Tb,

components="VarE(I)",

specific.components=list(Sex=c("VarG(Ia)"),Tb=c("VarG(Ma)")))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

OLS-b step:

no of fixed effect df (k) = 2

no of traits (l) = 3

Setup antemodel matrices:

No of factors with specific components: 2

No of non-specific components partitioned: 1
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No of factors with specific components: 2

No of specific variance components partitioned (per component): 4

No of specific variance and covariance components partitioned (per component): 8

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 36

Rank of X: 2 No of Fixed Effects: 2

DME substep:

No of components defined = 9

No of components estimable = 9

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

>

We see that there is now one nonspecific component, and 2 factors with specific
components. The sex-specific components will have 4 classes, as above, and the
tb-specific components will also have 4 classes. When we put the two specific
factors together there will be 4∗4 = 16 classes with separate variance component
estimates. The 16 classes are listed just before the end of the output tabbing
above. One might caution that subdividing the component space this intensively
is only meaningful with adequate sized dataset.

We should note that the effect ”Tb” has also been fitted as a fixed effect.
This was necessary because the column labelled ”Tb” in sheep.df has an ’NA’
in one of its entries. An ’NA’ in the factor column for a class specific variance
component is not permitted. dmm() can deal with ’NA’s but these must be
removed in the fixed effect part of the model fitting. Hence it was necessary to
put ”Tb” in as a fixed effect to deal with the ’NA’.

Note the form of the specific.components argument of the dmm(() call. It is
a list with two elements, one called Sex and one called Tb. The Sex element is
a vector of length one, and the Tb element is also a vector of length one.

We will just look briefly at the variance component estimates

> sheep.fitssts

Call:

NULL

Fixed formula:

Ymat ~ 1 + Tb

Cohort formula:

NULL

Var/Covariance components:

NULL

Traits:

[1] "Cww" "Diam" "Bwt"

Fitted OLS fixed effects:

Cww Diam Bwt
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(Intercept) 4.70526316 21.04211 45.894737

TbT -0.04055728 -0.55387 -1.071207

Var/covariance components partitioned by DME after OLS fit:

Cww:Cww Cww:Diam Cww:Bwt Diam:Cww Diam:Diam

VarE(I) 0.38563428 0.047279595 -0.2792448 0.047279595 0.005796586

Sex:F:F:VarG(Ia) 0.06679493 0.174344832 -0.0437172 0.174344832 0.574334424

Sex:F:M:VarG(Ia) 0.10983427 0.345601540 -0.9592800 0.326608931 0.845743762

Sex:M:F:VarG(Ia) 0.10983427 0.326608931 1.4308851 0.345601540 0.845743762

Sex:M:M:VarG(Ia) 0.39858131 0.728245532 2.1704395 0.728245532 1.788165917

Tb:S:S:VarG(Ma) 0.31123428 0.491225335 3.5863191 0.491225335 1.122712602

Tb:S:T:VarG(Ma) -0.27654192 -0.293039553 0.9256589 -0.005731901 0.807581497

Tb:T:S:VarG(Ma) -0.27654192 -0.005731901 -2.5202994 -0.293039553 0.807581497

Tb:T:T:VarG(Ma) 0.25900257 0.387880857 1.3444133 0.387880857 0.580903673

Diam:Bwt Bwt:Cww Bwt:Diam Bwt:Bwt

VarE(I) -0.03423601 -0.2792448 -0.03423601 0.2022062

Sex:F:F:VarG(Ia) -0.89464807 -0.0437172 -0.89464807 5.1367992

Sex:F:M:VarG(Ia) -2.81291131 1.4308851 3.03075062 -8.4123999

Sex:M:F:VarG(Ia) 3.03075062 -0.9592800 -2.81291131 -8.4123999

Sex:M:M:VarG(Ia) 4.91211011 2.1704395 4.91211011 13.7767644

Tb:S:S:VarG(Ma) 4.45873429 3.5863191 4.45873429 45.4810063

Tb:S:T:VarG(Ma) 4.15595980 -2.5202994 -1.33583524 11.1843079

Tb:T:S:VarG(Ma) -1.33583524 0.9256589 4.15595980 11.1843079

Tb:T:T:VarG(Ma) 2.00220129 1.3444133 2.00220129 15.3841703

Observed (residual) var/covariance after OLS fit:

Cww Diam Bwt

Cww 0.2943617 0.4079038 1.506019

Diam 0.4079038 0.9742342 2.713203

Bwt 1.5060189 2.7132034 27.772355

>

We see there are 8 class-specific components, appropriately labelled, plus ”VarE(I)”.
This is the brief output obtained with print() or by just naming the ’fit’ object.
For the full output with standard errors use summary() and/or csummary().

We will just show the gsummary for one trait

> gsummary(sheep.fitssts,traitset="Cww")

Call:

gsummary.specific(dmmobj = dmmobj, traitset = traitset, componentset = componentset,

bytrait = bytrait, gls = gls, digits = digits)

Components partitioned by DME from residual var/covariance after OLS-b fit:

Specific class: Sex:F:F:Tb:S:S

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww 0.5050 0.1126 0.284 0.726
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VarG(Ia) Cww 0.0875 0.1132 -0.134 0.309

VarG(Ma) Cww 0.4076 0.0811 0.249 0.566

VarP(I) Cww 1.0000 0.0000 1.000 1.000

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1 0 1 1

VarG(Ia) Cww:Cww 1 0 1 1

VarG(Ma) Cww:Cww 1 0 1 1

VarP(I) Cww:Cww 1 0 1 1

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww 0.764 0.0695 0.627 0.9

Specific class: Sex:F:F:Tb:S:T

Proportion of phenotypic var/covariance to each component:

Trait Estimate StdErr CI95lo CI95hi

VarE(I) Cww NA NA NA NA

VarG(Ia) Cww NA NA NA NA

VarG(Ma) Cww NA NA NA NA

VarP(I) Cww NA 0 NA NA

Correlation corresponding to each var/covariance component:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Cww:Cww 1.000 NA NA NA

VarG(Ia) Cww:Cww 1.000 0 1.000 1.000

VarG(Ma) Cww:Cww -0.974 0 -0.974 -0.974

VarP(I) Cww:Cww 1.000 NA NA NA

Phenotypic var/covariance from summing components:

Traitpair Estimate StdErr CI95lo CI95hi

1 Cww:Cww NA NA NA NA

...........

and so on for all 16 classes covering all combinations of Sex and Tb

Note that within the output for each specific class, only the generic name
of each component is used to lable output. For example in ”Specific class:
Sex:F:F:Tb:S:S” the component labelled ”VarG(Ia)” is really ”Tb:S:S:VarG(Ia)”
and the component labelled ”VarG(Ma)” is really ”Tb:S:S:VarG(Ma)”. The user
is expected to know which components were made specific to which factor.
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The component or parameter labelled ”VarP(I)” will always be specific to
all factors, so for the above case it is really ”Sex:F:F:Tb:S:S:VarP(I)”. It does
not feature significantly in the abbreviated listing above, because we omitted
all the cross-trait cases by specifying only one trait.

2.3 More than one parameter specific to a factor

Assume that we now wish to change the analysis of the sheep.df data, so that
components ”VarG(Ia)” and ”VarG(Ma)” are both Sex-specific. The call to
dmm() for this case is as folllows

> sheep.fitss2<- dmm(sheep.mdf, Ymat ~ 1 + Year + Sex,

components=c("VarE(I)"),

specific.components=list(Sex=c("VarG(Ia)","VarG(Ma)")))

Dyadic mixed model fit for datafile: sheep.mdf

Data file is a normal dataframe:

Random effect partitioned into components: Residual:

OLS-b step:

no of fixed effect df (k) = 9

no of traits (l) = 3

Setup antemodel matrices:

No of factors with specific components: 1

No of non-specific components partitioned: 1

No of factors with specific components: 1

No of specific variance components partitioned (per component): 2

No of specific variance and covariance components partitioned (per component): 8

no of individuals in pedigree (m) = 44

no of individuals with data and X codes (n) = 37

Rank of X: 9 No of Fixed Effects: 9

DME substep:

No of components defined = 9

No of components estimable = 9

Checking dyadic model equations:

QR option on dyadic model equations:

DME substep completed:

OLS-b step completed:

>

So we see that the specific.components argument is now a list containing a
single vector element called Sex, and this vector is of length two. So it makes
two components Sex-specific. We shall not list the output from the various
summary functions. It should by now be obvious to the user how to do that.

3 Limitations and features

The way that dmm() is set up to estimate class specific components opens the
door to some new features ( compared to the usual method of defining separate

15



classes as separate traits), but also imposes some restrictions.
The limitations first

� the classes within any factor used to generate class specific component
estimates must be mutually exclusive. For example, an animal can only
be of one Sex so the Sex classes are mutually exclusive. A factor such
as Age where individuals are measured at more than one age, does not
have mutually exclusive classes. So repeated measures models can not
be handled for a class-specific estimation at the moment. They can, of
course, be handled by making each Age class a separate trait, but that
carries with it making all components Age-specific. This will be addressed
in a future release of dmm().

� a component can not be made specific to more than one factor simultane-
ously. If you really want, for example, ”VarG(Ia)” to be both Sex-specific
and Tb-specific, you should define a new factor combining Sex and Tb in
the data frame, and use that factor. This restriction occurs because the
way dmm() sets up estimation equations for a class specific component
amounts to a ’cell means’ model. It fits the component to each class of
a factor. It can not, for example, separate a component into two main
effects and an interaction. It is felt that this corresponds to what a user
wants from class-specific component estimation - one component estimate
for each class of the population, not a study of fixed factor effects on
components.

� a component can not be made nonspecific and class specific simultaneously.
In other words a component name should not appear in both the compo-
nents = and specific.components = arguments. This can lead to problems
if there are no nonspecific components defined. If the components = argu-
ment is omitted it reverts to the default, which is c(”VarE(I)”,”VarG(Ia)”)
and this is not what is required. The components = argument should be
set to components = NULL in this case. This will cancel the default.

� Missing values (’NA’) for a factor used to make class-specific components
can be a problem, if the factor is not fitted as a fixed effect. This occurs
because dmm() deals with ’NA’s at the fixed model fitting stage. The way
around the problem is to fit the factor as a fixed effect, even if you think
its fixed effect negligable.

� If one of the cross-effect covariances (eg CovG(Ia,Ma)) are fitted and
are class specific, then the corresponding variances ( ie VarG(Ia) and
VarG(Ma)) must be fitted and must also be class specific to the same
factor.

If one of the cross-effect covariances (eg CovG(Ia,Ma)) are fitted and are
not class specific, then the corresponding variances ( ie VarG(Ia) and
VarG(Ma)) must be fitted and must also not be class specific.
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At the moment dmm does not have the ability to find the appropriate
variances for calculation of correlations from cross-effect covariances, un-
less these variances are also defined within the same set ( ie either the
nonspecific components set, or the specific components set)

� In dmm 2.1-2 release, any component can be made class-specific, as long
as the specific factor has mutually exclusive classes. The components
”VarE(I)”, ”CovE(I,M)”, ”CovE(M,I)”,”CovE(I,M&!C)”, ”CovE(M&!C,I)”
do not have estimable cross-class covariances, so these are excluded from
the estimation process, and marked as NA. dmm() only sets up the within-
class equations, for these components. The class specific within-class vari-
ances should be estimable, for these environmental components.

The reason that the cross-class components are not estimable for these
individual environmental components, is that the class levels are mutually
exclusive, so there is no cross-class replication. When it comes to class-
specific factors such as Age, where the class levels may not be mutually
exclusive, then the cross-class covariances should be estimable.

� the function gresponse() can not at the moment handle class-specific ge-
netic parameters. This will be addressed in a future release.

Now the features

� it is possible to make only some of the components class specific, and to
leave others as an overall estimate. See the first example in Section 2

� it is possible to make some components specific to one factor, and other
components specific to another factor, and others nonspecific, all in the
one model fit. See the second example in Section 2.

� it is possible to make more than one component specific to a single factor.
See the third example in Section 2.

� the factor(s) to which some components are class-specific can also be fitted
as fixed effect(s) if one wishes, but they do not have to be. However see
note above concerning ’NA’s.

� the regrouping of variance components into specific classes, which occurrs
after estimation and before their use in calculating genetic parameters,
will occur whenever at least one component is class-specific. It is done to
ensure components within each class sum to an appropriate phenotypic
variance.

� when one or more components are not class specific, the global estimate(s)
is(are) used within each class, and the cross-class covariances for nonspe-
cific component(s) are set to NA. This is what one is asserting in not
making a component class specific - that it is the same for all classes. The
cross-class covariances for non-specific component(s) should probably be
set equal to the global variance estimate, so that the cross-class correlation
becomes unity.
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� when all components are not class specific, variance components are not
regrouped into classes, and the output is the same as dmm 1.7-1.

4 Labelling of variance components

There are a number of different types of variance and covariance components.
We make the following distinctions

� single-trait versus cross-trait

� single-effect versus cross-effect

� nonspecific versus within-class versus cross-class

� all combinations of the above, for example single-trait-cross-class,...

The only ones of the above which are variances are single-trait, single-effect,
and (nonspecific or within-class), and their combinations. However dmm() does
not follow this convention, but instead labels everhthing as ”Var” , unless it is
a cross-class covariance ( which it calls ”Cov”). So cross-trait covariances come
out as ”Var”, and cross-class covariances come out as ”Var”.

For genetic parameters dmm() uses the same labels as the corresponding
variance or covariance component.

It is hoped that this approach does not lead to confusion. The labels
are derived from the component names used in the components= and spe-
cific.components= arguments of the call to dmm(). The component names used
in these arguments must chosen from the list of standard component names
defined by the make.ctable() function. The labels are used to control program
flow, as well as to label output so their form has to be strictly controlled.

For each component, dmm() keeps both a short-component-name and a long-
component-name. The short-component-name is the generic name as defined in
make.ctable(). The long-component-name has the class information prepended,
if the component is class-specific. In functions csummary() and gsummary()
only the short-component-names are used as line labels, and the class informa-
tion appears at the head of each table. The user should know, in this context,
which componentsa are class specific. In the output of the print() and sum-
mary() functions the long-component-names are used as line-labels.

5 A dataset with ’known’ results

The warcolak dataset, developed by Dr Matthew Wolak, and included with his
package nadiv is a valuable testbed for both sex-linked and sex-specific variance
components.

There is an analysis of this dataset without fitting sex-specific variance com-
ponents in the dmmOverview.pdf document. Here we report the extension of
those analyses to include sex-specific components.

We do an analysis of both traits simultaneously
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> library(dmm)

> data(warcolak)

> warcolak.df <- warcolal.convert(warcolak)

> warcolak.mdf <- warcolak.df,pedcols=c(1:3),factorcols=4,

ycols=c(5:6),sexcode=c("M","F"),relmat=c("E","A","D","S"),keep=T)

.....

> warcolak.fitsp <- dmm(warcolak.mdf,Ymat ~ 1 + Sex,

components=c("VarE(I)"),

specific.components=list(Sex=c("VarG(Ia)","VarG(Id)","VarGs(Ia)")),

relmat="withdf")

Dyadic mixed model fit for datafile: warcolak.mdf

Data file is a list containing a dataframe and a list of relationship matrices:

Random effect partitioned into components: Residual:

OLS-b step:

no of fixed effect df (k) = 2

no of traits (l) = 2

Setup antemodel matrices:

No of non-specific components partitioned: 1

No of factors with specific components: 1

No of specific variance components partitioned: 2

No of specific variance and covariance components partitioned: 12

no of individuals in pedigree (m) = 5400

no of individuals with data and X codes (n) = 5400

Rank of X: 2 No of Fixed Effects: 2

DME substep:

>

> warcolak.fitsp

Call:

dmm.default(mdf = warcolak.mdf, fixform = Ymat ~ 1 + Sex, components = c("VarE(I)"),

specific.components = list(Sex = c("VarG(Ia)", "VarG(Id)",

"VarGs(Ia)")), relmat = "withdf")

Fixed formula:

Ymat ~ 1 + Sex

Cohort formula:

NULL

Var/Covariance components:

NULL

Traits:

[1] "Trait1" "Trait2"

Fitted OLS fixed effects:

Trait1 Trait2

(Intercept) 2.064586 1.987414

SexM -1.020755 -1.003316

Var/covariance components partitioned by DME after OLS fit:

Trait1:Trait1 Trait1:Trait2 Trait2:Trait1 Trait2:Trait2

VarE(I) 0.323035677 0.0863747023 0.0863747023 0.279919826
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Sex:F:F:VarG(Ia) 0.251920865 -0.0433274504 -0.0433274504 0.335856856

Sex:F:M:VarG(Ia) 0.322903346 0.0533128036 0.0572557684 0.276175076

Sex:M:F:VarG(Ia) 0.322903346 0.0572557684 0.0533128035 0.276175076

Sex:M:M:VarG(Ia) 0.413886206 0.0646480722 0.0646480722 0.280318258

Sex:F:F:VarG(Id) 0.298195437 -0.1124049761 -0.1124049761 0.326987507

Sex:F:M:VarG(Id) 0.266975697 -0.1577731528 -0.1332074242 0.351402955

Sex:M:F:VarG(Id) 0.266975697 -0.1332074242 -0.1577731528 0.351402955

Sex:M:M:VarG(Id) 0.239024525 -0.1116635575 -0.1116635575 0.413470726

Sex:F:F:VarGs(Ia) 0.100468892 0.0539144400 0.0539144400 0.046900097

Sex:F:M:VarGs(Ia) -0.006281569 -0.0177546729 -0.0004747249 0.012130641

Sex:M:F:VarGs(Ia) -0.006281569 -0.0004747249 -0.0177546729 0.012130641

Sex:M:M:VarGs(Ia) 0.005980401 -0.0043317363 -0.0043317363 0.003137572

Observed (residual) var/covariance after OLS fit:

Trait1 Trait2

Trait1 0.966773859 -0.003685244

Trait2 -0.003685244 0.966581259

>

The brief varaince component output looks reasonable. It is a little easier to
see what we are getting if we reorganise the component estimates into classes

> csummary(warcolak.fitsp)

Call:

csummary.specific(object = object, traitset = traitset, componentset = componentset,

bytrait = bytrait, gls = gls, digits = digits)

Components partitioned by DME from residual var/covariance after OLS-b fit:

Specific class: Sex:F:F

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.323 0.0542 0.2168 0.429

VarG(Ia) Trait1:Trait1 0.252 0.0511 0.1519 0.352

VarG(Id) Trait1:Trait1 0.298 0.0570 0.1865 0.410

VarGs(Ia) Trait1:Trait1 0.100 0.0366 0.0287 0.172

VarP(I) Trait1:Trait1 0.974 0.0174 0.9395 1.008

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.0864 0.0542 -0.0198 0.19259

VarG(Ia) Trait1:Trait2 -0.0433 0.0511 -0.1434 0.05674

VarG(Id) Trait1:Trait2 -0.1124 0.0570 -0.2241 -0.00075

VarGs(Ia) Trait1:Trait2 0.0539 0.0366 -0.0179 0.12571

VarP(I) Trait1:Trait2 -0.0154 0.0174 -0.0496 0.01870

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.0864 0.0542 -0.0198 0.19259

VarG(Ia) Trait2:Trait1 -0.0433 0.0511 -0.1434 0.05674
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VarG(Id) Trait2:Trait1 -0.1124 0.0570 -0.2241 -0.00075

VarGs(Ia) Trait2:Trait1 0.0539 0.0366 -0.0179 0.12571

VarP(I) Trait2:Trait1 -0.0154 0.0174 -0.0496 0.01870

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.2799 0.0542 0.1737 0.386

VarG(Ia) Trait2:Trait2 0.3359 0.0510 0.2358 0.436

VarG(Id) Trait2:Trait2 0.3270 0.0570 0.2154 0.439

VarGs(Ia) Trait2:Trait2 0.0469 0.0366 -0.0249 0.119

VarP(I) Trait2:Trait2 0.9897 0.0174 0.9555 1.024

Specific class: Sex:F:M

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 NA NA NA NA

VarG(Ia) Trait1:Trait1 0.32290 0.0282 0.2676 0.3782

VarG(Id) Trait1:Trait1 0.26698 0.0691 0.1315 0.4025

VarGs(Ia) Trait1:Trait1 -0.00628 0.0322 -0.0694 0.0568

VarP(I) Trait1:Trait1 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 NA NA NA NA

VarG(Ia) Trait1:Trait2 0.0533 0.0282 -0.0020 0.1086

VarG(Id) Trait1:Trait2 -0.1578 0.0691 -0.2933 -0.0223

VarGs(Ia) Trait1:Trait2 -0.0178 0.0322 -0.0809 0.0453

VarP(I) Trait1:Trait2 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 NA NA NA NA

VarG(Ia) Trait2:Trait1 0.057256 0.0282 0.00194 0.1126

VarG(Id) Trait2:Trait1 -0.133207 0.0691 -0.26872 0.0023

VarGs(Ia) Trait2:Trait1 -0.000475 0.0322 -0.06357 0.0626

VarP(I) Trait2:Trait1 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 NA NA NA NA

VarG(Ia) Trait2:Trait2 0.2762 0.0282 0.221 0.3315

VarG(Id) Trait2:Trait2 0.3514 0.0691 0.216 0.4869

VarGs(Ia) Trait2:Trait2 0.0121 0.0322 -0.051 0.0752

VarP(I) Trait2:Trait2 NA NA NA NA

Specific class: Sex:M:F

Traitpair Estimate StdErr CI95lo CI95hi
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VarE(I) Trait1:Trait1 NA NA NA NA

VarG(Ia) Trait1:Trait1 0.32290 0.0282 0.2676 0.3782

VarG(Id) Trait1:Trait1 0.26698 0.0691 0.1315 0.4025

VarGs(Ia) Trait1:Trait1 -0.00628 0.0322 -0.0694 0.0568

VarP(I) Trait1:Trait1 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 NA NA NA NA

VarG(Ia) Trait1:Trait2 0.057256 0.0282 0.00194 0.1126

VarG(Id) Trait1:Trait2 -0.133207 0.0691 -0.26872 0.0023

VarGs(Ia) Trait1:Trait2 -0.000475 0.0322 -0.06357 0.0626

VarP(I) Trait1:Trait2 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 NA NA NA NA

VarG(Ia) Trait2:Trait1 0.0533 0.0282 -0.0020 0.1086

VarG(Id) Trait2:Trait1 -0.1578 0.0691 -0.2933 -0.0223

VarGs(Ia) Trait2:Trait1 -0.0178 0.0322 -0.0809 0.0453

VarP(I) Trait2:Trait1 NA NA NA NA

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 NA NA NA NA

VarG(Ia) Trait2:Trait2 0.2762 0.0282 0.221 0.3315

VarG(Id) Trait2:Trait2 0.3514 0.0691 0.216 0.4869

VarGs(Ia) Trait2:Trait2 0.0121 0.0322 -0.051 0.0752

VarP(I) Trait2:Trait2 NA NA NA NA

Specific class: Sex:M:M

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait1 0.32304 0.0542 0.2168 0.4292

VarG(Ia) Trait1:Trait1 0.41389 0.0198 0.3750 0.4528

VarG(Id) Trait1:Trait1 0.23902 0.0648 0.1120 0.3660

VarGs(Ia) Trait1:Trait1 0.00598 0.0463 -0.0848 0.0968

VarP(I) Trait1:Trait1 0.98193 0.0297 0.9236 1.0402

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait1:Trait2 0.08637 0.0542 -0.0198 0.1926

VarG(Ia) Trait1:Trait2 0.06465 0.0198 0.0257 0.1036

VarG(Id) Trait1:Trait2 -0.11166 0.0648 -0.2387 0.0153

VarGs(Ia) Trait1:Trait2 -0.00433 0.0463 -0.0951 0.0865

VarP(I) Trait1:Trait2 0.03503 0.0297 -0.0233 0.0933

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait1 0.08637 0.0542 -0.0198 0.1926
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VarG(Ia) Trait2:Trait1 0.06465 0.0198 0.0257 0.1036

VarG(Id) Trait2:Trait1 -0.11166 0.0648 -0.2387 0.0153

VarGs(Ia) Trait2:Trait1 -0.00433 0.0463 -0.0951 0.0865

VarP(I) Trait2:Trait1 0.03503 0.0297 -0.0233 0.0933

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.27992 0.0542 0.1737 0.3861

VarG(Ia) Trait2:Trait2 0.28032 0.0198 0.2414 0.3192

VarG(Id) Trait2:Trait2 0.41347 0.0648 0.2865 0.5404

VarGs(Ia) Trait2:Trait2 0.00314 0.0463 -0.0876 0.0939

VarP(I) Trait2:Trait2 0.97685 0.0297 0.9186 1.0351

>

The estimated components ”VarE(I)”, ”VarG(Ia)”, ”VarG(Id)”, and ”VarGs(Ia)”
should agree with the stated population values (0.3,0.4,0.3,0.0) for Trait1 and
(0.3,0.3,0.3,0.1) for Trait2 respectively. Because we know from the simulation of
the warcolak dataset that the genetic effects do not differ between the sexes, we
should expect to see both the male and female component estimates agree with
the above population values, within the limits of sampling errors. We expect the
cross-sex-single-trait estimates of covariances to also agree with te above popu-
lation values, and we expect the cross-trait-within-sex and cross-trait-cross-sex
components to all be close to zero.

These expectations are more or less fulfilled. The component ”VarGs(Ia)” is
a bit large for Trait1 in females, but is OK for males. The component ”VarG(Ia)”
is a bit small for Trait1 in females, but again is OK for males. The cross-sex-
single-trait components are OK for ”VarG(Ia)” and ”VarG(Id)”, but are close to
zero for ”VarGs(Ia)”. The ”VarGs(Ia)” estimates are smaller than they should
be for Trait2 especially in males.

The warcolak dataset is not ideal for testing sex-specific component esti-
mation, because it has no sex-difference in parameters. We correctly get the
expected zero difference result, but an actual difference to check against would
be desirable.

6 Calculating genetic change

The function gresponse() has not yet ( as of dmm 2.1-1) been updated to deal
with class-specific parameter estimates. It is expected that this will be fixed in
a future release.

7 The structure of an object of class dmm when
some components are class-specific

A dmm object for a totally nonspecific analysis looks as follows
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> names(sheep.fitm2)

[1] "aov" "mdf" "fixform"

[4] "b" "seb" "vara"

[7] "totn" "degf" "dme.mean"

[10] "dme.var" "dme.correl" "dmeopt"

[13] "siga" "sesiga" "vard"

[16] "degfd" "component" "correlation"

[19] "correlation.variance" "correlation.se" "fraction"

[22] "fraction.variance" "fraction.se" "variance.components"

[25] "variance.components.se" "phenotypic.variance" "phenotypic.variance.se"

[28] "observed.variance"

All of the named items above apply to the whole population, and are as defined
on the dmm() help page.

A dmm object for a case where some components are class specific looks as
follows

> names(warcolak.fitsp)

[1] "aov" "mdf" "fixform" "b" "seb"

[6] "vara" "totn" "degf" "dme.mean" "dme.var"

[11] "dme.correl" "dmeopt" "siga" "sesiga" "vard"

[16] "degfd" "specific" "call"

Some of the items have ’disappeared’ and they will be found inside the new item
called ’specific’ as follows

> names(warcolak.fitsp$specific)

[1] "Sex:F:F" "Sex:F:M" "Sex:M:F" "Sex:M:M"

> names(warcolak.fitsp$specific[["Sex:F:F"]])

[1] "component" "phencovclass" "component.longnames"

[4] "correlation" "correlation.variance" "correlation.se"

[7] "fraction" "fraction.variance" "fraction.se"

[10] "variance.components" "variance.components.se" "phenotypic.variance"

[13] "phenotypic.variance.se" "observed.variance"

>

> names(warcolak.fitsp$specific[["Sex:F:M"]])

.....

>

So within ’warcolak.fitsp$specific’ there are 4 items labelled with the class names
for the ”Sex” effect, and within each of those class name items are the estimates
for that class. So the ’disappeared’ items have been moved down 2 levels,
because they are all the estimates that become class-specific. What remains at
the top level are the parameters which are not class-specific.

If the option gls=T is used, there is an item ’gls’ and the whole structure is
repeated within that item.

The user does not have to use the supplied functions (summary, csummary,
gsummary) to access a dmm object. The usual R functions for lists can be used.
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