
AJS

Austrian Journal of Statistics
March 2016, Volume 45, 81–96.

http://www.ajs.or.at/

doi:10.17713/ajs.v45i1.98

From Climate Simulations to Statistics –

Introducing the wux Package

Thomas Mendlik
Wegener Center

Georg Heinrich
Wegener Center

Andreas Gobiet
ZAMG

Armin Leuprecht
Wegener Center

Abstract

We present the R package wux, a toolbox to analyze projected climate change signals
by numerical climate model simulations and the associated uncertainties. The focus of this
package is to automatically process big amounts of climate model data from multi-model
ensembles in a user-friendly and flexible way. For this purpose, climate model output in
common binary format (NetCDF) is read in and stored in a data frame, after first being
aggregated to a desired temporal resolution and then being averaged over spatial domains
of interest. The data processing can be performed for any number of meteorological
parameters at one go, which allows multivariate statistical analysis of the climate model
ensemble.
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1. Introduction

The human influence on the climate system is often assessed using numerical climate sim-
ulations (General Circulation models or GCMs). These are models representing physical
processes in the atmosphere, ocean, cryosphere and land surface. However, due to their rel-
ative coarse resolution in the order of several hundred kilometers, they are not able to cover
important processes at smaller spatial scales. For a more regional analysis, the models can be
refined using regional climate models (RCMs) (Giorgi and Mearns 1991) and statistical down-
scaling techniques (Maraun, Wetterhall, Ireson, Chandler, Kendon, Widmann, Brienen, Rust,
Sauter, Themeßl, Venema, Chun, Goodess, Jones, Onof, Vrac, and Thiele-Eich 2010). Un-
der certain assumptions of future greenhouse gas (GHG) emissions, those models can project
climate into future periods. We define a climate change signal of a particular meteorologi-
cal parameter (from climate simulations) as the measure of change between a future climate
projection and the past climate.

However, those projected climates are subject to different sources of uncertainty stemming
from the natural variability of the climate system, unknown future GHG emissions, and errors
and simplifications in GCMs and from regionalization methods. The resulting uncertainties
can be partly assessed by analyzing so-called multi-model ensembles (i.e. climate projections
which are generated by various GCMs and RCMs), which aim to sample the various sources
of uncertainty. However, those ensembles do not systematically sample components of model
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uncertainty (e.g. physical parametrizations), and thus do not stem from an experimental de-
sign in a statistical sense (Knutti, Furrer, Tebaldi, Cermak, and Meehl 2010). They cannot be
expected to represent unbiased distributions of possible future climate states. Also, interde-
pendence between GCMs may induce additional biases in the sample, which makes a proper
statistical analysis even more difficult. Several publications address those problems, for ex-
ample Tebaldi and Knutti (2007); Smith, Tebaldi, Nychka, and Mearns (2009); Pirtle, Meyer,
and Hamilton (2010); Bishop and Abramowitz (2012); Collins, Chandler, Cox, Huthnance,
Rougier, and Stephenson (2012); Fischer, Weigel, Buser, Knutti, Künsch, Liniger, Schür, and
Appenzeller (2012); Kang, Cressie, and Sain (2012); Stephenson, Collins, Rougier, and Chan-
dler (2012); Chandler (2013); Rougier, Goldstein, and House (2013); Stephenson et al. (2012);
Mendlik and Gobiet (2015).

This paper introduces the R package wux (Wegener Center Climate Uncertainty Explorer)
(Mendlik, Heinrich, and Leuprecht 2015), a toolbox which enables multi-model handling for
statistical analysis of climate scenarios. It is intended to be used to interpret climate model
output and provide uncertainty information for the end-user of the climate simulations. Hav-
ing in mind the heterogeneous target audience, we want this tool to perform following tasks:

1. Enable easy statistical descriptive analysis of user-defined climate model ensembles.

2. Be expandable to any kind of statistical analysis (to push the development of new sta-
tistical methods for climate multi-model analysis).

3. Easily process climate simulations to a common data format usable for statistical anal-
ysis. This enables reproducing data for any analysis needed.

Descriptive statistics of climatic changes from ensembles (point 1) are crucial to understand
the underlying data. In practice people sometimes tend to forget this important step and
prefer to directly address their complex research questions without having an overview of the
data beforehand. A lot of valuable information lies in this analysis. Having some ready-to-
use tools already implemented in wux should encourage users to perform this sort of analysis
more often.

However, such a tool should not restrict the user to a pre-defined set of standard methods,
on the contrary, development of new methods for statistical inference on climate simulations
should be strongly supported, as this is still ongoing research (Knutti et al. 2010). Having set
up this tool directly in R, allows to explore an extremely broad pool of ready-to-use methods,
also from other disciplines using different approaches (point 2).

One of the most time consuming and frustrating tasks when analyzing climate simulations
can be the step of processing data (point 3). The user of this tremendously big amount of
datasets will find him-/herself challenged, when trying to aggregate them to the desired for-
mat (typically some sort of data frame) or get the desired statistics of the ensemble for certain
geographical regions of interest. The challenge here is definitely a technical one: Processing
ensembles of data in a binary-format usually requires dedicated programming work. The up-
side is that the data comes in the handy NetCDF file format1, where a lot of meta-information
about the data is stored in its header, however, life is more complicated in practice. Quite of-
ten it happens that meta-information between individual climate simulation output files differ
substantially. For this reason it quickly becomes a nuisance when treating large samples of
these files in an automated way. Up to now, no such tool is available which processes user-
defined climate simulations in an automated way and which allows sophisticated statistical
analysis. Furthermore, it is very difficult to reproduce statistical analysis from the scientific
community when either the data set from the publication is not available, or the user wishes
to apply the method with his/her own climate data. Providing a software which takes this
burden, allows the user to solely focus on the interpretation of the climate model output

1http://www.unidata.ucar.edu/software/netcdf/

http://www.unidata.ucar.edu/software/netcdf/
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without spending too many resources on technicalities. We consider it a great strength of this
package to perform this task in an automated way.

Several powerful tools already exist to process climate model outputs, such as CDO2, NCO
(Zender 2008), climate explorer3 (van Oldenborgh, Drijfhout, van Ulden, Haarsma, Sterl,
Severijns, Hazeleger, and Dijkstra 2009) and NCL4. All of those tools are designed to perform
some sort of descriptive analysis and/or process the data to a desired format, however, none of
those tools combines both easy multi-model handling and flexibility in statistical analysis. For
example the climate explorer allows very straight forward processing of multi-model ensembles
without any programming work. The user specifies what climate models to analyze simply
by clicking on their names and the desired statistics. Such web-based tools however, being
simple to use, lack of flexibility for a real programming interface. In addition it is not possible
to extend those tools for own climate simulations which are not implemented. Also, statistical
analysis is restricted to available methods. More programming-oriented tools like CDO and
NCO also provide possibilities to analyze ensembles of climate simulations. However, the user
has to specify the location of the data each time when calling a function and the data have to
be pre-formatted for the program to understand its meaning. Changing local NetCDF files
too much is a restriction to reproducible research. Even though programming is possible, we
are restricted to pre-defined CDO statistics operators. The main difference of wux compared
to those tools is the easy way it can read in a multitude of climate simulations and simply the
fact that this tool is embedded in R, which allows to apply a very broad range of sophisticated
statistical tools and is not restricted only by methods implemented in the toolbox itself.

The structure of this paper is as follows. Section 2 gives an overview of the functionalities of
the wux package. Section 3 describes how climate data are being processed to a suitable data
frame step-by-step. We introduce the statistical functionalities implemented in the package
in Section 4 and provide an example application in Section 5 to show possible extensions of
the implemented statistical functionalities. We conclude in Section 6.

2. Package overview

wux is meant to be an interfacing toolbox for scientists performing statistical analysis on
climate models. Its focus is to provide a simple data frame for the user to make statistical
inference on the ensemble. In particular, this package performs following actions, which are
depicted in Figure 1 and described in Table 1:

Climate data processing. The function models2wux reads output of climate model sim-
ulations from NetCDF files, extracts subregions of interest, and writes climate change
signals or time series to a data frame. Specific meta-information, like file locations, are
stored in a modelinput input argument, which allows to simple processing of the simu-
lations. For any new climate simulation it is enough to specify those meta-information
without having to actually program a new input routine.

Statistical analysis of climate change signals. Based on the data frame returned by
models2wux, we implemented various plotting options and summarizing utilities for
a descriptive analysis of the projected climate change signals (e.g. scatterplots of tem-
perature and precipitation). In addition, reconstruction tools allow to fill up missing
climate simulations by multiple imputation methods. Based on such a reconstructed
data frame (here termed as rwux.df), the user can assess for variance components via
the implemented ANOVA tools or perform exploratory data analysis.

2CDO 2014: Climate Data Operators. Available at: https://code.zmaw.de/projects/cdo
3http://climexp.knmi.nl
4The NCAR Command Language (Version 6.2.1) [Software]. (2014). Boulder, Colorado: UCAR/NCAR/-

CISL/VETS. http://dx.doi.org/10.5065/D6WD3XH5

https://code.zmaw.de/projects/cdo
http://climexp.knmi.nl


84 Introducing the wux Package

I.
C

lim
ate

D
ata

P
ro

cessin
g

(S
ectio

n
3)

F
u

n
ction

In
p
u
t

O
u
tp

u
t

D
escrip

tion

m
o
d
e
l
s
2
w
u
x

N
etC

D
F

fi
les

w
u
x
.
d
f

R
ead

s
N

etC
D

F
clim

ate
m

o
d

el
ou

tp
u
t,

p
ro

cesses
it,

an
d

w
rites

th
e

resu
lts

to
a

d
ata

fram
e

w
h

ich
is

th
e

b
ack

b
on

e
of

all
fu

rth
er

w
u
x

an
aly

ses.
r
e
a
d
.
w
u
x
.
t
a
b
l
e

w
u
x
.
d
f

fi
les

w
u
x
.
d
f

R
ead

s
d

ata
fram

e
fi
les

p
ro

d
u
ced

b
y
m
o
d
e
l
s
2
w
u
x
.

II.
S
tatistica

l
A

n
a
ly

sis
of

C
lim

a
te

C
h

an
ge

S
ign

als
(S

ection
4)

F
u

n
ction

In
p
u
t

O
u
tp

u
t

D
escrip

tion

a
)

D
escrip

tive
a
n
a
ly

sis
(S

ectio
n

4.1)
s
u
m
m
a
r
y

w
u
x
.
d
f
/
r
w
u
x
.
d
f

su
m

m
ary

statistics
S

u
m

m
ary

statistics
of

th
e
w
u
x

d
ata

fram
e

(w
u
x
.
d
f

ob
ject).

p
l
o
t

w
u
x
.
d
f
/
r
w
u
x
.
d
f

fi
gu

re
S

catter
p
lot

p
l
o
t
A
n
n
u
a
l
C
y
c
l
e

w
u
x
.
d
f
/
r
w
u
x
.
d
f

fi
gu

re
A

n
n
u

al
cy

cle
p
lot

h
i
s
t

w
u
x
.
d
f
/
r
w
u
x
.
d
f

fi
gu

re
D

en
sity

p
lot

b
)

R
eco

n
stru

ctio
n

to
o
ls

(S
ection

4
.2)

r
e
c
o
n
s
t
r
u
c
t

w
u
x
.
d
f

r
w
u
x
.
d
f

F
illin

g
m

issin
g

valu
es

of
an

u
n
b

alan
ced

clim
ate

m
o
d
el

d
esign

m
atrix

in
ord

er
to

avoid
b
iased

en
sem

b
le

estim
ates.

C
u

rren
tly,

th
e

u
n
d

erly
in

g
re-

con
stru

ction
tech

n
iq

u
e

is
b

ased
on

an
A

N
O

V
A

u
sin

g
variou

s
m

eth
o
d

s
for

estim
ation

.
R

etu
rn

s
recon

stru
cted

w
u
x
d
a
t
a
.
f
r
a
m
e

of
class

r
w
u
x
.
d
f
.

c)
A

n
aly

sis
of

varian
ce

com
p

o
n

en
ts

(S
ection

4.2)
a
o
v
W
u
x

r
w
u
x
.
d
f

w
u
x
.
a
o
v

E
x
tracts

varian
ce

com
p

on
en

ts
of

m
u
ltip

le
clim

ate
m

o
d

el
sim

u
lation

s
u

s-
in

g
an

A
N

O
V

A
.

D
ata

m
u
st

b
e

b
alan

ced
,

so
a

recon
stru

ction
p
rep

ro
cess-

in
g

is
n

ecessary.
p
l
o
t

w
u
x
.
a
o
v

fi
gu

re
B

arch
art

for
a
o
v
W
u
x

ou
tp

u
t.

T
ab

le
1:

M
ost

im
p

ortan
t

fu
n
ction

alities
of

th
e
w
u
x

p
ackage.



Austrian Journal of Statistics 85

b) Reconstruction 
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I. Climate data processing II. Statistical analysis of 
    climate change signals

wux function wux functions

wux functions

wux functions

NetCDF fileNetCDF file
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...

Figure 1: Basic functionalities of the wux package.

3. Climate data processing

The central role of the wux package is to automatically read in binary climate model output
data from NetCDF files and process them to a data frame for statistical analysis. This task is
performed by the function models2wux. The resulting data frame (further called wux.df, as it
is technically a wux.df object) contains the climate change signals for user-specified periods,
regions, seasons, and parameters for each of the climate models. One example wux.df is
shown at the end of Section 3.1. Alternatively, also time series data can be obtained.

3.1. From climate model output to wux data frame

This is what models2wux is doing for each specified climate model:

1. Read in a three dimensional array (longitude, latitude, time) from binary climate model
output.

2. Temporal aggregation of the fields according to user-specified climate periods and sea-
sons. Aggregation statistics can also be specified by the user.

3. Spatial aggregation (arithmetic mean) over geographical domain.

4. Computing climate change signal for specified periods.

The resulting climate change signals for each climate model are returned to a data frame.

Temporal aggregation can be performed several times serially, going from fine temporal res-
olution to coarser resolution, each time using another statistic for aggregation. For example,
daily temperature of a climate model output could first be aggregated to monthly resolution
using the mean function and as a second step the warmest month in the year can be calculated
with max. This would result in a climate change signal of the warmest monthly averages. We
can thus calculate a vast amount of sufficient statistics to explore the climate data. Also,
the user has the possibility to retrieve the full time-series of the climate model instead of the
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climate change signal. This can, however, result in quite a large data frame. The lowest time
resolution currently implemented for time-series data is on monthly basis.

Being able to flexibly perform spatial aggregation over a specified domain is one of the key
strengths of this program. Several ways exist for the user to identify the region of interest.
For example a rectangular region defined by the longitude-latitude corners can be specified.
For more flexibility, polygons can be defined using ESRI shapefiles5 to cut out and aggregate
over the desired subregion domain. The spatial aggregation is always performed using the
arithmetic mean over geographical regions of any complexity. However, this process is not as
trivial as it first may seem. One problem lies in the geographical projection of the climate
model. Averaging over pixels of a model on a Mercator projection (angle preserving) will result
in a different value than averaging over pixels in an area-preserving projection. GCMs usually
do not come on an area-preserving projection. Therefore, the pixels should be weighted by
the cosine of their latitudes, otherwise areas near the poles would gain much more weight then
areas near the equator. When aggregating over a certain subregion, another problem arises
from the gridpoints which are associated with the subregion. Instead of either considering a
gridpoint to be within a region or not (0 and 1 weight), we may want to weight all the model
cells that contribute even partly to the considered subregion, i.e. seize the fraction of the cell
corresponding to the area covered by the subregion.

3.2. Setting up models2wux

To process a climate multi-model ensemble of your choice, models2wux needs two input ar-
guments userinput and modelinput, each being a named list object or a file containing a
named list.

modelinput stores general information about your climate data, i.e. the locations of the
NetCDF files and their filenames. It also saves certain meta-information for the specific
climate simulations (e.g. a unique acronym for the simulation, the developing institution, the
radiative forcing). Usually the modelinput information should be stored in a single file on
your system and should be updated when new climate simulations come in. It is advisable to
share this file with your colleagues if you work with the same NetCDF files on a shared IT
infrastructure.

The second input argument, userinput, defines which meteorological parameters of which
climate simulations defined in modelinput should be analyzed. This is simply done by calling
the models acronym, as all meta-information is already stored in the modelinput file. Also
the geographical regions of interest and the temporal statistics are specified in this file. This
file typically changes depending on the type of analysis performed.

3.3. Getting started

We explain models2wux in more detail by considering an example of a typical workflow for
climate data processing. We start with downloading a couple of global climate simulations
(GCMs) from the CMIP5 project (Taylor, Stouffer, and Meehl 2012), then we specify their
meta-information and the output statistics and finally we run models2wux to process the
binary data to an object of class wux.df.

To obtain CMIP5 climate simulations you can get started with downloading some example
NetCDF files directly from an ESGF (Earth System Grid Federation) node6 or using the
CMIP5fromESGF function from the wux package (Linux only).

> ## I) Load wux functions and example datasets ...

> library("wux")

> ## II) obtain some climate simulations

> CMIP5fromESGF(save.to = "~/tmp/CMIP5/",

5http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
6e.g. from the data node http://pcmdi9.llnl.gov

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://pcmdi9.llnl.gov
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models = c("NorESM1 -M", "CanESM2"),

variables = c("tas", "pr"),

experiments= c("historical", "rcp85"))

Here, we download the 2 m air temperature and surface precipitation files (tas and pr) from
two simulations NorESM1-M and CanESM2 for the historical period (here 1850–2005) and the
future projection (2006–2100), assuming a strong change in future radiative forcing (rcp85, see
Taylor et al. (2012)). The data will be downloaded into a temporary directory ~/tmp/CMIP5/

which can take a while. You need a valid account at any ESGF node for this function to run.

In order to run models2wux, you need to specify the two input arguments explained above:
A modelinput file to define which climate simulations you have on your hard-disk and a
userinput file which controls models2wux itself. An example for the model specification can
be obtained in the package itself:

> ## III) Meta -information on downloaded data for models2wux.

> data(modelinput_test)

> str(modelinput_test)

List of 2

$ CanESM2 -r1i1p1_rcp85 :List of 11

..$ rcm : chr ""

..$ gcm : chr "CanESM2"

..$ gcm.run : num 1

..$ institute : chr "CCCma"

..$ emission.scenario: chr "rcp85"

..$ file.path.alt :List of 2

.. ..$ air_temperature :List of 2

.. .. ..$ historical : chr "~/tmp/CMIP5/CanESM2/historical"

.. .. ..$ scenario : chr "~/tmp/CMIP5/CanESM2/rcp85"

.. ..$ precipitation_amount:List of 2

.. .. ..$ historical : chr "~/tmp/CMIP5/CanESM2/historical"

.. .. ..$ scenario : chr "~/tmp/CMIP5/CanESM2/rcp85"

..$ file.name :List of 2

.. ..$ air_temperature :List of 2

.. .. ..$ historical : chr "tas_Amon_CanESM2_historical_r1i1p1_

185001 -200512. nc"

.. .. ..$ scenario : chr "tas_Amon_CanESM2_rcp85_r1i1p1_200601 -210012. nc"

.. ..$ precipitation_amount:List of 2

.. .. ..$ historical : chr "pr_Amon_CanESM2_historical_r1i1p1_

185001 -200512. nc"

.. .. ..$ scenario : chr "pr_Amon_CanESM2_rcp85_r1i1p1_200601 -210012. nc"

..$ gridfile.path : chr "~/tmp/CMIP5/CanESM2/historical"

..$ gridfile.filename: chr "tas_Amon_CanESM2_historical_r1i1p1_185001 -200512. nc

"

..$ resolution : chr ""

..$ what.timesteps : chr "monthly"

$ NorESM1 -M-r1i1p1_rcp85:List of 11

...

This input specifies the simulations which have just been downloaded. It is a named list
with the name being an unique acronym of the climate simulation. The example input here
specifies two simulations, but for the sake of brevity we only display the first one, being the
CanESM2-r1i1p1_rcp85 model. As this is a GCM, the rcm tag has no entry. The other tags
specify the model in more detail: This simulation is run number 1 of the GCM CanESM2 and
has been developed by the CCCma institution7. The corresponding anthropogenic forcing is
rcp85. file.path.alt defines the file locations for both temperature and precipitation files
as well as for historical runs and future scenario projections. In this case the historical and
the future scenario runs are located in different directories, whereas both meteorological pa-
rameters are saved in the same path. file.name gives information for the corresponding file
names. The files which are necessary to define the geographical longitude and latitude infor-
mation are specified in gridfile.path and gridfile.filename. The data is on a monthly
timescale, which is defined in what.timesteps and the horizontal resolution is not specified
here as it is optional.

It is advisable to store this list as a single file on your system. You should share this file
with colleagues using the same IT infrastructure to use synergies. Such a file can also be

7Canadian Centre for Climate Modelling and Analysis (www.ec.gc.ca/ccmac-cccma)

www.ec.gc.ca/ccmac-cccma
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created in an automated way using the function CMIP5toModelinput, for data obtained with
CMIP5fromESGF (see the manual for more details).

Next, we want to tell models2wux to get climate change signals of both simulations we just
defined above. In this example we are specifically interested in the temperature changes for
the Alpine area at the end of the 21st century. Therefore we specify a user input file which
contains a named list with all the necessary information:

> ## IV) Input argument controlling models2wux.

> data(userinput_CMIP5_changesignal)

> str(userinput_CMIP5_changesignal)

List of 9

$ parameter.names : chr "air_temperature"

$ area.fraction : logi TRUE

$ reference.period : chr "1971 -2000"

$ scenario.period : chr "2071 -2100"

$ temporal.aggregation:List of 1

..$ stat.level .1: List of 3

.. ..$ period :List of 4

.. .. ..$ DJF: chr [1:3] 12 1 2

.. .. ..$ MAM: chr [1:3] 3 4 5

.. .. ..$ JJA: chr [1:3] 6 7 8

.. .. ..$ SON: chr [1:3] 9 10 11

.. ..$ statistic : chr "mean"

.. ..$ time.series: logi FALSE

$ subregions :List of 1

..$ AL: num [1:4] 5 15 48 44

$ plot.subregion :List of 4

..$ save.subregions.plots: chr "/tmp/"

..$ xlim : num [1:2] 0 20

..$ ylim : num [1:2] 40 50

..$ cex : num 10

$ save.as.data : chr "/tmp/wuxexample"

$ climate.models : chr [1:2] "CanESM2 -r1i1p1_rcp85", "NorESM1 -M-r1i1p1_rcp85"

The userinput argument tells models2wux to process air_temperature (parameter.names)
for both models CanESM2-r1i1p1_rcp85 and NorESM1-M-r1i1p1_rcp85 (climate.models
tag). We define our base period (tag reference.period) to be 1971–2000 and the projected
future period of interest (tag scenario.period) for the climatic change to be 2071–2100. We
want the data to be aggregated to seasons summer (June, July, August: JJA), autumn (SON),
winter (DJF) and spring (MAM). For each of those seasons models2wux returns the climate
change signal defined by the user by calculating scenario.period minus reference.period
(for precipitation, changes are in addition calculated relative to reference.period). When
setting the attribute time.series to TRUE, the output would be a transient time series instead
of climate change.

We want to aggregate over the spatial extend of the Alpine area (AL, see Christensen and
Christensen (2007)), which is defined in the subregions tag. Here it is a named vector
of longitude and latitude coordinates and it defines a rectangular region (western, eastern,
northern and southern coordinates of the corners). There are plenty of other ways to define a
subregion, like reading in shapefiles. To analyze which model grid cells lie within the specified
region, we can specify plot.subregion (see Figure 2). We usually want to aggregate all model
cells which lie within the specified region, however, sometimes we would like to down-weight
those cells which only partly contribute to the considered region. Setting area.fraction

as TRUE weights the cells corresponding to the area covered by the subregion (Figure 2).
Furthermore, area.fraction=TRUE is necessary, if the size of the subregion is in the same
order of magnitude as the grid cell. Such cases should be handled with care, since the grid
point interpretation of climate models is problematic. In most cases, the analyzed subregions
should be much larger than the grid size of the models and the error produced by setting
area.fraction to FALSE is negligible and processing gains a massive speed up. The data
frame will also be saved as a comma-separated file to /tmp/wuxexample.

Finally we run models2wux with the input arguments explained above to obtain the temper-
ature climate change signals (delta.air_temperature) for both simulations aggregated over
the Alpine region and four seasons. Columns besides subreg, season and the temperature
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Figure 2: Grid cells of the NorESM1-M climate model being aggregated. On the left side
area.fraction is switched off, taking all cells with their centroids lying within the AL region
and weight them equally. The right figure has area.fraction on: The smaller the circles,
the smaller the coverage of the model cells and the smaller their weight.

change parameter are meta-information of the climate data and derived from the modelinput
input argument.

> ## V) Process NetCDF files

> climchange.df <- models2wux(userinput = userinput_CMIP5_changesignal ,

> modelinput = modelinput_test)

> climchange.df

subreg season acronym institute gcm gcm.run em.scn

1 AL DJF CanESM2 -r1i1p1_rcp85 CCCma CanESM2 1 rcp85

2 AL JJA CanESM2 -r1i1p1_rcp85 CCCma CanESM2 1 rcp85

3 AL MAM CanESM2 -r1i1p1_rcp85 CCCma CanESM2 1 rcp85

4 AL SON CanESM2 -r1i1p1_rcp85 CCCma CanESM2 1 rcp85

13 AL DJF NorESM1 -M-r1i1p1_rcp85 NCC NorESM1 -M 1 rcp85

14 AL JJA NorESM1 -M-r1i1p1_rcp85 NCC NorESM1 -M 1 rcp85

15 AL MAM NorESM1 -M-r1i1p1_rcp85 NCC NorESM1 -M 1 rcp85

16 AL SON NorESM1 -M-r1i1p1_rcp85 NCC NorESM1 -M 1 rcp85

period ref.per resolution corrected delta.air_temperature

1 2071 -2100 no NA no 4.066630

2 2071 -2100 no NA no 8.041165

3 2071 -2100 no NA no 4.261498

4 2071 -2100 no NA no 5.686222

13 2071 -2100 no NA no 3.336806

14 2071 -2100 no NA no 5.378479

15 2071 -2100 no NA no 3.922325

16 2071 -2100 no NA no 3.787082

4. Statistical analysis of climate change signals

Several functions are available to analyze the processed climate change signals created by
models2wux.

4.1. Descriptive analysis

The summary function gives a descriptive overview of the climate model ensemble which has
been processed. On the one hand it calculates categorical statistics (counting climate models,
emission scenarios, RCM-GCM cross-tables, . . . ) and on the other hand it returns statistics
of continuous climate change signals (mean, standard deviation, coefficient of variation and
quantiles) split by season, emission scenario, meteorological parameters and subregions. Let
us consider the climate change signals from 1961–1990 until 2021–2050 in the Greater Alpine
Region (GAR) of a multi-model ensemble consisting of 22 RCMs from the ENSEMBLES
project (van der Linden and Mitchell 2009).
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> ## VI b) Analyze climate change data - summary statistics

> data(ensembles)

> # consider Greater Alpine Region (GAR) only

> wuxtest.df <- droplevels(subset(ensembles , subreg == "GAR"))

> ## summary statistics

> summary(wuxtest.df)

----------------------------------------------------------------------

----------------------- FREQUENCIES BY SCENARIO ----------------------

----------------------------------------------------------------------

A1B:

8 GCMs (disregarding runs)

22 models total

Number of GCMs used:

ARPEGE BCCR -BCM2.0 CGCM3 ECHAM5/MPI -OM HadCM3Q0

3 3 1 5 5

HadCM3Q16 HadCM3Q3 IPSL -CM4

2 2 1

Number of RCM runs:

CLM CRCM HIRHAM HadRM3 PROMES RACMO RCA RCA3 REMO RM4.5 RM5.1

2 1 5 3 1 1 3 1 1 1 1

RRCM RegCM

1 1

Number of RCMs: 13

----------------------------------------------------------------------

---------------- CLIMATE MODEL STATISTICS BY SUBREGION ---------------

----------------------------------------------------------------------

------------ GAR ------------

perc.delta.precipitation_amount:

[A1B]

n mean sd coefvar min max med q25 q75

DJF: 22 2.88 5.09 1.77 -8.96 10.25 3.81 1.54 5.8

JJA: 22 -2.82 6.87 2.44 -12.42 10.71 -3.7 -7.19 1.61

MAM: 22 -0.64 4.99 7.83 -9.41 6.61 0.7 -5.52 2.87

SON: 22 0.76 5.7 7.51 -12.16 12.46 0.77 -2.09 3.65

delta.air_temperature:

[A1B]

n mean sd coefvar min max med q25 q75

DJF: 22 1.66 0.51 0.31 0.92 2.41 1.56 1.19 2.13

JJA: 22 1.7 0.65 0.38 0.47 2.79 1.88 1.31 2.18

MAM: 22 1.25 0.53 0.43 -0.02 2.26 1.21 0.91 1.55

SON: 22 1.57 0.55 0.35 0.61 2.88 1.64 1.27 1.8

For the sake of brevity, we do not show all parts of the output. The FREQUENCIES output shows
that n = 22 climate simulations driven by 8 GCMs forced with one emission scenario (A1B)
have been processed and shows the count of the specific RCMs and GCMs used in the analysis.
The CLIMATE MODEL STATISTICS output shows a descriptive analysis of the continuous vari-
ables in the data set based on all n = 22 climate simulations available. In this case the contin-
uous variables are the relative change of precipitation (perc.delta.precipitation_amount)
in percent and the absolute change of temperature (delta.air_temperature) in ◦C. The
precipitation change in the GAR is not significant for either season, but there is a tendency
in DJF for a slight increase of total precipitation. In contrast to that, the change signal for
temperature is significant for all seasons showing quite an uniform warming, where MAM
seems to have the smallest trend.

Also, functions for a graphical overview of the climate model ensemble are available in wux.
The method plot for a wux.df object draws one or more scatterplots containing climate
change signals of selected meteorological parameters.

> ## VI b) Analyze climate change data - scatterplots

> plot(ensembles , "perc.delta.precipitation_amount",

> "delta.air_temperature", boxplots = TRUE ,

> xlim = c(-40,40), ylim = c(0, 4),

> xlab = "Precipitation Amount [%]", ylab = "2-m Air Temperature [K]",

> main = "Scatterplot", subreg.subset = c("GAR"))

This draws a simple scatterplot which accounts for certain meta-information of the climate
change data frame and allows to highlight certain models. One of the scatterplots produced
by this call is shown on the left side of Figure 3. This is a very useful plot as it gives a
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good overview on the model behavior and the climate change uncertainty. In our example,
some models project an increase in precipitation change, whereas some project a decline. No
correlation between temperature and precipitation change is visible on this small spatial scale.

4.2. Data reconstruction methods

Due to limited computational capacities, even in large-scale climate modeling projects such
as CMIP5 or CORDEX (Jacob, Petersen, Eggert, Alias, Christensen, Bouwer, Braun, Co-
lette, Déqué, Georgievski, Georgopoulou, Gobiet, Menut, Nikulin, Haensler, Hempelmann,
Jones, Keuler, Kovats, Kröner, Kotlarski, Kriegsmann, Martin, Meijgaard, Moseley, Pfeifer,
Preuschmann, Radermacher, Radtke, Rechid, Rounsevell, Samuelsson, Somot, Soussana, Te-
ichmann, Valentini, Vautard, Weber, and Yiou 2013) only a limited number of climate sim-
ulations can be realized and it is a question of the experimental design which uncertainty
components are primarily tackled within the ensemble. Therefore, missing realizations within
climate projection ensembles are a common problem and even simple ensemble estimates such
as mean and variability for e.g. temperature changes are potentially biased due to unequal
sampling of the uncertainty components. In order to avoid such biases, Déqué, Rowell, Lüthi,
Giorgi, Christensen, Rockel, Jacob, Kjellström, Castro, and Hurk (2007) introduced an iter-
ative data reconstruction method which assumes additivity between uncertainty components
in order to estimate the missing climate change signals. This reconstruction method was
further applied in several studies in order to obtain a balanced design for the analysis of
variance components (Déqué et al. 2007; Heinrich, Gobiet, and Mendlik 2014; Prein, Gobiet,
and Truhetz 2011; Déqué, Somot, Sanchez-Gomez, Goodess, Jacob, Lenderink, and Chris-
tensen 2011; Mendlik and Gobiet 2015). In wux, we implemented the method of Déqué et al.
(2007) for a two-factorial design (reconstruct) such as realized in the ENSEMBLES project
(van der Linden and Mitchell 2009). In ENSEMBLES, a set of 21 high resolution RCM sim-
ulations with a horizontal grid spacing of about 25 km was produced. The ensemble consists
of 8 GCMs and 16 RCMs only forced by the A1B emission scenario, but due to limited com-
putational resources, only a small fraction (16.4 % of the possible GCM-RCM combinations)
could be realized. The result of such a reconstruction is shown in Figure 3. In that case,
filling up the missing GCM-RCM combinations does not alter the distribution of temperature
and precipitation change. However, as the method relies on an implicit formulation of the
uncertainty components, it cannot be used to extend the ensemble to GCMs that have not
been used as driver for any RCM in the ensemble. Further reconstruction methods which
are able to extend the ensemble to GCMs outside of the original design are investigated in
Heinrich et al. (2014).

5. Example: Further statistical analysis

It is one of the key strengths of this package to be directly implemented in R and for that
reason to have direct access to a huge magnitude of statistical methods to analyze climate
data. We provide an example application in this section to show possible extensions based
fully on the wux.df. We use a linear mixed effects model from the lme4 package (Bates,
Mächler, Bolker, and Walker 2015) to estimate the average summer temperature trend over
the Greater Alpine Region based on individual time-series of 16 GCMs from the CMIP5
ensemble under a moderate stabilization scenario (RCP 4.5).

To generate the appropriate wux.df, the timeseries tag in the userinput file was set TRUE
(see Section 3). The aim here is to get an average linear trend while accounting for the
unbalanced model design. Several of the GCMs were run a couple of times (up to 10 times)
with different initial conditions, which induces a dependency structure in the data set. We
assess for this dependency by putting random effects in the linear model:

Yijk = β0 + β1yearjk + b0i + b1iyearjk + εijk
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Figure 3: Projected changes of summer precipitation and temperature of the ENSEMBLES
models from 1961–1990 to 2021–2050 in the Greater Alpine Region. The left plot shows the
originally available 22 RCMs, whereas the right plot depicts a reconstructed dataset filled up
with the function reconstruct.

where Yijk is the average summer temperature projected by i = 1, . . . , 16 GCMs with j =
1, . . . , ni runs per GCM and k = 1, . . . , 130 yearly time steps. The random effects are defined
as (

b0i
b1i

)
∼ N

((
0
0

)
,

(
σ2gcm 0

0 σ2gcm.t

))
and εijk

iid∼ N
(
0, σ2y

)
.

We use the lmer function from the lme4 package for our analysis to estimate the fixed effects
β̂0, β̂1 and to predict the individual random effects b̂0 = (b̂0,1, . . . , b̂0,16)

′, b̂1 = (b̂1,1, . . . , b̂1,16)
′.

The time-series data and the trends are shown in Figure 4 plotted with the lattice package
(Sarkar 2008).

> data(alpinesummer)

> ## pick just a few GCMs for this example - for a more compact display

> gcms.sub <- c("ACCESS1 -3", "BCC -CSM1 -1", "CESM1 -CAM5", "CMCC -CM",

> "CNRM -CM5", "CSIRO -Mk3 -6-0", "EC-EARTH", "FGOALS -g2",

> "GFDL -CM3", "HadGEM2 -ES", "INM -CM4", "IPSL -CM5A -LR",

> "MIROC5", "MPI -ESM -LR", "MRI -CGCM3", "NorESM1 -M")

> alpinesummer.sub <- droplevels(subset(alpinesummer , gcm %in% gcms.sub))

> ## transform for better convergence

> alpinesummer.sub$time <- alpinesummer.sub$year - 1971

> lmm.fit <- lmer(air_temperature ~ 1 + time + (1 |gcm) + (0 + time|gcm),

+ data = alpinesummer.sub)

> summary(lmm.fit)

Linear mixed model fit by REML ['lmerMod ']
Formula: air_temperature ~ 1 + time + (1 | gcm) + (0 + time | gcm)

Data: alpinesummer.sub

REML criterion at convergence: 16472.2

Scaled residuals:

Min 1Q Median 3Q Max

-4.0410 -0.6150 -0.0321 0.5766 4.5612

Random effects:

Groups Name Variance Std.Dev.

gcm (Intercept) 2.5671124 1.60222

gcm.1 time 0.0001318 0.01148

Residual 1.2482244 1.11724

Number of obs: 5330, groups: gcm , 16

Fixed effects:

Estimate Std. Error t value

(Intercept) 16.49168 0.40257 40.97

time 0.03443 0.00292 11.79
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Figure 4: Time-series of GCMs from the CMIP5 ensemble for summer temperature in the
Alpine region. The estimated average trend β̂1 is shown as a bold line, the predicted random
effects trends are shown as a dashed line. The simulations are ordered from low trend (lower
left panel) to high trend (upper right panel).

Correlation of Fixed Effects:

(Intr)

time -0.016

> ## prints the first random effects

> head(coef(lmm.fit)$gcm)

(Intercept) year

ACCESS1 -3 18.53855 0.03755274

BCC -CSM1 -1 17.26063 0.02928145

CESM1 -CAM5 16.11973 0.03574971

CMCC -CM 13.62953 0.03733811

CNRM -CM5 16.25376 0.03042184

CSIRO -Mk3 -6-0 16.55908 0.04872848

The average slope β̂1 = 0.34 ◦C/decade (0.034 ◦C/y) is highly significant and the individual
slopes of the GCMs reach from slowly warming simulations b̂1,1 = 0.16 ◦C/decade to very

sensitive simulations b̂1,16 = 0.56 ◦C/decade assuming linear temperature evolution over 130
years from 1971–2100. The residual standard deviation is σ̂y = 1.12 ◦C, which in this case
can be interpreted as the average year-to-year natural variability.

6. Conclusion

It is crucial in climate research not only to analyze outcomes of single climate models, but
to consider entire multi-model ensembles, as it is virtually demanded in every climate im-
pact related study to assess the associated uncertainties of the projected changes. There is,
however, definitely a technical challenge to process large amount of climate simulations at
once and not many tools exist to assess this problem. Another more general problem arises
from the measure of uncertainty in multi-model ensembles. It is somewhat uncomfortable to
make statistical inference on multi-model ensembles, as they do not stem from a designed
experiment (Knutti et al. 2010), are utterly unbalanced (Déqué et al. 2007), and are known
to be biased (Maraun et al. 2010; Themeßl, Gobiet, and Leuprecht 2011).

The focus here is not to show solutions for sophisticated statistical analyses of climate datasets,
but merely to present a flexible and easy-to-use tool which is able to pre-process the datasets
for further statistical analysis. This way, the user can focus on solving the grand challenges
of statistical inference of multi-model datasets and does not need to spend valuable resources
on technical data issues. The function models2wux fulfills exactly this task by processing
magnitudes of binary climate model data to a R data frame of climate change signals. Subse-
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quently, the user can take advantage of the vast amount of methods available in R, to analyze
this data set.

However, this package also provides some functions for a first exploratory data analysis, as e.g.
a summary function and some plotting routines. Such simple analysis provide very valuable
information on the multi-model ensemble. In addition, we also provide a couple of methods
to address the issue of unbalanced experiment designs. Several methods from literature are
implemented to fill up the incomplete data matrix (Déqué et al. 2007; Heinrich et al. 2014).

It should be kept in mind, that also other software packages exist which partly fulfill similar
tasks (e.g. climate explorer, CDO, NCL). The climate explorer can be a very convenient way
to have a quick descriptive analysis of a multi-model ensemble. It is easy to use, but it is
also restricted to a non-programming environment. Also, one can analyze only models which
are implemented in the system, and the statistical methods are restricted as well. It should
be noted, that no spatial analysis is currently possible within wux, as the emphasize lies on
averaged domains. For spatial maps, tools as CDO or NCL are far better suited. Another
limitation can be the hardware needed to process large datasets. R is not the most memory-
efficient environment and one can run into trouble when reading climate simulations with a
very high spatial resolution.

To sum it up, wux is a very flexible tool dealing with different aspects of climate model uncer-
tainty in climate change impact investigations and enables a quick analysis of climate scenario
uncertainty, which typically demands a considerable technical effort as well as fundamental
knowledge about climate modeling. It can be used to achieve a quick overview on the involved
uncertainties to identify the most important sources of uncertainty or to select representative
sub-ensembles to be used as input for impact studies. wux is fully flexible regarding the
meteorological parameter and region under consideration and is able to assess uncertainties
based on multiple user-defined parameters.
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