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BayesianFM Bayesian Fama-MacBeth

Description

This function provides the Bayesian Fama-MacBeth regression.

Usage

BayesianFM(f, R, sim_length)

Arguments

f A matrix of factors with dimension t× k, where k is the number of factors and
t is the number of periods;

R A matrix of test assets with dimension t×N , where t is the number of periods
and N is the number of test assets;

sim_length The length of MCMCs;

Details

BayesianFM is similar to another twin function in this package, BayesianSDF, except that we esti-
mate factors’ risk premia rather than risk prices in this function. Unlike BayesianSDF, we use factor
loadings, βf , instead of covariance exposures, Cf , in the Fama-MacBeth regression. In particular,
after we obtain the posterior draws of µY and ΣY (details can be found in the section introducing
BayesianSDF function), we calculate βf as follows: βf = CfΣ−1f , and β = (1N , βf ).

Bayesian Fama-MacBeth (BFM)
The posterior distribution of λ conditional on µY , ΣY , and the data, is a Dirac distribution at
(β>β)−1β>µR.

Bayesian Fama-MacBeth GLS (BFM-GLS)
The posterior distribution of λ conditional on µY , ΣY , and the data, is a Dirac distribution at
(β>Σ−1R β)−1β>Σ−1R µR.
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Value

The return of BayesianFM is a list of the following elements:

• lambda_ols_path: A sim_length×(k + 1) matrix of OLS risk premia estimates (Each row
represents a draw. Note that the first column is λc corresponding to the constant term. The
next k columns are the risk premia estimates of the k factors);

• lambda_gls_path: A sim_length×(k + 1) matrix of the risk premia estimates λ (GLS);

• R2_ols_path: A sim_length×1 matrix of the R2
OLS ;

• R2_gls_path: A sim_length×1 matrix of the R2
GLS .

Examples

## <-------------------------------------------------------------------------------->
## Example: Bayesian Fama-MacBeth
## <-------------------------------------------------------------------------------->

library(reshape2)
library(ggplot2)

# Load Data
data("BFactor_zoo_example")
HML <- BFactor_zoo_example$HML
lambda_ols <- BFactor_zoo_example$lambda_ols
R2.ols.true <- BFactor_zoo_example$R2.ols.true
sim_f <- BFactor_zoo_example$sim_f
sim_R <- BFactor_zoo_example$sim_R
uf <- BFactor_zoo_example$uf

## <-------------------Case 1: strong factor---------------------------------------->

# the Frequentist Fama-MacBeth
# sim_f: simulated factor, sim_R: simulated return
# sim_f is the useful (i.e., strong) factor
results.fm <- Two_Pass_Regression(sim_f, sim_R)

# the Bayesian Fama-MacBeth with 10000 simulations
results.bfm <- BayesianFM(sim_f, sim_R, 2000)

# Note that the first element correspond to lambda of the constant term
# So we choose k=2 to get lambda of the strong factor
k <- 2
m1 <- results.fm$lambda[k]
sd1 <- sqrt(results.fm$cov_lambda[k,k])

bfm<-results.bfm$lambda_ols_path[1001:2000,k]
fm<-rnorm(20000,mean = m1, sd=sd1)
data<-data.frame(cbind(fm, bfm))
colnames(data)<-c("Frequentist FM", "Bayesian FM")
data.long<-melt(data)
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p <- ggplot(aes(x=value, colour=variable, linetype=variable), data=data.long)
p+
stat_density(aes(x=value, colour=variable),

geom="line",position="identity", size = 2, adjust=1) +
geom_vline(xintercept = lambda_ols[2], linetype="dotted", color = "#8c8c8c", size=1.5)+
guides(colour = guide_legend(override.aes=list(size=2), title.position = "top",
title.hjust = 0.5, nrow=1,byrow=TRUE))+
theme_bw()+
labs(color=element_blank()) +
labs(linetype=element_blank()) +
theme(legend.key.width=unit(4,"line")) +
theme(legend.position="bottom")+
theme(text = element_text(size = 26))+
xlab(bquote("Risk premium ("~lambda[strong]~")")) +
ylab("Density" )

## <-------------------Case 2: useless factor--------------------------------------->

# uf is the useless factor
# the Frequentist Fama-MacBeth
results.fm <- Two_Pass_Regression(uf, sim_R)

# the Bayesian Fama-MacBeth with 10000 simulations
results.bfm <- BayesianFM(uf, sim_R, 2000)

# Note that the first element correspond to lambda of the constant term
# So we choose k=2 to get lambda of the useless factor
k <- 2
m1 <- results.fm$lambda[k]
sd1 <- sqrt(results.fm$cov_lambda[k,k])

bfm<-results.bfm$lambda_ols_path[1001:2000,k]
fm<-rnorm(20000,mean = m1, sd=sd1)
data<-data.frame(cbind(fm, bfm))
colnames(data)<-c("Frequentist FM", "Bayesian FM")
data.long<-melt(data)

p <- ggplot(aes(x=value, colour=variable, linetype=variable), data=data.long)
p+
stat_density(aes(x=value, colour=variable),

geom="line",position="identity", size = 2, adjust=1) +
geom_vline(xintercept = lambda_ols[2], linetype="dotted", color = "#8c8c8c", size=1.5)+
guides(colour = guide_legend(override.aes=list(size=2),
title.position = "top", title.hjust = 0.5, nrow=1,byrow=TRUE))+
theme_bw()+
labs(color=element_blank()) +
labs(linetype=element_blank()) +
theme(legend.key.width=unit(4,"line")) +
theme(legend.position="bottom")+
theme(text = element_text(size = 26))+
xlab(bquote("Risk premium ("~lambda[strong]~")")) +
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ylab("Density" )

BayesianSDF Bayesian estimation of Linear SDF (B-SDF)

Description

This function provides the Bayesian estimates of factors’ risk prices. The estimates with the flat
prior are given by Definitions 1 and 2 in Bryzgalova et al. (2023). The estimates with the normal
prior are used in Table I (see the footnote of Table I).

Usage

BayesianSDF(
f,
R,
sim_length = 10000,
intercept = TRUE,
type = "OLS",
prior = "Flat",
psi0 = 5,
d = 0.5

)

Arguments

f A t × k matrix of factors, where k is the number of factors and t is the number
of periods

R A t × N matrix of test assets, where t is the number of periods and N is the
number of test assets

sim_length The length of MCMCs

intercept If intercept = TRUE (intercept = FALSE), the model includes (does not in-
clude) the intercept. The default is intercept = TRUE

type If type = 'OLS' (type = 'GLS'), the function returns Bayesian OLS (GLS) es-
timates of risk prices λ. The default is ’OLS’

prior If type = 'Flat' (type = 'Normal'), the function executes the Bayesian esti-
mation with the flat prior (normal prior). The default is ’Flat’

psi0 The hyper-parameter of the prior distribution of risk prices λ used in the normal
prior (see Details). This parameter is needed only when the user chooses the
normal prior. The default value is 5

d The hyper-parameter of the prior distribution of risk prices λ used in the normal
prior (see Details). The default value is 0.5
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Details

Intercept
Consider the cross-sectional step. If one includes the intercept, the model is

µR = λc1N + Cfλf = Cλ,

where C = (1N , Cf ) and λ> = (λ>c , λ
>
f )>. If one doesn’t include the intercept, the model is

µR = Cfλf = Cλ,

where C = Cf and λ = λf .

Bayesian Estimation
Let Yt = ft ∪ Rt. Conditional on the data Y = {Yt}Tt=1, we can draw µY and ΣY from the
Normal-inverse-Wishart system

µY |ΣY , Y ∼ N(µ̂Y ,ΣY /T ),

ΣY |Y ∼W−1(T − 1,ΣTt=1(Yt − µ̂Y )(Yt − µ̂Y )>),

where W−1 is the inverse-Wishart distribution. We do not standardize Yt in the time-series regres-
sion. In the empirical implementation, after obtaining posterior draws for µY and ΣY , we calculate
µR and Cf as the standardized expected returns of test assets and correlation between test assets
and factors. It follows that C is a matrix containing a vector of ones and Cf .

The prior distribution of risk prices is either the flat prior or the normal prior.

With prior = 'Flat' and type = 'OLS', for each draw, the risk price estimate is

λ̂ = (C>C)−1CTµR.

With prior = 'Flat' and type = 'GLS', for each draw, the risk price estimate is

λ̂ = (C>Σ−1R C)−1C>Σ−1R µR

If one chooses prior = 'Normal', the prior of factor j’s risk price is

λj |σ2 ∼ N(0, σ2ψρ̃>j ρ̃jT
d),

where ρ̃j = ρj − ( 1
NΣNi=1ρj,i)× 1N is the cross-sectionally demeaned vector of factor j’s correla-

tions with asset returns. Equivalently,

λ|σ2 ∼ N(0, σ2D−1),

D = diag{(ψρ̃>1 ρ̃1T d)−1, ..., (ψρ̃>k ρ̃kT d)−1} without intercept;
D = diag{c, (ψρ̃>1 ρ̃1T d)−1, ..., (ψρ̃>k ρ̃kT d)−1} with intercept;

where c is a small positive number corresponding to the common cross-sectional intercept (λc).
Default values for ψ (psi0) and d (d) are 5 and 0.5, respectively.

With prior = 'Normal' and type = 'OLS', for each draw, the risk price estimate is

λ̂ = (C>C +D)−1C>µR.

With prior = 'Normal' and type = 'GLS', for each draw, the risk price estimate is

λ̂ = (C>Σ−1R C +D)−1C>Σ−1R µR.
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Value

The return of BayesianSDF is a list that contains the following elements:

• lambda_path: A sim_length×(k + 1) matrix if the intercept is included. NOTE: the first
column λc corresponds to the intercept. The next k columns (i.e., the 2th – (k+1)-th columns)
are the risk prices of k factors. If the intercept is excluded, the dimension of lambda_path is
sim_length×k.

• R2_path: A sim_length×1 matrix, which contains the posterior draws of the OLS or GLS
R2.

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>.” Journal of Finance, 78(1), 487–557.

Examples

## <-------------------------------------------------------------------------------->
## Example: Bayesian estimates of risk prices and R2
## This example is from the paper (see Section III. Simulation)
## <-------------------------------------------------------------------------------->

library(reshape2)
library(ggplot2)

# Load the example data
data("BFactor_zoo_example")
HML <- BFactor_zoo_example$HML
lambda_ols <- BFactor_zoo_example$lambda_ols
R2.ols.true <- BFactor_zoo_example$R2.ols.true
sim_f <- BFactor_zoo_example$sim_f
sim_R <- BFactor_zoo_example$sim_R
uf <- BFactor_zoo_example$uf
W_ols <- BFactor_zoo_example$W_ols

cat("Load the simulated example \n")

cat("Cross-section: Fama-French 25 size and value portfolios \n")
cat("True pricing factor in simulations: HML \n")
cat("Pseudo-true cross-sectional R-squared:", R2.ols.true, "\n")
cat("Pseudo-true (monthly) risk price:", lambda_ols[2], "\n")

cat("----------------------------- Bayesian SDF ----------------------------\n")
cat("------------------------ See definitions 1 and 2 ----------------------\n")

cat("--------------------- Bayesian SDF: Strong factor ---------------------\n")

sim_result <- SDF_gmm(sim_R, sim_f, W_ols) # GMM estimation
# sim_result$lambda_gmm
# sqrt(sim_result$Avar_hat[2,2])
# sim_result$R2_adj
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## Now estimate the model using Bayesian method
two_step <- BayesianSDF(sim_f, sim_R, sim_length = 2000, psi0 = 5, d = 0.5)
# apply(X = two_step$lambda_path, FUN = quantile, MARGIN = 2, probs = c(0.05, 0.95))
# quantile(two_step$R2_path, probs = c(0.05, 0.5, 0.95))

# Note that the first element correspond to lambda of the constant term
# So we choose k=2 to get lambda of the strong factor
k <- 2
m1 <- sim_result$lambda_gmm[k]
sd1 <- sqrt(sim_result$Avar_hat[k,k])

bfm<-two_step$lambda_path[1001:2000, k]
fm<-rnorm(5000,mean = m1, sd=sd1)
data<-data.frame(cbind(fm, bfm))
colnames(data)<-c("GMM-OLS", "BSDF-OLS")
data.long<-melt(data)

#
### Figure 1(c)
#
p <- ggplot(aes(x=value, colour=variable, linetype=variable), data=data.long)
p+
stat_density(aes(x=value, colour=variable),

geom="line",position="identity", size = 2, adjust=1) +
geom_vline(xintercept = lambda_ols[2], linetype="dotted", color = "#8c8c8c", size=1.5)+
guides(colour = guide_legend(override.aes=list(size=2), title.position = "top",
title.hjust = 0.5, nrow=1,byrow=TRUE))+
theme_bw()+
labs(color=element_blank()) +
labs(linetype=element_blank()) +
theme(legend.key.width=unit(4,"line")) +
theme(legend.position="bottom")+
theme(text = element_text(size = 26))+
xlab(bquote("Risk price ("~lambda[strong]~")")) +
ylab("Density" )

cat("--------------------- Bayesian SDF: Useless factor --------------------\n")

sim_result <- SDF_gmm(sim_R, uf, W_ols)
# sim_result$lambda_gmm
# sqrt(sim_result$Avar_hat[2,2])
# sim_result$R2_adj

two_step <- BayesianSDF(uf, sim_R, sim_length = 2000, psi0 = 5, d = 0.5)
#apply(X = two_step$lambda_path, FUN = quantile, MARGIN = 2, probs = c(0.05, 0.95))

## Posterior (Asymptotic) Distribution of lambda
k <- 2
m1 <- sim_result$lambda[k]
sd1 <- sqrt(sim_result$Avar_hat[k,k])
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bfm<-two_step$lambda_path[1001:2000, k]
fm<-rnorm(5000,mean = m1, sd=sd1)
data<-data.frame(cbind(fm, bfm))
colnames(data)<-c("GMM-OLS", "BSDF-OLS")
data.long<-melt(data)

#
### Figure 1(a)
#
p <- ggplot(aes(x=value, colour=variable, linetype=variable), data=data.long)
p+
stat_density(aes(x=value, colour=variable),

geom="line",position="identity", size = 2, adjust=2) +
geom_vline(xintercept = 0, linetype="dotted", color = "#8c8c8c", size=1.5)+
guides(colour = guide_legend(override.aes=list(size=2),
title.position = "top", title.hjust = 0.5, nrow=1,byrow=TRUE))+
theme_bw()+
labs(color=element_blank()) +
labs(linetype=element_blank()) +
theme(legend.key.width=unit(4,"line")) +
theme(legend.position="bottom")+
theme(text = element_text(size = 26))+
xlab(bquote("Risk price ("~lambda[spurious]~")")) +
ylab("Density" )

BFactor_zoo_example Simulated Example Dataset ’BFactor_zoo_example’

Description

A simulated dataset used in Figure 1 of Bryzgalova et al. (2023).

Usage

data("BFactor_zoo_example")

Format

A list consisting of the following variables:

HML High-minus-low value factor, from Ken French Website

lambda_ols Hypothetical true risk prices of factors in simulations

R2.ols.true Hypothetical true OLS R-squared in simulations

sim_f Simulated strong factor

sim_R Simulated test asset returns
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uf Simulated weak/unspanned factor

W_ols Weighting matrix used in GMM OLS estimations

Source

Section III in Bryzgalova et al. (2023).

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>.” Journal of Finance, 78(1), 487–557.

Examples

data(BFactor_zoo_example)
HML <- BFactor_zoo_example$HML
lambda_ols <- BFactor_zoo_example$lambda_ols
R2.ols.true <- BFactor_zoo_example$R2.ols.true
sim_f <- BFactor_zoo_example$sim_f
sim_R <- BFactor_zoo_example$sim_R
uf <- BFactor_zoo_example$uf
W_ols <- BFactor_zoo_example$W_ols

cat("Load the simulated example \n")
cat("Cross-section: Fama-French 25 size and value portfolios \n")
cat("True pricing factor in simulations: HML \n")
cat("Misspecified model with pseudo-true R-squared:", R2.ols.true, "\n")
cat("Pseudo-true (monthly) risk price:", lambda_ols[2], "\n")

continuous_ss_sdf SDF model selection with continuous spike-and-slab prior

Description

This function provides the SDF model selection procedure using the continuous spike-and-slab
prior. See Propositions 3 and 4 in Bryzgalova et al. (2023).

Usage

continuous_ss_sdf(
f,
R,
sim_length,
psi0 = 1,
r = 0.001,
aw = 1,
bw = 1,
type = "OLS"

)
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Arguments

f A matrix of factors with dimension t× k, where k is the number of factors and
t is the number of periods;

R A matrix of test assets with dimension t×N , where t is the number of periods
and N is the number of test assets;

sim_length The length of monte-carlo simulations;

psi0 The hyper-parameter in the prior distribution of risk prices (see Details);

r The hyper-parameter related to the prior of risk prices (see Details);

aw The hyper-parameter related to the prior of γ (see Details);

bw The hyper-parameter related to the prior of γ (see Details);

type If type = 'OLS' (type = 'GLS'), the function returns Bayesian OLS (GLS) es-
timates of risk prices. The default is ’OLS’.

Details

To model the variable selection procedure, we introduce a vector of binary latent variables γ> =
(γ0, γ1, ..., γK), where γj ∈ {0, 1}. When γj = 1, factor j (with associated loadings Cj) should be
included in the model and vice verse.

The continuous spike-and-slab prior of risk prices λ is

λj |γj , σ2 ∼ N(0, r(γj)ψjσ
2).

When the factor j is included, we have r(γj = 1) = 1. When the factor is excluded from the
model, r(γj = 0) = r � 1. Hence, the Dirac "spike" is replaced by a Gaussian spike, which is
extremely concentrated at zero (the default value for r is 0.001). We choose ψj = ψρ̃>j ρ̃j , where
ρ̃j = ρj − ( 1

NΣNi=1ρj,i) × 1N is the cross-sectionally demeaned vector of factor j’s correlations
with asset returns. In the codes, ψ is equal to the value of psi0.

The prior π(ω) encoded the belief about the sparsity of the true model using the prior distribution
π(γj = 1|ωj) = ωj . Following the literature on the variable selection, we set

π(γj = 1|ωj) = ωj , ωj ∼ Beta(aω, bω).

Different hyperparameters aω and bω determine whether one a priori favors more parsimonious
models or not. We choose aω = 1 (aw) and bω = 1 (bw) as the default values.

For each posterior draw of factors’ risk prices λ(j)f , we can define the SDF as m(j)
t = 1 − (ft −

µf )>λ
(j)
f .The Bayesian model averaging of the SDF (BMA-SDF) over J draws is

mbma
t =

1

J

J∑
j=1

m
(j)
t .

Value

The return of continuous_ss_sdf is a list of the following elements:

• gamma_path: A sim_length×k matrix of the posterior draws of γ. Each row represents a
draw. If γj = 1 in one draw, factor j is included in the model in this draw and vice verse.
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• lambda_path: A sim_length×(k + 1) matrix of the risk prices λ. Each row represents a
draw. Note that the first column is λc corresponding to the constant term. The next k columns
(i.e., the 2-th – (k + 1)-th columns) are the risk prices of the k factors.

• sdf_path: A sim_length×t matrix of posterior draws of SDFs. Each row represents a draw.

• bma_sdf: BMA-SDF.

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>.” Journal of Finance, 78(1), 487–557.

Examples

## Load the example data
data("BFactor_zoo_example")
HML <- BFactor_zoo_example$HML
lambda_ols <- BFactor_zoo_example$lambda_ols
R2.ols.true <- BFactor_zoo_example$R2.ols.true
sim_f <- BFactor_zoo_example$sim_f
sim_R <- BFactor_zoo_example$sim_R
uf <- BFactor_zoo_example$uf

## sim_f: simulated strong factor
## uf: simulated useless factor

psi_hat <- psi_to_priorSR(sim_R, cbind(sim_f,uf), priorSR=0.1)
shrinkage <- continuous_ss_sdf(cbind(sim_f,uf), sim_R, 5000, psi0=psi_hat, r=0.001, aw=1, bw=1)
cat("Null hypothesis: lambda =", 0, "for each factor", "\n")
cat("Posterior probabilities of rejecting the above null hypotheses are:",

colMeans(shrinkage$gamma_path), "\n")

## We also have the posterior draws of SDF: m(t) = 1 - lambda_g %*% (f(t) - mu_f)
sdf_path <- shrinkage$sdf_path

## We also provide the Bayesian model averaging of the SDF (BMA-SDF)
bma_sdf <- shrinkage$bma_sdf

continuous_ss_sdf_v2 SDF model selection with continuous spike-and-slab prior (tradable
factors are treated as test assets)

Description

This function provides the SDF model selection procedure using the continuous spike-and-slab
prior. See Propositions 3 and 4 in Bryzgalova et al. (2023). Unlike continuous_ss_sdf, tradable
factors are treated as test assets in this function.
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Usage

continuous_ss_sdf_v2(
f1,
f2,
R,
sim_length,
psi0 = 1,
r = 0.001,
aw = 1,
bw = 1,
type = "OLS"

)

Arguments

f1 A matrix of nontradable factors with dimension t× k1, where k1 is the number
of nontradable factors and t is the number of periods.

f2 A matrix of tradable factors with dimension t × k2, where k2 is the number of
tradable factors and t is the number of periods.

R A matrix of test assets with dimension t×N , where t is the number of periods
and N is the number of test assets (R should NOT contain tradable factors
f2);

sim_length The length of monte-carlo simulations;

psi0 The hyper-parameter in the prior distribution of risk prices (see Details);

r The hyper-parameter related to the prior of risk prices (see Details);

aw The hyper-parameter related to the prior of γ (see Details);

bw The hyper-parameter related to the prior of γ (see Details);

type If type = 'OLS' (type = 'GLS'), the function returns Bayesian OLS (GLS) es-
timates of risk prices. The default is ’OLS’.

Details

See the description in the twin function continuous_ss_sdf.

Value

The return of continuous_ss_sdf_v2 is a list of the following elements:

• gamma_path: A sim_length×k matrix of the posterior draws of γ (k = k1 + k2). Each row
represents a draw. If γj = 1 in one draw, factor j is included in the model in this draw and
vice verse.

• lambda_path: A sim_length×(k + 1) matrix of the risk prices λ. Each row represents a
draw. Note that the first column is λc corresponding to the constant term. The next k columns
(i.e., the 2-th – (k + 1)-th columns) are the risk prices of the k factors.

• sdf_path: A sim_length×t matrix of posterior draws of SDFs. Each row represents a draw.

• bma_sdf: BMA-SDF.
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References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>.” Journal of Finance, 78(1), 487–557.

Examples

library(timeSeries)

## Load the example data
data("BFactor_zoo_example")
HML <- BFactor_zoo_example$HML
lambda_ols <- BFactor_zoo_example$lambda_ols
R2.ols.true <- BFactor_zoo_example$R2.ols.true
sim_f <- BFactor_zoo_example$sim_f
sim_R <- BFactor_zoo_example$sim_R
uf <- BFactor_zoo_example$uf

## sim_f: simulated strong factor
## uf: simulated useless factor

psi_hat <- psi_to_priorSR(sim_R, cbind(sim_f,uf,sim_R[,1]), priorSR=0.1)

## We include the first test asset, sim_R[,1], into factors, so f2 = sim_R[,1,drop=FALSE].
## Also remember excluding sim_R[,1,drop=FALSE] from test assets, so R = sim_R[,-1].
shrinkage <- continuous_ss_sdf_v2(cbind(sim_f,uf), sim_R[,1,drop=FALSE], sim_R[,-1], 1000,

psi0=psi_hat, r=0.001, aw=1, bw=1)
cat("Null hypothesis: lambda =", 0, "for each of these three factors", "\n")
cat("Posterior probabilities of rejecting the above null hypotheses are:",

colMeans(shrinkage$gamma_path), "\n")

## We also have the posterior draws of SDF: m(t) = 1 - lambda_g %*% (f(t) - mu_f)
sdf_path <- shrinkage$sdf_path

## We also provide the Bayesian model averaging of the SDF (BMA-SDF)
bma_sdf <- shrinkage$bma_sdf

## We can further estimate the posterior distributions of model-implied Sharpe ratios:
cat("The 5th, 50th, and 95th quantiles of model-implied Sharpe ratios:",

quantile(colSds(t(sdf_path)), probs=c(0.05, 0.5, 0.95)), "\n")

## Finally, we can estimate the posterior distribution of model dimensions:
cat("The posterior distribution of model dimensions (= 0, 1, 2, 3):",

prop.table(table(rowSums(shrinkage$gamma_path))), "\n")

## We now use the 17th test asset, sim_R[,17,drop=FALSE], as the tradable factor,
## so f2 = sim_R[,17,drop=FALSE].
## Also remember excluding sim_R[,17,drop=FALSE] from test assets, so R = sim_R[,-17].
psi_hat <- psi_to_priorSR(sim_R, cbind(sim_f,uf,sim_R[,17]), priorSR=0.1)
shrinkage <- continuous_ss_sdf_v2(cbind(sim_f,uf), sim_R[,17,drop=FALSE], sim_R[,-17],

1000, psi0=psi_hat, r=0.001, aw=1, bw=1)
cat("Null hypothesis: lambda =", 0, "for each of these three factors", "\n")
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cat("Posterior probabilities of rejecting the above null hypotheses are:",
colMeans(shrinkage$gamma_path), "\n")

dirac_ss_sdf_pvalue Hypothesis testing for risk prices (Bayesian p-values) with Dirac
spike-and-slab prior

Description

This function tests the null hypothesis, H0 : λ = λ0, when γ = 0. When λ0 = 0, we compare
factor models using the algorithm in Proposition 1 of Bryzgalova et al. (2023). When λ0 6= 0, this
function corresponds to Corollary 2 in Section II.A.2 of Bryzgalova et al. (2023). The function
can also be used to compute the posterior probabilities of all possible models with up to a given
maximum number of factors (see examples).

Usage

dirac_ss_sdf_pvalue(f, R, sim_length, lambda0, psi0 = 1, max_k = NULL)

Arguments

f A matrix of factors with dimension t× k, where k is the number of factors and
t is the number of periods;

R A matrix of test assets with dimension t×N , where t is the number of periods
and N is the number of test assets;

sim_length The length of Monte-Carlo simulations;

lambda0 A k × 1 vector of risk prices under the null hypothesis (γ = 0);

psi0 The hyper-parameter in the prior distribution of risk price λ (see Details);

max_k The maximal number of factors in models (max_k is a positive integer or NULL
if the user does not impose any restriction on the model dimension).

Details

Let D denote a diagonal matrix with elements c, ψ−11 , ..., ψ−1K , and Dγ the submatrix of D cor-
responding to model γ, where c is a small positive number corresponding to the common cross-
sectional intercept (λc). The prior for the prices of risk (λγ) of model γ is then

λγ |σ2, γ ∼ N(0, σ2, D−1γ ).

We choose ψj = ψρ̃>j ρ̃j , where ρ̃j = ρj − ( 1
NΣNi=1ρj,i) × 1N is the cross-sectionally demeaned

vector of factor j’s correlations with asset returns. In the codes, ψ is equal to the value of psi0.
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Value

The return of dirac_ss_sdf_pvalue is a list of the following elements:

• gamma_path: A sim_length×k matrix of the posterior draws of γ. Each row represents a
draw. If γj = 1 in one draw, factor j is included in the model in this draw and vice verse.

• lambda_path: A sim_length×(k + 1) matrix of the risk prices λ. Each row represents a
draw. Note that the first column is λc corresponding to the constant term. The next k columns
(i.e., the 2-th – (k + 1)-th columns) are the risk prices of the k factors;

• model_probs: A 2k×(k+1) matrix of posterior model probabilities, where the first k columns
are the model indices and the final column is a vector of model probabilities.

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>.” Journal of Finance, 78(1), 487–557.

Examples

## <-------------------------------------------------------------------------------->
## Example: Bayesian p-value (with the dirac spike-and-slab prior)
## <-------------------------------------------------------------------------------->

# Load the example data
data("BFactor_zoo_example")
HML <- BFactor_zoo_example$HML
lambda_ols <- BFactor_zoo_example$lambda_ols
R2.ols.true <- BFactor_zoo_example$R2.ols.true
sim_f <- BFactor_zoo_example$sim_f
sim_R <- BFactor_zoo_example$sim_R
uf <- BFactor_zoo_example$uf

### Now we estimate the Bayesian p-values defined in Corollary 2.

#
### Prior Sharpe ratio of factor model for different values of psi: see equation (27):
#
cat("--------------- Choose psi based on prior Sharpe ratio ----------------\n")
cat("if psi = 1, prior Sharpe ratio is", psi_to_priorSR(sim_R, sim_f, psi0=1), "\n")
cat("if psi = 2, prior Sharpe ratio is", psi_to_priorSR(sim_R, sim_f, psi0=2), "\n")
cat("if psi = 5, prior Sharpe ratio is", psi_to_priorSR(sim_R, sim_f, psi0=5), "\n")

## Test whether factors' risk prices equal 'matrix(lambda_ols[2]*sd(HML),ncol=1)'
## Bayesian p-value is given by mean(shrinkage$gamma_path)
shrinkage <- dirac_ss_sdf_pvalue(sim_f, sim_R, 1000, matrix(lambda_ols[2]*sd(HML),ncol=1))
cat("Null hypothesis: lambda =", matrix(lambda_ols[2]*sd(HML)), "\n")
cat("Posterior probability of rejecting the above null hypothesis is:",

mean(shrinkage$gamma_path), "\n")

## Test whether the risk price of factor 'sim_f' is equal to 0
shrinkage <- dirac_ss_sdf_pvalue(sim_f, sim_R, 1000, 0, psi0=1)
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cat("Null hypothesis: lambda =", 0, "\n")
cat("Posterior probability of rejecting the above null hypothesis is:",

mean(shrinkage$gamma_path), "\n")

## One can also put more than one factor into the test
two_f = cbind(sim_f,uf) # sim_f is the strong factor while uf is the useless factor
# Test1: lambda of sim_f = 0, Test2: lambda of uf = 0
lambda0_null_vec = t(cbind(0,0)) # 2x1 vector
shrinkage <- dirac_ss_sdf_pvalue(two_f, sim_R, 1000, lambda0_null_vec, psi0=1)
cat("Null hypothesis: lambda =", 0, "for each factor", "\n")
cat("Posterior probabilities of rejecting the above null hypothesis are:",

colMeans(shrinkage$gamma_path), "\n")

## We can also print the posterior model probabilities:
cat('Posterior model probabilities are:\n')
print(shrinkage$model_probs)

## One can compute the posterior probabilities of all possible models with up to
## a given maximum number of factors. For example, we consider two factors, but
## the number of factors is restricted to be less than two.
lambda0_null_vec = t(cbind(0,0)) # 2x1 vector
shrinkage <- dirac_ss_sdf_pvalue(two_f, sim_R, 1000, lambda0_null_vec, psi0=1, max_k=1)
cat('Posterior model probabilities are:\n')
print(shrinkage$model_probs)
## Comment: You may notice that the model with index (1, 1) has a posterior probability
## of exactly zero since the maximal number of factors is one.

psi_to_priorSR Mapping ψ (psi0) to the prior Sharpe ratio of factors (priorSR), and
vice versa.

Description

This function provides the one-to-one mapping between ψ and the prior Sharpe ratio of factors. See
Section II.A.3 in Bryzgalova et al. (2023).

Usage

psi_to_priorSR(R, f, psi0 = NULL, priorSR = NULL, aw = 1, bw = 1)

Arguments

R A matrix of test assets with dimension t×N , where t is the number of periods
and N is the number of test assets;

f A matrix of factors with dimension t× k, where k is the number of factors and
t is the number of periods;
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psi0 The hyper-parameter in the prior distribution of risk prices (see Details in the
function continuous_ss_sdf);

priorSR The prior Sharpe ratio of all factors (see Details);

aw The hyper-parameter in the prior of γ (default value = 1, see Details);

bw The hyper-parameter in the prior of γ (default value = 1, see Details);

Details

According to equation (27) in Bryzgalova et al. (2023), we learn that

Eπ[SR2
f | γ, σ2]

Eπ[SR2
α | σ2]

=
ψ
∑K
k=1 r(γk)ρ̃>k ρ̃k

N
,

where SR2
f and SR2

α denote the Sharpe ratios of all factors (ft) and of the pricing errors (α), and
Eπ denotes prior expectations.

The prior π(ω) encodes the belief about the sparsity of the true model using the prior distribution
π(γj = 1|ωj) = ωj , ωj ∼ Beta(aω, bω). We further integrate out γj in Eπ[SR2

f | γ, σ2] and
show the following:

Eπ[SR2
f | σ2]

Eπ[SR2
α | σ2]

≈ aω
aω + bω

ψ

∑K
k=1 ρ̃

>
k ρ̃k

N
, as r → 0.

Since we can decompose the Sharpe ratios of all test assets, SR2
R, into SR2

f and SR2
α (i.e., SR2

R =

SR2
f + SR2

α), we can represent SR2
f as follows:

Eπ[SR2
f | σ2] ≈

aω
aω+bω

ψ
∑K

k=1 ρ̃
>
k ρ̃k

N

1 + aω
aω+bω

ψ
∑K

k=1 ρ̃
>
k ρ̃k

N

SR2
R.

We define the prior Sharpe ratio implied by the factor models as
√
Eπ[SR2

f | σ2]. Given aω , bω ,∑K
k=1 ρ̃

>
k ρ̃k

N , and the observed Sharpe ratio of test assets, we have one-to-one mapping between ψ

and
√
Eπ[SR2

f | σ2].

If the user aims to convert ψ to the prior Sharpe ratio, she should input only psi0. In contrast, if
she wants to convert the prior Sharpe ratio to ψ, priorSR should be entered.

Value

The return of psi_to_priorSR is:

• psi0 or priorSR.

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>.” Journal of Finance, 78(1), 487–557.
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Examples

## Load the example data
data("BFactor_zoo_example")
HML <- BFactor_zoo_example$HML
lambda_ols <- BFactor_zoo_example$lambda_ols
R2.ols.true <- BFactor_zoo_example$R2.ols.true
sim_f <- BFactor_zoo_example$sim_f
sim_R <- BFactor_zoo_example$sim_R
uf <- BFactor_zoo_example$uf

## If the user aims to convert \eqn{\psi} to the prior Sharpe ratio:
print(psi_to_priorSR(sim_R, sim_f, priorSR=0.1))

## If the user wants to convert the prior Sharpe ratio to \eqn{\psi}:
psi0_to_map <- psi_to_priorSR(sim_R, sim_f, priorSR=0.1)
print(psi_to_priorSR(sim_R, sim_f, psi0=psi0_to_map))

## If we enter both psi0 and priorSR (or forget to input them simultaneously),
## a warning will be printed:
print(psi_to_priorSR(sim_R, sim_f))
print(psi_to_priorSR(sim_R, sim_f, priorSR=0.1, psi0=2))

SDF_gmm GMM Estimates of Factors’ Risk Prices under the Linear SDF Frame-
work

Description

This function provides the GMM estimates of factors’ risk prices under the linear SDF framework
(including the common intercept).

Usage

SDF_gmm(R, f, W)

Arguments

R A matrix of test assets with dimension t×N , where t is the number of periods
and N is the number of test assets;

f A matrix of factors with dimension t× k, where k is the number of factors and
t is the number of periods;

W Weighting matrix in GMM estimation (see Details).
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Details

We follow the notations in Section I of Bryzgalova et al. (2023). Suppose that there are K
factors, ft = (f1t, ..., fKt)

>, t = 1, ..., T . The returns of N test assets are denoted by Rt =
(R1t, ..., RNt)

>.

Consider linear SDFs (M ), that is, models of the form Mt = 1− (ft − E[ft])
>λf .

The model is estimated via GMM with moment conditions

E[gt(λc, λf , µf )] = E

(
Rt − λc1N −Rt(ft − µf )>λf

ft − µf

)
=

(
0N
0K

)
and the corresponding sample analog function gT (λc, λf , µf ) = 1

T ΣTt=1gt(λc, λf , µf ). Different
weighting matrices deliver different point estimates. Two popular choices are

Wols =

(
IN 0N×K

0K×N κIK

)
, Wgls =

(
Σ−1R 0N×K

0K×N κIK

)
,

where ΣR is the covariance matrix of returns and κ > 0 is a large constant so that µ̂f = 1
T ΣTt=1ft.

The asymptotic covariance matrix of risk premia estimates, Avar_hat, is based on the assumption
that gt(λc, λf , µf ) is independent over time.

Value

The return of SDF_gmm is a list of the following elements:

• lambda_gmm: Risk price estimates;

• mu_f: Sample means of factors;

• Avar_hat: Asymptotic covariance matrix of GMM estimates (see Details);

• R2_adj: Adjusted cross-sectional R2;

• S_hat: Spectral matrix.

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>.” Journal of Finance, 78(1), 487–557.

Two_Pass_Regression Fama MacBeth Two-Pass Regression

Description

This function provides the frequentist Fama-MacBeth Two-Pass Regression.

Usage

Two_Pass_Regression(f, R)
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Arguments

f A matrix of factors with dimension t× k, where k is the number of factors and
t is the number of periods;

R A matrix of test assets with dimension t×N , where t is the number of periods
and N is the number of test assets;

Details

See Chapter 12.2 in Cochrane (2009). t_stat and t_stat_gls are t-statistics of OLS and GLS risk
premia estimates based on the asymptotic standard errors in equation (12.19) in Cochrane (2009).

Value

The return of Two_Pass_Regression is a list of the following elements:

• lambda: Risk premia estimates in the OLS two-pass regression;

• lambda_gls: Risk premia estimates in the GLS two-pass regression;

• t_stat: The t-statistics of risk premia estimates in the OLS two-pass regression;

• t_stat_gls: The t-statistics of risk premia estimates in the GLS two-pass regression;

• R2_adj: Adjusted R2 in the OLS two-pass regression;

• R2_adj_GLS: Adjusted R2 in the GLS two-pass regression.

References

Cochrane J (2009). Asset pricing: Revised edition. Princeton University Press.
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