Package 'FlyingR'

October 12, 2022

Description Functions for range estimation in birds based on Pennycuick (2008) and Pennycuick (1975), 'Flight' program which compliments Pennycuick (2008) requires manual entry of birds which can be tedious when there are hundreds of birds to estimate. Implemented are two ODE methods discussed in Pennycuick (1975) and time-marching computation methods as in Pennycuick (1998) and Pennycuick (2008). See Pennycuick (1975, ISBN:978-0-12-249405-5), Pennycuick (1998) <doi:10.1006/jtbi.1997.0572>, and Pennycuick (2008, ISBN:9780080557816). License Apache License **Encoding UTF-8** LazyData true **Imports** utils, Rcpp (>= 1.0.2), knitr, kableExtra, rmarkdown Suggests testthat, covr RoxygenNote 7.2.0 **Depends** R (>= 2.10) VignetteBuilder knitr Collate 'FlyingR.R' 'RcppExports.R' 'birds documentation.R' 'constant_muscle_mass.R' 'constant_specific_power.R' 'constant_specific_work.R' 'control.R' 'method_2.R' 'method_1.R' 'input_match.R' 'lookup_table2.R' 'misc functions.R' 'flight simulation.R' 'migrate.R' 'stopover mass calculator.R' 'zzz.R' LinkingTo Rcpp URL https://github.com/BMasinde/FlyingR BugReports https://github.com/BMasinde/FlyingR/issues **NeedsCompilation** yes Author Brian Masinde [aut, cre], Krzysztof Bartoszek [ctb, ths]

Type Package

Version 0.2.2

Title Simulation of Bird Flight Range

2 birds

Maintainer Brian Masinde <masindeb@live.com>

Repository CRAN

Date/Publication 2022-06-27 20:40:02 UTC

R topics documented:

	flysim														 		. 4
Index																	7
birds	Sam	ple 2	28 i	bira	ls												

Description

Preset birds data, extracted from Flight Pennycuick(2008). Fat mass percentage generated randomly where zero.

Usage

birds

Format

A data frame with 28 observations and 5 variables not counting the name.

Scientific.name Name of bird species

Empty.mass Body mass in Kg. Includes fuel (fat mass). In this case the crops were empty but otherwise one should always use the all-up mass (body mass + crop)

Wing.span Length of wings spread out in meters

Fat.mass Mass of fat that is consumable as fuel in Kg

Order Order of the species (passerine = 1 vs non-passerine = 2)

Wing.area Area of both wing projected on a flat surface in meters squared

Muscle.mass Mass in Kg. of flight muscles

flysim 3

|--|

Description

Practical range estimation of birds using methods in Pennycuick (1975) Mechanics of Flight. These methods are based on Breguet equations.

Usage

Arguments

file	Arguments for path to data.
header	Logical. If TRUE use first row as column headers
sep	separator
quote	The set of quoting characters. see read.csv
dec	The character used in the file for decimal points.
fill	See read.csv
comment.char	For more details see read.csv
	further arguments see read.csv
data	A data frame.
settings	A list for re-defining constants. See details.

Details

The option *settings takes the arguments (those particularly required by this function)

- ppc: Profile power constant
- fed: Energy content of fuel from fat
- g: Acceleration due to gravity
- mce: Mechanical conversion efficiency [0,1]
- ipf: Induced power factor
- vcp: Ventilation and circulation power
- airDensity: Air density at cruising altitude
- bdc: Body drag coefficient
- alpha: Basal metabolism factors in passerines and non passerines
- delta: Basal metabolism factors in passerines and non passerines alpha*bodyMass^delta

4 migrate

Value

S3 class object with range estimates based on methods defined and settings used

- range estimates (Km)
- · settings used
- data

Author(s)

Brian Masinde

Examples

```
flysim(data = birds, settings = list(fatEnergy = 3.89*10^7))
flysim(data = birds, settings = list(airDensity = 0.905))
```

migrate

Range Estimation

Description

Practical range estimation of birds using methods from Pennycuick (2008).

Usage

Arguments

file	Path to file where data resides.
header	Logical. If TRUE use first row as column headers
sep	separator
quote	The set of quoting characters. see read.csv
dec	The character used in the file for decimal points
fill	See read.csv
comment.char	For more details see read.csv
	further arguments see read.csv
data	A data frame with required columns: body mass (Kg) , fat mass (Kg) , muscle mass (Kg) , wing span (m) , wing area (m^2) , order / taxon (passerines = 1, non passerines = 2).

migrate 5

settings A list for re-defining constants. See details for these with default values from

Pennycuick(2008) and Pennycuick(1998).

method Methods for protein energy consumption from muscle mass

speed_control One of two speed control methods. By default I is used. θ is the alternative.

The former holds the true airspeed constant while the latter holds the ratio of

true airspeed to the minimum power speed constant (V:Vmp constant).

min_energy_protein

Percentage of energy attributed to protein due to metabolism. Default value is 5 percent (0.05). If method "csw" or "csp" is chosen, 2 would be attained from consuming protein in the airframe mass.

Details

The option *control takes the following arguments

- ppc: Profile power constant (8.4).
- fed: Energy content of fuel from fat (3.9E+07).
- ped: Energy content of protein (1.8E+07).
- g: Acceleration due to gravity (9.81).
- mce: Mechanical conversion efficiency [0,1]. Efficiency at which mechanical power is converted to chemical power (0.23).
- ipf: Induced power factor (1.2).
- vcp: Ventilation and circulation power (1.1).
- airDensity: Air density at cruising altitude (1.00).
- bdc: Body drag coefficient (0.1).
- alpha: Basal metabolism factors in passerines and non passerines (6.25, 3.79).
- delta: Basal metabolism factors in passerines and non passerines (0.724, 0.723) alpha*bodyMass^delta.
- mipd: Inverse power density of the mitochondria (1.2E-06).
- speedRatio: True air speed to minimum power speed ratio (1.2).
- muscDensity: Density of the flight muscles (1060).
- phr: Protein hydration ratio (2.2). Whenever protein is consumed from the muscle mass some amount of water is lost in the process. This water is estimated as the mass of dry protein time the phr.

Value

S3 class object with range estimates based on methods defined and settings

- range estimates (Km)
- remaining body mass (Kg)
- remaining fat mass (Kg)
- remaining muscle mass (Kg)
- minimum power speed at start of flight (m/s)
- minimum power speed at end of flight (m/s)
- · taxon (order)

Author(s)

Brian Masinde

Examples

```
migrate(data = birds, settings = list(fed = 3.89*10^7))
migrate(data = birds, method = "cmm", settings = list(airDensity = 0.905))
```

stopover.mass.calculator

Stopover mass calculator

Description

During stop-overs birds replenish fat mass. Using simplifications from Lindström 1991. The implementation here is simplistic in that muscle mass is not restored as theory and field experiments have shown.

Usage

```
stopover.mass.calculator(bodyMass, fatMass, taxon, duration)
```

Arguments

bodyMass left-over after running function migrate fatMass left-over after running function migrate

taxon (or order) classified into two categories (passerines and non-passerines)
duration number of hours spent at stop-over site. This must be an integer see example

Value

```
fat_mass, body_mass
```

Examples

```
stopover.mass.calculator(bodyMass = c(2.2, 3.4), fatMass = c(0.34, 0.42), taxon = c(1,2), duration = 36L)
```

Index