Package 'MetaAnalyser'

October 12, 2022

Type Package
Title An Interactive Visualisation of Meta-Analysis as a Physical Weighing Machine
Version 0.2.1
Date 2016-10-12
Author Jack Bowden < j.bowden@bristol.ac.uk> (conception), Christopher Jackson
<pre><chris.jackson@mrc-bsu.cam.ac.uk> (programming)</chris.jackson@mrc-bsu.cam.ac.uk></pre>
Maintainer Christopher Jackson < chris.jackson@mrc-bsu.cam.ac.uk>
Description An interactive application to visualise meta-analysis data as a physical weighing machine. The interface is based on the Shiny web application framework, though can be run locally and with the user's own data.
License GPL (>= 2)
Depends R ($>= 2.10$), shiny
Imports ggvis, DT (>= 0.1.40), rstudioapi
Suggests rmeta
<pre>URL https://github.com/chjackson/MetaAnalyser</pre>
BugReports https://github.com/chjackson/MetaAnalyser/issues
LazyData yes
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-10-13 00:24:55
R topics documented:
aspirin

2 aspirin

me	tasumn	l								 												5
res	d_dsl .									 											 	6
syn	nmetric									 			•		•	•	•				 	7

Index 8

aspirin

Aspirin meta-analysis data

Description

63 randomized controlled trials reported by Edwards et al. (1998) that each investigated the benefit of oral aspirin for pain relief.

Usage

```
data("aspirin")
```

Format

A data frame with 63 observations on the following 3 variables.

name Study name

est Study estimate: log-odds ratio for the proportion of patients in each arm who had at least a 50% reduction in pain

se Corresponding standard errors

Details

This dataset is included in this package to demonstrate asymmetry in meta-analysis, where smaller studies tend to show larger effect size estimates, whereas larger studies tend to report more modest results.

Source

Edwards, J. E. Oldman, A., Smith, L., Collins, S. L., Carol, D., Wiffen, P. J., McQuay, H.J., and Moore, R.A. (1998) Single dose oral aspirin for acute pain. Cochrane Database of Systematic Reviews, 4.

Examples

```
## Not run: MetaAnalyser(aspirin)
```

catheter 3

catheter

Meta-analysis of antibacterial catheter coating

Description

Data on the effectiveness of silver sulfadiazine coating on venous catheters for preventing bacterial colonisation of the catheter and bloodstream infection. A modified version of the data provided by the **rmeta** package, excluding four small or uninformative studies.

Usage

```
data("catheter")
```

Format

A data frame with 11 observations on the following 3 variables.

```
name Study name
est Log odds ratio of bacteria colonisation (treatment compared to control)
se Corresponding standard error
```

Details

The Appavi, Pemberton, Logghe and Bach (a) studies are excluded. The data here are produced from the source numerators and denominators using the meta. MH method in **rmeta**.

Source

Veenstra D et al (1998) "Efficacy of Antiseptic Impregnated Central Venous Catheters in Preventing Nosocomial Infections: A Meta-analysis" JAMA 281:261-267

References

The rmeta package (Lumley, 2012).

Examples

```
## Not run:
MetaAnalyser(catheter)
## End(Not run)
```

4 MetaAnalyser

magnesium

Magnesium and myocardial infarction meta-analysis data

Description

8 randomised trials assessing the use of magnesium to treat myocardial infarction, previously analysed by Higgins and Spiegelhalter (2002).

Usage

```
data("magnesium")
```

Format

A data frame with 8 observations on the following 3 variables.

```
name Study name
est Log odds ratio of death (magnesium versus control)
se Standard error for the log odds ratio
```

Source

Higgins, J. P., & Spiegelhalter, D. J. (2002). Being sceptical about meta-analyses: a Bayesian perspective on magnesium trials in myocardial infarction. International Journal of Epidemiology, 31(1), 96-104.

Examples

```
## Not run: MetaAnalyser(magnesium)
```

MetaAnalyser

The Meta-Analyser

Description

An interactive application to visualise meta-analysis data as a physical weighing machine

Usage

```
MetaAnalyser(dat, rstudio = FALSE)
MetaAnalyzer(dat, rstudio = FALSE)
```

metasumm 5

Arguments

dat Meta-analysis data. This should be a data frame with three columns, called

"name", "est" and "se" giving the study name, study-specific parameter estimates

and corresponding standard errors respectively.

Numeric or character study names are permitted. If the data frame has more than three columns, the first three are used. If the first three columns are called "name", "est" and "se" in some order, they are re-ordered appropriately, other-

wise they are re-named.

rstudio The default of FALSE opens the app in the system default web browser. If

running RStudio and rstudio=TRUE, the app is opened in the RStudio built-in

viewer.

Details

Opens a web browser with the interactive application.

If dat is omitted, the default magnesium dataset is used.

MetaAnalyzer is an alias for MetaAnalyser.

Value

None

References

J. Bowden and C. Jackson "Weighing evidence with the Meta-Analyser" The American Statistician (2016) Available online, http://dx.doi.org/10.1080/00031305.2016.1165735

Examples

```
## Not run: MetaAnalyser(magnesium)
```

metasumm

Meta-analysis summary statistics

Description

Compute meta-analysis weights and corresponding pooled estimates given a set of estimates and standard errors. Weights are simply defined by the inverse variance, where the variance is the sum of the study-specific and random effects variance.

Usage

```
metasumm(dat, resd, egger = FALSE)
```

6 resd_dsl

Arguments

dat Meta-analysis data. This should be a data frame with three columns, called

"name", "est" and "se" giving the study name, study-specific parameter estimates

and corresponding standard errors respectively.

Numeric or character study names are permitted. If the data frame has more than three columns, the first three are used. If the first three columns are called "name", "est" and "se" in some order, they are re-ordered appropriately, other-

wise they are re-named.

resd Random effects standard deviation. Set resd=0 for a fixed effects meta-analysis.

If resd is omitted, a random effects meta-analysis is performed using the typical DerSimonian and Laird method to obtain the standard deviation (resd_dsl).

egger Set to TRUE to perform Egger correction.

Value

A list with the following components:

est Original study-specific estimates (if egger=FALSE) or Egger-corrected version

of these (if egger=TRUE).

pool Pooled estimate

poolse Pooled standard error

poolci Pooled 95% confidence interval

pwtfe Weights for fixed effects model, normalised to sum to 1

pwtre Weights for desired random effects standard deviation, normalised to sum to 1

resd_dsl Heterogeneity standard deviation in meta-analysis

Description

Random effects standard deviation using the classic DerSimonian & Laird formula.

Usage

resd_dsl(dat)

Arguments

dat

Meta-analysis data. This should be a data frame with three columns, called "name", "est" and "se" giving the study name, study-specific parameter estimates and corresponding standard errors respectively.

Numeric or character study names are permitted. If the data frame has more than three columns, the first three are used. If the first three columns are called "name", "est" and "se" in some order, they are re-ordered appropriately, otherwise they are re-named.

symmetric 7

Value

Estimated random effects standard deviation

Examples

```
resd_dsl(magnesium)
```

symmetric

Artificially symmetric meta-analysis data

Description

Artificial meta-analysis dataset with a symmetric pattern about the pooled estimate.

Usage

```
data("symmetric")
```

Format

A data frame with 13 observations on the following 3 variables.

name Study name, here simply a numeric vector from 1 to 13 est Study-specific estimate se Standard error

Details

Used in this package to illustrate an idealised situation where there is no correlation between effect size and precision across studies.

Examples

```
## Not run: MetaAnalyser(symmetric)
```

Index

```
* datasets
    aspirin, 2
    catheter, 3
    magnesium, 4
    symmetric, 7

aspirin, 2

catheter, 3

magnesium, 4, 5
MetaAnalyser, 4
MetaAnalyser (MetaAnalyser), 4
metasumm, 5

resd_dsl, 6, 6

symmetric, 7
```