
Package ‘PartialNetwork’
March 7, 2024

Encoding UTF-8

Version 1.0.3

Type Package

Title Estimating Peer Effects Using Partial Network Data

Date 2024-03-15

Description Implements IV-estimator and Bayesian estimator for linear-in-means Spatial Autoregres-
sive (SAR) model (see LeSage, 1997 <doi:10.1177/016001769702000107>; Lee, 2004 <doi:10.1111/j.1468-
0262.2004.00558.x>; Bramoullé et al., 2009 <doi:10.1016/j.jeconom.2008.12.021>), while as-
suming that only a partial information about the network structure is available. Exam-
ples are when the adjacency matrix is not fully observed or when only consistent estima-
tion of the network formation model is available (see Boucher and Houndetoun-
gan <https://ahoundetoungan.com/files/Papers/PartialNetwork.pdf>).

License GPL-3

BugReports https://github.com/ahoundetoungan/PartialNetwork/issues

URL https://github.com/ahoundetoungan/PartialNetwork

Depends R (>= 3.5.0)

Imports Rcpp (>= 1.0.0), Formula, formula.tools, abind, Matrix,
parallel, doParallel, foreach, doRNG

LinkingTo Rcpp, RcppArmadillo(>= 0.11.4.4.0), RcppEigen,
RcppNumerical, RcppProgress

RoxygenNote 7.2.3

Suggests AER, knitr, rmarkdown, CDatanet, ggplot2, MASS

VignetteBuilder knitr

NeedsCompilation yes

Author Vincent Boucher [aut],
Aristide Houndetoungan [cre, aut]

Maintainer Aristide Houndetoungan <ariel92and@gmail.com>

Repository CRAN

Date/Publication 2024-03-06 23:40:17 UTC

1

https://doi.org/10.1177/016001769702000107
https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1016/j.jeconom.2008.12.021
https://ahoundetoungan.com/files/Papers/PartialNetwork.pdf
https://github.com/ahoundetoungan/PartialNetwork/issues
https://github.com/ahoundetoungan/PartialNetwork

2 PartialNetwork-package

R topics documented:
PartialNetwork-package . 2
dvMF . 4
fit.dnetwork . 4
logCpvMF . 8
mcmcARD . 8
mcmcSAR . 12
peer.avg . 18
plot.mcmcSAR . 19
remove.ids . 20
rvMF . 21
sim.dnetwork . 21
sim.IV . 22
sim.network . 24
smmSAR . 25
summary.mcmcSAR . 28
summary.smmSAR . 30
vec.to.mat . 31

Index 33

PartialNetwork-package

The PartialNetwork package

Description

The PartialNetwork package implements instrumental variables (IV) and Bayesian estimators for
the linear-in-mean SAR model (e.g. Bramoulle et al., 2009) when the distribution of the network
is available, but not the network itself. To make the computations faster PartialNetwork uses C++
through the Rcpp package (Eddelbuettel et al., 2011).

Details

Two main functions are provided to estimate the linear-in-mean SAR model using only the distri-
bution of the network. The function sim.IV generates valid instruments using the distribution of
the network (see Propositions 1 and 2 in Boucher and Houndetoungan (2020)). Once the instru-
ments are constructed, one can estimate the model using standard IV estimators. We recommend
the function ivreg from the package AER (Kleiber et al., 2020). The function mcmcSAR performs
a Bayesian estimation based on an adaptive MCMC (Atchade and Rosenthal, 2005). In that case,
the distribution of the network acts as prior distribution for the network.
The package PartialNetwork also implements a network formation model based on Aggregate Re-
lational Data (McCormick and Zheng, 2015; Breza et al., 2017). This part of the package relies
on the functions rvMF, dvMF and logCpvMF partly implemented in C++, but using code from
movMF (Hornik and Grun, 2014).

PartialNetwork-package 3

Author(s)

Maintainer: Aristide Houndetoungan <ariel92and@gmail.com>

Authors:

• Vincent Boucher <vincent.boucher@ecn.ulaval.ca>

References

Atchade, Y. F., & Rosenthal, J. S., 2005, On adaptive markov chain monte carlo algorithms,
Bernoulli, 11(5), 815-828, doi:10.3150/bj/1130077595.

Boucher, V., & Houndetoungan, A., 2022, Estimating peer effects using partial network data,
Centre de recherche sur les risques les enjeux economiques et les politiques publiques, https:
//ahoundetoungan.com/files/Papers/PartialNetwork.pdf.

Bramoulle, Y., Djebbari, H., & Fortin, B., 2009, Identification of peer effects through social net-
works, Journal of econometrics, 150(1), 41-55, doi:10.1016/j.jeconom.2008.12.021.

Breza, E., Chandrasekhar, A. G., McCormick, T. H., & Pan, M., 2020, Using aggregated rela-
tional data to feasibly identify network structure without network data, American Economic Review,
110(8), 2454-84, doi:10.1257/aer.20170861

Eddelbuettel, D., Francois, R., Allaire, J., Ushey, K., Kou, Q., Russel, N., ... & Bates, D., 2011,
Rcpp: Seamless R and C++ integration, Journal of Statistical Software, 40(8), 1-18, doi:10.18637/
jss.v040.i08

Lee, L. F., 2004, Asymptotic distributions of quasi-maximum likelihood estimators for spatial au-
toregressive models. Econometrica, 72(6), 1899-1925, doi:10.1111/j.14680262.2004.00558.x

LeSage, J. P. 1997, Bayesian estimation of spatial autoregressive models, International regional
science review, 20(1-2), 113-129, doi:10.1177/016001769702000107.

Mardia, K. V., 2014, Statistics of directional data, Academic press.

McCormick, T. H., & Zheng, T., 2015, Latent surface models for networks using Aggregated Re-
lational Data, Journal of the American Statistical Association, 110(512), 1684-1695, doi:10.1080/
01621459.2014.991395.

Wood, A. T., 1994, Simulation of the von Mises Fisher distribution. Communications in statistics-
simulation and computation, 23(1), 157-164. doi:10.1080/03610919408813161.

See Also

Useful links:

• https://github.com/ahoundetoungan/PartialNetwork

• Report bugs at https://github.com/ahoundetoungan/PartialNetwork/issues

https://doi.org/10.3150/bj/1130077595
https://ahoundetoungan.com/files/Papers/PartialNetwork.pdf
https://ahoundetoungan.com/files/Papers/PartialNetwork.pdf
https://doi.org/10.1016/j.jeconom.2008.12.021
https://doi.org/10.1257/aer.20170861
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1177/016001769702000107
https://doi.org/10.1080/01621459.2014.991395
https://doi.org/10.1080/01621459.2014.991395
https://doi.org/10.1080/03610919408813161
https://github.com/ahoundetoungan/PartialNetwork
https://github.com/ahoundetoungan/PartialNetwork/issues

4 fit.dnetwork

dvMF Density function of the von Mises-Fisher distribution

Description

Density function for the von Mises-Fisher distribution of dimension p with location parameter equal
to mu and intensity parameter eta.

Usage

dvMF(z, theta, log.p = FALSE)

Arguments

z is a matrix where each row is a spherical coordinate at which the density will be
evaluated.

theta is a vector of dimension p equal to ηµ, where η is the concentration parameter,
and µ the location parameter.

log.p is logical; if TRUE, probabilities p are given as log(p).

Value

the densities computed at each point.

Examples

Draw 1000 vectors from vMF with parameter eta = 1 and mu = c(1,0)
z <- rvMF(1000, c(1,0))

Compute the density at z
dvMF(z, c(1,0))

Density of c(0, 1, 0, 0) with the parameter eta = 3 and mu = c(0, 1, 0, 0)
dvMF(matrix(c(0, 1, 0, 0), nrow = 1), c(0, 3, 0, 0))

fit.dnetwork Fitting Network Distribution using ARD.

Description

fit.dnetwork computes the network distribution using the simulations from the posterior distri-
bution of the ARD network formation model. The linking probabilities are also computed for
individuals without ARD. The degrees and the gregariousness of the individuals without ARD are
computed from the sample with ARD using a k-nearest neighbors method.

fit.dnetwork 5

Usage

fit.dnetwork(
object,
X = NULL,
obsARD = NULL,
m = NULL,
burnin = NULL,
print = TRUE

)

Arguments

object estim.ARD object returned by mcmcARD.

X (required when ARD are available for a sample of individuals) is a matrix of
variables describing individuals with ARD and those without ARD. This matrix
will be used to compute distance between individuals in the k-nearest neighbors
approach. This could be the matrix of traits (see details).

obsARD logical vector of length nrow(X) (number of individuals with and without ARD),
where the i-th entry equal to TRUE if the i-th individual in X has ARD and FALSE
otherwise. If missing, obsARD = rep(c(TRUE, FALSE), n1, n2), where n1 is
the number of individuals with ARD (see details).

m number of neighbors used to compute the gregariousness and the degree for
individuals without ARD (default value is 1).

burnin number of simulations from the posterior distribution used as burn-in. The
network distribution will be computed used the simulation from the iteration
burnin + 1.

print logical; if TRUE, the progression will be printed in the console.

Details

The order of individuals provided through the arguments traitARD and ARD (when calling the
function mcmcARD) should fit the order of individuals in X and obsARD. Especially, the i-th row of
X[obsARD,] should correspond to the i-th row in traitARD or ARD.

Value

A list consisting of:

dnetwork posterior mean of the network distribution.

degree posterior mean of the degree.

nu posterior mean of the gregariousness, nu.

Examples

set.seed(123)
GENERATE DATA

6 fit.dnetwork

Sample size
N <- 500
n <- 300

ARD parameters
genzeta <- 1
mu <- -1.35
sigma <- 0.37
K <- 12 # number of traits
P <- 3 # Sphere dimension

Generate z (spherical coordinates)
genz <- rvMF(N,rep(0,P))

Genetate nu from a Normal distribution with parameters mu and sigma (The gregariousness)
gennu <- rnorm(N,mu,sigma)

compute degrees
gend <- N*exp(gennu)*exp(mu+0.5*sigma^2)*exp(logCpvMF(P,0) - logCpvMF(P,genzeta))

Link probabilities
Probabilities <- sim.dnetwork(gennu,gend,genzeta,genz)

Adjacency matrix
G <- sim.network(Probabilities)

Generate vk, the trait location
genv <- rvMF(K,rep(0,P))

set fixed some vk distant
genv[1,] <- c(1,0,0)
genv[2,] <- c(0,1,0)
genv[3,] <- c(0,0,1)

eta, the intensity parameter
geneta <-abs(rnorm(K,2,1))

Build traits matrix
densityatz <- matrix(0,N,K)
for(k in 1:K){

densityatz[,k] <- dvMF(genz,genv[k,]*geneta[k])
}

trait <- matrix(0,N,K)
NK <- floor(runif(K, 0.8, 0.95)*colSums(densityatz)/apply(densityatz, 2, max))
for (k in 1:K) {

trait[,k] <- rbinom(N, 1, NK[k]*densityatz[,k]/sum(densityatz[,k]))
}

print a percentage of people having a trait
colSums(trait)*100/N

Build ARD

fit.dnetwork 7

ARD <- G %*% trait

generate b
genb <- numeric(K)
for(k in 1:K){

genb[k] <- sum(G[,trait[,k]==1])/sum(G)
}

############ ARD Posterior distribution ###################
EXAMPLE 1: ARD observed for the entire population
initialization
d0 <- exp(rnorm(N)); b0 <- exp(rnorm(K)); eta0 <- rep(1,K);
zeta0 <- 1; z0 <- matrix(rvMF(N,rep(0,P)),N); v0 <- matrix(rvMF(K,rep(0,P)),K)

We need to fix some of the vk and bk for identification (see Breza et al. (2020) for details).
vfixcolumn <- 1:6
bfixcolumn <- c(3, 5)
b0[bfixcolumn] <- genb[bfixcolumn]
v0[vfixcolumn,] <- genv[vfixcolumn,]

start <- list("z" = z0, "v" = v0, "d" = d0, "b" = b0, "eta" = eta0, "zeta" = zeta0)
MCMC ARD
out <- mcmcARD(Y = ARD, traitARD = trait, start = start, fixv = vfixcolumn,

consb = bfixcolumn, iteration = 5000)

fit network distribution
dist <- fit.dnetwork(out)

plot(rowSums(dist$dnetwork), gend)
abline(0, 1, col = "red")

EXAMPLE 2: ARD observed for a sample of the population
observed sample
selectARD <- sort(sample(1:N, n, FALSE))
traitard <- trait[selectARD,]
ARD <- ARD[selectARD,]
logicalARD <- (1:N) %in% selectARD

initianalization
d0 <- exp(rnorm(n)); b0 <- exp(rnorm(K)); eta0 <- rep(1,K);
zeta0 <- 1; z0 <- matrix(rvMF(n,rep(0,P)),n); v0 <- matrix(rvMF(K,rep(0,P)),K)

We need to fix some of the vk and bk for identification (see Breza et al. (2020) for details).
vfixcolumn <- 1:6
bfixcolumn <- c(3, 5)
b0[bfixcolumn] <- genb[bfixcolumn]
v0[vfixcolumn,] <- genv[vfixcolumn,]

start <- list("z" = z0, "v" = v0, "d" = d0, "b" = b0, "eta" = eta0, "zeta" = zeta0)
MCMC ARD
out <- mcmcARD(Y = ARD, traitARD = traitard, start = start, fixv = vfixcolumn,

consb = bfixcolumn, iteration = 5000)

8 mcmcARD

fit network distribution
dist <- fit.dnetwork(out, X = trait, obsARD = logicalARD, m = 1)

library(ggplot2)
ggplot(data.frame("etimated.degree" = dist$degree,

"true.degree" = gend,
"observed" = ifelse(logicalARD, TRUE, FALSE)),

aes(x = etimated.degree, y = true.degree, colour = observed)) +
geom_point()

logCpvMF Normalization constant of the von Mises-Fisher distribution

Description

log of the Normalization Constant for the von Mises-Fisher distribution of dimension p with inten-
sity parameter eta.

Usage

logCpvMF(p, eta)

Arguments

p is the dimension of the hypersphere.

eta is the intensity parameter.

Value

the log of normalization constant of the von Mises-Fisher distribution.

Examples

logCpvMF(2, 3.1)

mcmcARD Estimate network model using ARD

Description

mcmcARD estimates the network model proposed by Breza et al. (2020).

mcmcARD 9

Usage

mcmcARD(
Y,
traitARD,
start,
fixv,
consb,
iteration = 2000L,
sim.d = TRUE,
sim.zeta = TRUE,
hyperparms = NULL,
ctrl.mcmc = list()

)

Arguments

Y is a matrix of ARD. The entry (i, k) is the number of i’s friends having the trait
k.

traitARD is the matrix of traits for individuals with ARD. The entry (i, k) is equal to 1 if i
has the trait k and 0 otherwise.

start is a list containing starting values of z (matrix of dimensionN×p), v (matrix of
dimension K × p), d (vector of dimension N), b (vector of dimension K), eta
(vector of dimension K) and zeta (scalar).

fixv is a vector setting which location parameters are fixed for identifiability. These
fixed positions are used to rotate the latent surface back to a common orientation
at each iteration using a Procrustes transformation (see Section Identification in
Details).

consb is a vector of the subset of βk constrained to the total size (see Section Identifi-
cation in Details).

iteration is the number of MCMC steps to be performed.

sim.d is logical indicating whether the degree d will be updated in the MCMC. If
sim.d = FALSE, the starting value of d in the argument start is set fixed along
the MCMC.

sim.zeta is logical indicating whether the degree zeta will be updated in the MCMC. If
sim.zeta = FALSE, the starting value of zeta in the argument start is set fixed
along the MCMC.

hyperparms is an 8-dimensional vector of hyperparameters (in this order) µd, σd, µb, σb, αη ,
βη , αζ and βζ (see Section Model in Details).

ctrl.mcmc is a list of MCMC controls (see Section MCMC control in Details).

Details

The linking probability is given by

Model:

10 mcmcARD

Pij ∝ exp(νi + νj + ζzizj).

McCormick and Zheng (2015) write the likelihood of the model with respect to the spherical
coordinate zi, the trait locations vk, the degree di, the fraction of ties in the network that are
made with members of group k bk, the trait intensity parameter ηk and ζ. The following prior
distributions are defined.

zi ∼ Uniform von Mises− Fisher

vk ∼ Uniform von Mises− Fisher
di ∼ log −N (µd, σd)

bk ∼ log −N (µb, σb)

ηk ∼ Gamma(αη, βη)

ζ ∼ Gamma(αζ , βζ)

Identification:
For identification, some vk and bk need to be exogenously fixed around their given starting value
(see McCormick and Zheng, 2015 for more details). The parameter fixv can be used to set the
desired value for vk while fixb can be used to set the desired values for bk.

MCMC control:
During the MCMC, the jumping scales are updated following Atchade and Rosenthal (2005)
in order to target the acceptance rate of each parameter to the target values. This requires
to set minimal and maximal jumping scales through the parameter ctrl.mcmc. The parameter
ctrl.mcmc is a list which can contain the following named components.

• target: The default value is rep(0.44, 5). The target of every zi, di, bk, ηk and ζ is 0.44.
• jumpmin: The default value is c(0,1,1e-7,1e-7,1e-7)*1e-5. The minimal jumping of

every zi is 0, every di is 10−5, and every bk, ηk and ζ is 10−12.
• jumpmax: The default value is c(100,1,1,1,1)*20. The maximal jumping scale is 20 except

for zi which is set to 2000.
• print: A logical value which indicates if the MCMC progression should be printed in the

console. The default value is TRUE.

Value

A list consisting of:

n dimension of the sample with ARD.
K number of traits.
p hypersphere dimension.
time elapsed time in second.
iteration number of MCMC steps performed.
simulations simulations from the posterior distribution.
hyperparms return value of hyperparameters (updated and non updated).
accept.rate list of acceptance rates.
start starting values.
ctrl.mcmc return value of ctrl.mcmc.

mcmcARD 11

Examples

Sample size
N <- 500

ARD parameters
genzeta <- 1
mu <- -1.35
sigma <- 0.37
K <- 12 # number of traits
P <- 3 # Sphere dimension

Generate z (spherical coordinates)
genz <- rvMF(N,rep(0,P))

Generate nu from a Normal distribution with parameters mu and sigma (The gregariousness)
gennu <- rnorm(N,mu,sigma)

compute degrees
gend <- N*exp(gennu)*exp(mu+0.5*sigma^2)*exp(logCpvMF(P,0) - logCpvMF(P,genzeta))

Link probabilities
Probabilities <- sim.dnetwork(gennu,gend,genzeta,genz)

Adjacency matrix
G <- sim.network(Probabilities)

Generate vk, the trait location
genv <- rvMF(K,rep(0,P))

set fixed some vk distant
genv[1,] <- c(1,0,0)
genv[2,] <- c(0,1,0)
genv[3,] <- c(0,0,1)

eta, the intensity parameter
geneta <-abs(rnorm(K,2,1))

Build traits matrix
densityatz <- matrix(0,N,K)
for(k in 1:K){

densityatz[,k] <- dvMF(genz,genv[k,]*geneta[k])
}

trait <- matrix(0,N,K)
NK <- floor(runif(K, 0.8, 0.95)*colSums(densityatz)/apply(densityatz, 2, max))
for (k in 1:K) {

trait[,k] <- rbinom(N, 1, NK[k]*densityatz[,k]/sum(densityatz[,k]))
}

print a percentage of people having a trait

12 mcmcSAR

colSums(trait)*100/N

Build ARD
ARD <- G %*% trait

generate b
genb <- numeric(K)
for(k in 1:K){

genb[k] <- sum(G[,trait[,k]==1])/sum(G)
}

############ ARD Posterior distribution ###################
initialization
d0 <- exp(rnorm(N)); b0 <- exp(rnorm(K)); eta0 <- rep(1,K);
zeta0 <- 05; z0 <- matrix(rvMF(N,rep(0,P)),N); v0 <- matrix(rvMF(K,rep(0,P)),K)

We need to fix some of the vk and bk for identification (see Breza et al. (2020) for details).
vfixcolumn <- 1:6
bfixcolumn <- c(3, 5)
b0[bfixcolumn] <- genb[bfixcolumn]
v0[vfixcolumn,] <- genv[vfixcolumn,]
start <- list("z" = z0, "v" = v0, "d" = d0, "b" = b0, "eta" = eta0, "zeta" = zeta0)

MCMC
out <- mcmcARD(Y = ARD, traitARD = trait, start = start, fixv = vfixcolumn,

consb = bfixcolumn, iteration = 5000)

plot simulations
plot d
plot(out$simulations$d[,100], type = "l", col = "blue", ylab = "")
abline(h = gend[100], col = "red")

plot coordinates of individuals
i <- 123 # individual 123
{
lapply(1:3, function(x) {
plot(out$simulations$z[i, x,] , type = "l", ylab = "", col = "blue", ylim = c(-1, 1))
abline(h = genz[i, x], col = "red")

})
}

plot coordinates of traits
k <- 8
{

lapply(1:3, function(x) {
plot(out$simulations$v[k, x,] , type = "l", ylab = "", col = "blue", ylim = c(-1, 1))
abline(h = genv[k, x], col = "red")

})
}

mcmcSAR Bayesian Estimator of SAR model

mcmcSAR 13

Description

mcmcSAR implements the Bayesian estimator of the linear-in-mean SAR model when only the link-
ing probabilities are available or can be estimated.

Usage

mcmcSAR(
formula,
contextual,
start,
G0.obs,
G0 = NULL,
mlinks = list(),
hyperparms = list(),
ctrl.mcmc = list(),
iteration = 2000L,
data

)

Arguments

formula object of class formula: a symbolic description of the model. The formula
should be as for example y ~ x1 + x2 | x1 + x2 where y is the endogenous vec-
tor, the listed variables before the pipe, x1, x2 are the individual exogenous vari-
ables and the listed variables after the pipe, x1, x2 are the contextual observable
variables. Other formulas may be y ~ x1 + x2 for the model without contextual
effects, y ~ -1 + x1 + x2 | x1 + x2 for the model without intercept, or y ~ x1 +
x2 | x2 + x3 to allow the contextual variables to be different from the individual
variables.

contextual (optional) logical; if true, this means that all individual variables will be set as
contextual variables. Set formula as y ~ x1 + x2 and contextual as TRUE is
equivalent to set formula as y ~ x1 + x2 | x1 + x2.

start (optional) vector of starting value of the model parameter as (β′ γ′ α σ2)′, where
β is the individual variables parameter, γ is the contextual variables parameter,
α is the peer effect parameter and σ2 the variance of the error term. If the start
is missing, a Maximum Likelihood estimator will be used, where the network
matrix is that given through the argument G0 (if provided) or generated from it
distribution.

G0.obs list of matrices (or simply matrix if the list contains only one matrix) indicating
the part of the network data which is observed. If the (i,j)-th element of the m-th
matrix is one, then the element at the same position in the network data will be
considered as observed and will not be inferred in the MCMC. In contrast, if the
(i,j)-th element of the m-th matrix is zero, the element at the same position in
the network data will be considered as a starting value of the missing link which
will be inferred. G0.obs can also take "none" when no part of the network data
is observed (equivalent to the case where all the entries are zeros) and "all"
when the network data is fully observed (equivalent to the case where all the
entries are ones).

14 mcmcSAR

G0 list of sub-network matrices (or simply network matrix if there is only one sub-
network). G0 is made up of starting values for the entries with missing network
data and observed values for the entries with observed network data. G0 is op-
tional when G0.obs = "none".

mlinks list specifying the network formation model (see Section Network formation
model in Details).

hyperparms (optional) is a list of hyperparameters (see Section Hyperparameters in Details).

ctrl.mcmc list of MCMC controls (see Section MCMC control in Details).

iteration number of MCMC steps to be performed.

data optional data frame, list or environment (or object coercible by as.data.frame to
a data frame) containing the variables in the model. If missing, the variables
are taken from environment(formula), typically the environment from which
mcmcSAR is called.

Details

Outcome model:
The model is given by

y = Xβ + GXγ + αGy + ε.

where
ε ∼ N(0, σ2).

The parameters to estimate in this model are the matrix G, the vectors β, γ and the scalar α, σ.
Prior distributions are assumed on A, the adjacency matrix in which Aij = 1 if i is connected to
j and Aij = 0 otherwise, and on β, γ, α and σ2.

Aij ∼ Bernoulli(Pij)

(β′ γ′)′|σ2 ∼ N (µθ, σ
2Σθ)

ζ = log

(
α

1− α

)
∼ N (µζ , σ

2
ζ)

σ2 ∼ IG(
a

2
,
b

2
)

where P is the linking probability. The linking probability is an hyperparameters that can be set
fixed or updated using a network formation model.

Network formation model:
The linking probability can be set fixed or updated using a network formation model. Information
about how P should be handled in in the MCMC can be set through the argument mlinks which
should be a list with named elements. Divers specifications of network formation model are
possible. The list assigned to mlist should include an element named model. The expected
values of model are "none" (default value), "logit", "probit", and "latent space".

• "none" means that the network distribution P is set fixed throughout the MCMC,
• "probit" or "logit" implies that the network distribution P will be updated using a Probit

or Logit model,
• "latent spate" means that P will be updated following Breza et al. (2020).

mcmcSAR 15

Fixed network distribution:
To set P fixed, mlinks could contain,

• dnetwork, a list, where the m-th elements is the matrix of link probability in the m-th sub-
network.

• model = "none" (optional as "none" is the default value).

Probit and Logit models:
For the Probit and Logit specification as network formation model, the following elements could
be declared in mlinks.

• model = "probit" or model = "logit".
• mlinks.formula object of class formula: a symbolic description of the Logit or Probit

model. The formula should only specify the explanatory variables, as for example ~ x1 +
x2, the variables x1 and x2 are the dyadic observable characteristics. Each variable should
verify length(x) == sum(N^2 - N), where N is a vector of the number of individual in each
sub-network. Indeed, x will be associated with the entries (1, 2); (1, 3); (1, 4); ...; (2, 1);
(2, 3); (2, 4); ... of the linking probability and as so, in all the sub-networks. Functions
mat.to.vec and vec.to.mat can be used to convert a list of dyadic variable as in matrix
form to a format that suits mlinks.formula.

• weights (optional) is a vector of weights of observed entries. This is important to address
the selection problem of observed entries. Default is a vector of ones.

• estimates (optional when a part of the network is observed) is a list containing rho, a
vector of the estimates of the Probit or Logit parameters, and var.rho the covariance matrix
of the estimator. These estimates can be automatically computed when a part of the network
data is available. In this case, rho and the unobserved part of the network are updated
without using the observed part of the network. The latter is assumed non-stochastic in the
MCMC. In addition, if G0.obs = "none", estimates should also include N, a vector of the
number of individuals in each sub-network.

• prior (optional) is a list containing rho, a vector of the prior beliefs on rho, and var.rho
the prior covariance matrix of rho. This input is relevant only when the observed part of the
network is used to update rho, i.e. only when estimates = NULL (so, either estimates or
prior should be NULL).
To understand the difference between estimates and prior, note that estimates includes
initial estimates of rho and var.rho, meaning that the observed part of the network is not
used in the MCMC to update rho. In contrast, prior contains the prior beliefs of the user,
and therefore, rho is updated using this prior and information from the observed part of
the network. In addition, if G0.obs = "none", prior should also include N, a vector of the
number of individuals in each sub-network.

• mlinks.data optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the dyadic observable characteristics If missing, the variables
will be taken from environment(mlinks.formula), typically the environment from which
mcmcARD is called.

Latent space models:
The following element could be declared in mlinks.

• model = "latent space".
• estimates a list of objects of class mcmcARD, where the m-th element is Breza et al. (2020)

estimator as returned by the function mcmcARD in the m-th sub-network.
• mlinks.data (required only when ARD are partially observed) is a list of matrices, where

the m-th element is the variable matrix to use to compute distance between individuals

16 mcmcSAR

(could be the list of traits) in the m-th sub-network. The distances will be used to com-
pute gregariousness and coordinates for individuals without ARD by k-nearest neighbors
approach.

• obsARD (required only when ARD are partially observed) is a list of logical vectors, where
the i-th entry of the m-th vector indicates by TRUE or FALSE if the i-th individual in the m-th
sub-network has ARD or not.

• mARD (optional, default value is rep(1, M)) is a vector indicating the number of neighbors
to use in each sub-network.

• burninARD (optional) set the burn-in to summarize the posterior distribution in estimates.

Hyperparameters:
All the hyperparameters can be defined through the argument hyperparms (a list) and should be
named as follow.

• mutheta, the prior mean of (β′ γ′)′|σ2. The default value assumes that the prior mean is
zero.

• invstheta as Σ−1θ . The default value is a diagonal matrix with 0.01 on the diagonal.
• muzeta, the prior mean of ζ. The default value is zero.
• invszeta, the inverse of the prior variance of ζ with default value equal to 2.
• a and b which default values equal to 4.2 and 2.2 respectively. This means for example that

the prior mean of σ2 is 1.

Inverses are used for the prior variance through the argument hyperparms in order to allow non in-
formative prior. Set the inverse of the prior variance to 0 is equivalent to assume a non informative
prior.

MCMC control:
During the MCMC, the jumping scales of α and ρ are updated following Atchade and Rosenthal
(2005) in order to target the acceptance rate to the target value. This requires to set a minimal
and a maximal jumping scales through the parameter ctrl.mcmc. The parameter ctrl.mcmc is a
list which can contain the following named components.

• target: the default value is c("alpha" = 0.44, "rho" = 0.234).
• jumpmin: the default value is c("alpha" = 1e-5, "rho" = 1e-5).
• jumpmax: the default value is c("alpha" = 10, "rho" = 10).
• print.level: an integer in {0, 1, 2} that indicates if the MCMC progression should be

printed in the console. If 0, the MCMC progression is not be printed. If 1 (default value), the
progression is printed and if 2, the simulations from the posterior distribution are printed.

• block.max: The maximal number of entries that can be updated simultaneously in A. It
might be more efficient to update simultaneously 2 or 3 entries (see Boucher and Houndetoun-
gan, 2022).

If block.max > 1, several entries are randomly chosen from the same row and updated simultane-
ously. The number of entries chosen is randomly chosen between 1 and block.max. In addition,
the entries are not chosen in order. For example, on the row i, the entries (i, 5) and (i, 9) can be
updated simultaneously, then the entries (i, 1), (i, 3), (i, 8), and so on.

Value

A list consisting of:

mcmcSAR 17

n.group number of groups.

N vector of each group size.

time elapsed time to run the MCMC in second.

iteration number of MCMC steps performed.

posterior matrix (or list of matrices) containing the simulations.

hyperparms return value of hyperparms.

mlinks return value of mlinks.

accept.rate acceptance rates.

prop.net proportion of observed network data.

method.net network formation model specification.

start starting values.

formula input value of formula and mlinks.formula.

contextual input value of contextual.

ctrl.mcmc return value of ctrl.mcmc.

See Also

smmSAR, sim.IV

Examples

We assume that the network is fully observed
See our vignette for examples where the network is partially observed
Number of groups
M <- 50
size of each group
N <- rep(30,M)
individual effects
beta <- c(2,1,1.5)
contextual effects
gamma <- c(5,-3)
endogenous effects
alpha <- 0.4
std-dev errors
se <- 1
prior distribution
prior <- runif(sum(N*(N-1)))
prior <- vec.to.mat(prior, N, normalise = FALSE)
covariates
X <- cbind(rnorm(sum(N),0,5),rpois(sum(N),7))
true network
G0 <- sim.network(prior)
normalise
G0norm <- norm.network(G0)
simulate dependent variable use an external package
y <- CDatanet::simsar(~ X, contextual = TRUE, Glist = G0norm,

18 peer.avg

theta = c(alpha, beta, gamma, se))
y <- y$y
dataset
dataset <- as.data.frame(cbind(y, X1 = X[,1], X2 = X[,2]))
out.none1 <- mcmcSAR(formula = y ~ X1 + X2, contextual = TRUE, G0.obs = "all",

G0 = G0, data = dataset, iteration = 1e4)
summary(out.none1)
plot(out.none1)
plot(out.none1, plot.type = "dens")

peer.avg Computing peer average value

Description

peer.avg computes peer average value using network data (as a list) and observable characteristics.

Usage

peer.avg(Glist, V, export.as.list = FALSE)

Arguments

Glist the adjacency matrix or list sub-adjacency matrix.

V vector or matrix of observable characteristics.

export.as.list (optional) boolean to indicate if the output should be a list of matrices or a single
matrix.

Value

the matrix product diag(Glist[[1]], Glist[[2]], ...) %*% V, where diag() is the block diag-
onal operator.

See Also

sim.network

Examples

Generate a list of adjacency matrices
sub-network size
N <- c(250, 370, 120)
rate of friendship
p <- c(.2, .15, .18)
network data
u <- unlist(lapply(1: 3, function(x) rbinom(N[x]*(N[x] - 1), 1, p[x])))
G <- vec.to.mat(u, N, normalise = TRUE)

plot.mcmcSAR 19

Generate a vector y
y <- rnorm(sum(N))

Compute G%*%y
Gy <- peer.avg(Glist = G, V = y)

plot.mcmcSAR Plotting estimation of Bayesian SAR model

Description

Plotting the simulation from the posterior distribution as well as the density functions of Bayesian
SAR model parameter. For more details about the graphical parameter arguments, see par.

Usage

S3 method for class 'mcmcSAR'
plot(x, plot.type = "sim", burnin = NULL, which.parms = "theta", ...)

S3 method for class 'plot.mcmcSAR'
print(x, ...)

Arguments

x object of class "mcmcSAR", output of the function mcmcSAR or object of class
"plot.mcmcSAR", output of the function plot.mcmcSAR.

plot.type character indicating the type of plot: "sim" for plotting the simulation from the
posterior distribution or "dens" for plotting the posterior density functions.

burnin number of MCMC steps which will be considered as burn-in iterations. If NULL
(default value), the 50% first MCMC steps performed are used as burn-in itera-
tions.

which.parms character indicating the parameters whose the posterior distribution will be plot-
ted: "theta" for the parameters of the outcome model and "rho" for the pa-
rameters of the network formation model.

... arguments to be passed to methods, such as par.

Value

A list consisting of:

n.group number of groups.

N vector of each group size.

iteration number of MCMC steps performed.

burnin number of MCMC steps which will be considered as burn-in iterations.

posterior summary of the posterior distribution to be plotted.

20 remove.ids

hyperparms return value of hyperparms.

accept.rate acceptance rate of zeta.

propG0.obs proportion of observed network data.

method.net network formation model specification.

formula input value of formula.

ctrl.mcmc return value of ctrl.mcmc.

which.parms return value of which.parms.

plot.type type of the plot.

... arguments passed to methods.

remove.ids Removes IDs with NA in a list of adjacency matrices optimally

Description

The function optimally removes identifiers with NA in a list of adjacency matrices. Many combi-
nations of rows and columns can be deleted removing many rows and column

Usage

remove.ids(network, ncores = 1L)

Arguments

network is a list of adjacency matrices

ncores is the number of cores to be used to run the program in parallel

Value

List of adjacency matrices without missing values and a list of vectors of retained indeces

Examples

A <- matrix(1:25, 5)
A[1, 1] <- NA
A[4, 2] <- NA
remove.ids(A)

B <- matrix(1:100, 10)
B[1, 1] <- NA
B[4, 2] <- NA
B[2, 4] <- NA
B[,8] <-NA
remove.ids(B)

rvMF 21

rvMF Simulation from the von Mises-Fisher distribution

Description

Random generation for the von Mises-Fisher distribution of dimension p with location parameter
mu and intensity parameter eta (see Wood, 1994; Mardia, 2014).

Usage

rvMF(size, theta)

Arguments

size is the number of simulations.

theta is the parameter as eta*mu.

Value

A matrix whose each row is a random draw from the distribution.

Examples

Draw 10 vectors from vMF with parameters eta = 1 and mu = c(1,0)
rvMF(10,c(1,0))

Draw 10 vectors from vMF with parameters eta = sqrt(14) and mu proportional to (2,1,3)
rvMF(10,c(2,1,3))

Draw from the vMF distribution with mean direction proportional to c(1, -1)
and concentration parameter 3
rvMF(10, 3 * c(1, -1) / sqrt(2))

sim.dnetwork Simulation of the distribution of the network for Breza et al. (2020)

Description

Compute the distribution of the network following McCormick and Zheng (2015) and Breza et al.
(2020).

Usage

sim.dnetwork(nu, d, zeta, z)

22 sim.IV

Arguments

nu is the vector of gregariousness.
d is the vector of degrees.
zeta is a scale parameter that captures the influence of the latent positions on the link

probabilities.
z is a matrix where each row is a spherical coordinate.

Value

a matrix of linking probabilities.

See Also

sim.network

Examples

N <- 500
zeta <- 1

Generate the spherical coordinates
z <- rvMF(N, c(0, 0, 0))

Genetate the gregariousness
nu <- rnorm(N, -1.35, 0.37)

Generate degrees
d <- runif(N, 0, 45)

dist <- sim.dnetwork(nu, d, zeta, z)

sim.IV Instrument Variables for SAR model

Description

sim.IV generates Instrument Variables (IV) for linear-in-mean SAR models using only the distri-
bution of the network. See Propositions 1 and 2 of Boucher and Houndetoungan (2020).

Usage

sim.IV(
dnetwork,
X,
y = NULL,
replication = 1L,
power = 1L,
exp.network = FALSE

)

sim.IV 23

Arguments

dnetwork network matrix of list of sub-network matrices, where the (i, j)-th position is the
probability that i be connected to j.

X matrix of the individual observable characteristics.

y (optional) the endogenous variable as a vector.

replication (optional, default = 1) is the number of repetitions (see details).

power (optional, default = 1) is the number of powers of the interaction matrix used to
generate the instruments (see details).

exp.network (optional, default = FALSE) indicates if simulated network should be exported.

Details

Bramoulle et al. (2009) show that one can use GX , G2X , ..., GPX as instruments for Gy, where
P is the maximal power desired. sim.IV generate approximation of those instruments, based on
Propositions 1 and 2 in Boucher and Houndetoungan (2020) (see also below). The argument power
is the maximal power desired.
When Gy and the instruments GX , G2X , ..., GPX are not observed, Boucher and Houndetoungan
(2022) show that we can use one drawn from the distribution of the network in order to approximate
Gy, but that the same draw should not be used to approximate the instruments. Thus, each compo-
nent in the function’s output gives G1y and G1X computed with the same network and G2X computed
with another network, which can be used in order to approximate the instruments. This process
can be replicated several times and the argument replication can be used to set the number of
replications desired.

Value

list of replication components. Each component is a list containing G1y (if the argument y was
provided), G1 (if exp.network = TRUE), G2 (if exp.network = TRUE) , G1X, and G2X where G1 and
G2 are independent draws of network from the distribution (see details).

G1y is an approximation of Gy.

G1X is an approximation of GpX with the same network draw as that used in G1y.
G1X is an array of dimensionN×K×power, whereK is the number of column
in X. For any p ∈ {1, 2, ..., power}, the approximation of GpX is given by
G1X[,,p].

G2X is an approximation of GpX with a different different network. G2X is an array
of dimensionN×K×power. For any p ∈ {1, 2, ..., power}, the approximation
of GpX is given by G2X[,,p].

See Also

mcmcSAR

24 sim.network

Examples

library(AER)
Number of groups
M <- 30
size of each group
N <- rep(50,M)
individual effects
beta <- c(2,1,1.5)
endogenous effects
alpha <- 0.4
std-dev errors
se <- 2
prior distribution
prior <- runif(sum(N*(N-1)))
prior <- vec.to.mat(prior, N, normalise = FALSE)
covariates
X <- cbind(rnorm(sum(N),0,5),rpois(sum(N),7))
true network
G0 <- sim.network(prior)
normalise
G0norm <- norm.network(G0)
simulate dependent variable use an external package
y <- CDatanet::simsar(~ X, contextual = FALSE, Glist = G0norm,

theta = c(alpha, beta, se))
y <- y$y
generate instruments
instr <- sim.IV(prior, X, y, replication = 1, power = 1)

GY1c1 <- instr[[1]]$G1y # proxy for Gy (draw 1)
GXc1 <- instr[[1]]$G1X[,,1] # proxy for GX (draw 1)
GXc2 <- instr[[1]]$G2X[,,1] # proxy for GX (draw 2)
build dataset
keep only instrument constructed using a different draw than the one used to proxy Gy
dataset <- as.data.frame(cbind(y, X, GY1c1, GXc1, GXc2))
colnames(dataset) <- c("y","X1","X2","G1y", "G1X1", "G1X2", "G2X1", "G2X2")

Same draws
out.iv1 <- ivreg(y ~ X1 + X2 + G1y | X1 + X2 + G1X1 + G1X2, data = dataset)
summary(out.iv1)

Different draws
out.iv2 <- ivreg(y ~ X1 + X2 + G1y | X1 + X2 + G2X1 + G2X2, data = dataset)
summary(out.iv2)

sim.network Simulating network data

smmSAR 25

Description

Simulating network data

Usage

sim.network(dnetwork, normalise = FALSE)

Arguments

dnetwork is a list of sub-network matrices, where the (i, j)-th position of the m-th matrix
is the probability that i be connected to j, with i and j individuals from the m-th
network.

normalise boolean takes TRUE if the returned matrices should be row-normalized and FALSE
otherwise.

Value

list of (row-normalized) adjacency matrices.

See Also

sim.dnetwork

Examples

Generate a list of adjacency matrices
sub-network size
N <- c(250, 370, 120)
distribution
dnetwork <- lapply(N, function(x) matrix(runif(x^2), x))
network
G <- sim.network(dnetwork)

smmSAR Simulated Method of Moments (SMM) Estimator of SAR model

Description

smmSAR implements the Simulated Method of Moments (SMM) estimator of the linear-in-mean
SAR model when only the linking probabilities are available or can be estimated.

26 smmSAR

Usage

smmSAR(
formula,
contextual = FALSE,
fixed.effects = FALSE,
dnetwork,
W = "identity",
smm.ctr = list(R = 30L, iv.power = 2L, opt.tol = 1e-04, smoother = FALSE, print =

FALSE),
cond.var = TRUE,
data

)

Arguments

formula object of class formula: a symbolic description of the model. The formula
should be as for example y ~ x1 + x2 | gy | gx1 + gx2 where y is the endoge-
nous vector, the listed variables before the pipe, x1, x2 are the individual exoge-
nous variables, gy is the average of y among friends, and gx1, gx2 are the con-
textual observed variables. If gy is observed and gx1, gx2 are not, the formula
should be y ~ x1 + x2 | gy. If gy is not observed and gx1, gx2 are, the formula
should be y ~ x1 + x2 || gx1 + gx2. If gy, gx1, and gx2 are not observed, the
the formula should simply be y ~ x1 + x2.

contextual logical; if true, this means that all individual variables will be set as contextual
variables. In contrast mcmcSAR, formula as y ~ x1 + x2 and contextual as TRUE
is not equivalent to set formula as y ~ x1 + x2 || gx1 + gx2. formula = y ~ x1 +
x2 means that gy, gx1, and gx2 are not observed and contextual = TRUE means
that the estimated model includes contextual effects.

fixed.effects logical; if true, group heterogeneity is included as fixed effects.

dnetwork a list, where the m-th elements is the matrix of link probability in the m-th sub-
network.

W is the weighted-matrix in the objective function of the SMM.

smm.ctr is the list of some control parameters (see details).

cond.var logical; if true the estimator variance conditional on dnetwork will be computed.

data optional data frame, list or environment (or object coercible by as.data.frame to
a data frame) containing the variables in the model. If missing, the variables
are taken from environment(formula), typically the environment from which
smmSAR is called.

Details

The parameter smm.ctr is the list of some control parameters such as:

• R numbers of draws R (in the package, we assume S = 1 and T = 1);

• iv.power number of powers of the network matrix G to be used to construct instruments;

• opt.tol optimization tolerance that will be used in optimize;

smmSAR 27

• smoother (logical) which indicates if draws should be performed using the smoother simula-
tor;

• h bandwith of the smoother (required if smoother = TRUE);

• print (logical) indicates if the optimization process should be printed step by step.

Value

A list consisting of:

n.group number of groups.

N vector of each group size.

time elapsed time to run the SMM in second.

estimates vector of estimated parameters.

formula input value of formula.

contextual input value of contextual.

fixed.effects input value of fixed.effects.

smm.ctr input value of smm.ctr.

details other details of the model.

Examples

Number of groups
M <- 100
size of each group
N <- rep(30,M)
covariates
X <- cbind(rnorm(sum(N),0,5),rpois(sum(N),7))
network formation model parameter
rho <- c(-0.8, 0.2, -0.1)
individual effects
beta <- c(2, 1, 1.5, 5, -3)
endogenous effects
alpha <- 0.4
std-dev errors
se <- 1
network
tmp <- c(0, cumsum(N))
X1l <- lapply(1:M, function(x) X[c(tmp[x] + 1):tmp[x+1],1])
X2l <- lapply(1:M, function(x) X[c(tmp[x] + 1):tmp[x+1],2])
dist.net <- function(x, y) abs(x - y)
X1.mat <- lapply(1:M, function(m) {

matrix(kronecker(X1l[[m]], X1l[[m]], FUN = dist.net), N[m])})
X2.mat <- lapply(1:M, function(m) {

matrix(kronecker(X2l[[m]], X2l[[m]], FUN = dist.net), N[m])})
Xnet <- as.matrix(cbind("Const" = 1,

"dX1" = mat.to.vec(X1.mat),
"dX2" = mat.to.vec(X2.mat)))

28 summary.mcmcSAR

ynet <- Xnet %*% rho
ynet <- c(1*((ynet + rlogis(length(ynet))) > 0))
G0 <- vec.to.mat(ynet, N, normalise = FALSE)
normalise
G0norm <- norm.network(G0)
Matrix GX
GX <- peer.avg(G0norm, X)
simulate dependent variable use an external package
y <- CDatanet::simsar(~ X, contextual = TRUE, Glist = G0norm,

theta = c(alpha, beta, se))
Gy <- y$Gy
y <- y$y
build dataset
dataset <- as.data.frame(cbind(y, X, Gy, GX))
colnames(dataset) <- c("y","X1","X2", "Gy", "GX1", "GX2")
nNet <- nrow(Xnet) # network formation model sample size
Aobs <- sample(1:nNet, round(0.3*nNet)) # We observed 30%
We can estimate rho using the gml function from the stats package
logestim <- glm(ynet[Aobs] ~ -1 + Xnet[Aobs,], family = binomial(link = "logit"))
slogestim <- summary(logestim)
rho.est <- logestim$coefficients
rho.var <- slogestim$cov.unscaled # we also need the covariance of the estimator

d.logit <- lapply(1:M, function(x) {
out <- 1/(1 + exp(-rho.est[1] - rho.est[2]*X1.mat[[x]] -

rho.est[3]*X2.mat[[x]]))
diag(out) <- 0
out})

smm.logit <- smmSAR(y ~ X1 + X2, dnetwork = d.logit, contextual = TRUE,
smm.ctr = list(R = 100L, print = TRUE), data = dataset)

summary(smm.logit, dnetwork = d.logit, data = dataset)

summary.mcmcSAR Summarizing Bayesian SAR Model

Description

Summary and print methods for the class mcmcSAR.

Usage

S3 method for class 'mcmcSAR'
summary(object, alpha = 0.95, plot.type = NULL, burnin = NULL, ...)

S3 method for class 'summary.mcmcSAR'
print(x, ...)

S3 method for class 'mcmcSAR'
print(x, ...)

summary.mcmcSAR 29

Arguments

object an object of class "mcmcSAR", output of the function mcmcSAR.

alpha (optional, default = 0.95), the significance level of parameter.

plot.type (optional) a character that indicate if the simulations from the posterior distri-
bution should be printed (if plot.type = "sim") or if the posterior distribution
densities should be plotted (plot.type = "dens"). The plots can also done us-
ing the method plot.

burnin is the number of MCMC steps which will be considered as burn-in iterations. If
NULL (default value), the 50% first MCMC steps performed are used as burn-in
iterations.

... further arguments passed to or from other methods.

x an object of class "summary.mcmcSAR" or "mcmcSAR, output of the functions
summary.mcmcSAR and print.summary.mcmcSAR.

Details

The function is smart and allows all the possible arguments with the functions summary, plot, par...
such as col, lty, mfrow... summary.mcmcSAR, print.summary.mcmcSAR and print.mcmcSAR can
be called by summary or print.

Value

A list consisting of:

n.group number of groups.

N vector of each group size.

iteration number of MCMC steps performed.

burnin number of MCMC steps which will be considered as burn-in iterations.

posterior matrix (or list of matrices) containing the simulations.

hyperparms return value of hyperparms.

accept.rate acceptance rate of zeta.

prop.net proportion of observed network data.

method.net network formation model specification.

formula input value of formula.

alpha significance level of parameter.

ctrl.mcmc return value of ctrl.mcmc.

... arguments passed to methods.

30 summary.smmSAR

summary.smmSAR Summarizing SMM Estimation of SAR model

Description

Summary and print methods for the class smmSAR.

Usage

S3 method for class 'smmSAR'
summary(object, .fun, .args, sim = 30, ncores = 1, dnetwork, data, ...)

S3 method for class 'summary.smmSAR'
print(x, ...)

S3 method for class 'smmSAR'
print(x, dnetwork, .fun, .args, sim = NULL, ncores = 1, data, ...)

Arguments

object an object of class "smmSAR", output of the function smmSAR.

.fun, .args are used to simulate from the distribution of dnetwork. .fun is the simula-
tor function where .args is a list of its arguments. Typically do.call(.fun,
.args) is supposed to simulate one dnetwork from the distribution.

sim the number of simulations of dnetwork.

ncores the number of cores to be used for the simulation. Use a lot of cores for fast
simulations.

dnetwork a list, where the m-th elements is the matrix of link probability in the m-th sub-
network.

data optional data frame, list or environment (or object coercible by as.data.frame to
a data frame) containing the variables in the model. If missing, the variables
are taken from environment(formula), typically the environment from which
smmSAR is called.

... further arguments passed to or from other methods.

x an object of class "summary.smmSAR" or "smmSAR", output of the functions
summary.smmSAR or smmSAR.

Value

A list consisting of:

n.group number of groups.

N vector of each group size.

estimates vector of estimated parameters.

vec.to.mat 31

formula input value of formula.

contextual input value of contextual.

fixed.effects input value of fixed.effects.

smm.ctr input value of smm.ctr.

details other details of the model.

vec.to.mat Creating objects for network models

Description

vec.to.mat creates a list of square matrices from a given vector. The elements of the generated
matrices are taken from the vector and placed column-wise (ie. the first column is filled up before
filling the second column) and from the first matrix of the list to the last matrix of the list. The
diagonal of the generated matrices are zeros. mat.to.vec creates a vector from a given list of
square matrices . The elements of the generated vector are taken from column-wise and from the
first matrix of the list to the last matrix of the list, while dropping the diagonal entry. norm.network
row-normalizes matrices in a given list.

Usage

vec.to.mat(u, N, normalise = FALSE, byrow = FALSE)

mat.to.vec(W, ceiled = FALSE, byrow = FALSE)

norm.network(W)

Arguments

u numeric vector to convert.

N vector of sub-network sizes such that length(u) == sum(N*(N - 1)).

normalise Boolean takes TRUE if the returned matrices should be row-normalized and FALSE
otherwise.

byrow Boolean takes TRUE is entries in the matrices should be taken by row and FALSE
if they should be taken by column.

W matrix or list of matrices to convert.

ceiled Boolean takes TRUE if the given matrices should be ceiled before conversion and
FALSE otherwise.

Value

a vector of size sum(N*(N - 1)) or list of length(N) square matrices. The sizes of the matrices are
N[1], N[2], ...

32 vec.to.mat

See Also

sim.network, sim.dnetwork, peer.avg.

Examples

Generate a list of adjacency matrices
sub-network size
N <- c(250, 370, 120)
rate of friendship
p <- c(.2, .15, .18)
network data
u <- unlist(lapply(1: 3, function(x) rbinom(N[x]*(N[x] - 1), 1, p[x])))
W <- vec.to.mat(u, N)

Convert G into a list of row-normalized matrices
G <- norm.network(W)

recover u
v <- mat.to.vec(G, ceiled = TRUE)
all.equal(u, v)

Index

as.data.frame, 14, 15, 26, 30

dvMF, 2, 4

fit.dnetwork, 4
formula, 13, 15, 26

ivreg, 2

logCpvMF, 2, 8

mat.to.vec, 15
mat.to.vec (vec.to.mat), 31
mcmcARD, 5, 8, 15
mcmcSAR, 2, 12, 19, 23, 26, 29

norm.network (vec.to.mat), 31

optimize, 26

par, 19, 29
PartialNetwork

(PartialNetwork-package), 2
PartialNetwork-package, 2
peer.avg, 18, 32
plot, 29
plot.mcmcSAR, 19, 19
print.mcmcSAR (summary.mcmcSAR), 28
print.plot.mcmcSAR (plot.mcmcSAR), 19
print.smmSAR (summary.smmSAR), 30
print.summary.mcmcSAR, 29
print.summary.mcmcSAR

(summary.mcmcSAR), 28
print.summary.smmSAR (summary.smmSAR),

30

remove.ids, 20
rvMF, 2, 21

sim.dnetwork, 21, 25, 32
sim.IV, 2, 17, 22

sim.network, 18, 22, 24, 32
smmSAR, 17, 25, 30
summary, 29
summary.mcmcSAR, 28, 29
summary.smmSAR, 30, 30

vec.to.mat, 15, 31

33

	PartialNetwork-package
	dvMF
	fit.dnetwork
	logCpvMF
	mcmcARD
	mcmcSAR
	peer.avg
	plot.mcmcSAR
	remove.ids
	rvMF
	sim.dnetwork
	sim.IV
	sim.network
	smmSAR
	summary.mcmcSAR
	summary.smmSAR
	vec.to.mat
	Index

