
Package ‘RcppBigIntAlgos’
August 16, 2023

Type Package

Title Factor Big Integers with the Parallel Quadratic Sieve

Version 1.1.0

Maintainer Joseph Wood <jwood000@gmail.com>

Description Features the multiple polynomial quadratic sieve (MPQS) algorithm
for factoring large integers and a vectorized factoring function that
returns the complete factorization of an integer. The MPQS is based off of
the seminal work of Carl Pomerance (1984) <doi:10.1007/3-540-39757-4_17>
along with the modification of multiple polynomials introduced by Peter
Montgomery and J. Davis as outlined by Robert D. Silverman (1987)
<doi:10.1090/S0025-5718-1987-0866119-8>. Utilizes the C library
GMP (GNU Multiple Precision Arithmetic). For smaller integers, a simple
Elliptic Curve algorithm is attempted followed by a constrained version of
Pollard's rho algorithm. The Pollard's rho algorithm is the same algorithm
used by the factorize function in the 'gmp' package.

License GPL (>= 2)

Encoding UTF-8

SystemRequirements gmp (>= 4.2.3)

Imports gmp

LinkingTo cpp11

Suggests testthat, numbers, RcppAlgos

NeedsCompilation yes

URL https://github.com/jwood000/RcppBigIntAlgos, https://gmplib.org/,

http://mathworld.wolfram.com/QuadraticSieve.html,

https://micsymposium.org/mics_2011_proceedings/mics2011_submission_28.pdf,

https://www.math.colostate.edu/~hulpke/lectures/m400c/quadsievex.pdf,

https://blogs.msdn.microsoft.com/devdev/2006/06/19/
factoring-large-numbers-with-quadratic-sieve/

BugReports https://github.com/jwood000/RcppBigIntAlgos/issues

RoxygenNote 7.1.0

1

https://doi.org/10.1007/3-540-39757-4_17
https://doi.org/10.1090/S0025-5718-1987-0866119-8
https://github.com/jwood000/RcppBigIntAlgos
https://gmplib.org/
http://mathworld.wolfram.com/QuadraticSieve.html
https://micsymposium.org/mics_2011_proceedings/mics2011_submission_28.pdf
https://www.math.colostate.edu/~hulpke/lectures/m400c/quadsievex.pdf
https://blogs.msdn.microsoft.com/devdev/2006/06/19/factoring-large-numbers-with-quadratic-sieve/
https://blogs.msdn.microsoft.com/devdev/2006/06/19/factoring-large-numbers-with-quadratic-sieve/
https://github.com/jwood000/RcppBigIntAlgos/issues

2 divisorsBig

Author Joseph Wood [aut, cre],
Free Software Foundation, Inc. [cph],
Mike Tryczak [ctb]

Repository CRAN

Date/Publication 2023-08-16 12:34:37 UTC

R topics documented:

divisorsBig . 2
primeFactorizeBig . 4
quadraticSieve . 5
stdThreadMax . 7

Index 8

divisorsBig Vectorized Factorization (Complete) with GMP

Description

Quickly generates the complete factorization for many (possibly large) numbers.

Usage

divisorsBig(v, namedList = FALSE, showStats = FALSE,
skipPolRho = FALSE, skipECM = FALSE, nThreads = NULL)

Arguments

v Vector of integers, numerics, string values, or elements of class bigz.

namedList Logical flag. If TRUE and the length(v) > 1, a named list is returned. The
default is FALSE.

showStats Logical flag for showing summary statistics. The default is FALSE.

skipPolRho Logical flag passed to primeFactorizeBig for skipping the extended pollard
rho algorithm. The default is FALSE.

skipECM Logical flag passed to primeFactorizeBig for skipping the extended elliptic
curve algorithm. The default is FALSE.

nThreads Number of threads to be used for the elliptic curve method and the quadratic
sieve. The default is NULL.

divisorsBig 3

Details

Highly optimized algorithm to generate the complete factorization after first obtaining the prime
factorization. It is built specifically for the data type that is used in the gmp library (i.e. mpz_t).

The main part of the algorithm that generates all divisors is essentially the same algorithm that is
implemented in divisorsRcpp from the RcppAlgos package. A modified merge sort algorithm
is implemented to better deal with the mpz_t data type. This algorithm avoids directly swapping
elements of the main factor array of type mpz_t but instead generates a vector of indexing integers
for ordering.

The prime factorization is obtained using primeFactorizeBig, which attempts trial division, Pol-
lard’s rho algorithm, Lentra’s elliptic curve method, and finally the quadratic sieve.

See this stackoverflow post for examples and benchmarks : R Function for returning ALL factors.

See quadraticSieve for information regarding showStats.

Value

• Returns an unnamed vector of class bigz if length(v) == 1 regardless of the value of namedList.

• If length(v) > 1, a named/unnamed list of vectors of class bigz will be returned.

Author(s)

Joseph Wood

References

Divisor

See Also

divisorsRcpp, divisors

Examples

Get the complete factorization of a single number
divisorsBig(100)

Or get the complete factorization of many numbers
set.seed(29)
myVec <- sample(-1000000:1000000, 1000)
system.time(myFacs <- divisorsBig(myVec))

Return named list
myFacsWithNames <- divisorsBig(myVec, namedList = TRUE)

Get the complete factorization for a large semiprime
big = gmp::prod.bigz(gmp::nextprime(gmp::urand.bigz(2, size = 65, seed = 3)))
divisorsBig(big)

https://gmplib.org/manual/Nomenclature-and-Types.html#Nomenclature-and-Types
https://en.wikipedia.org/wiki/Merge_sort
https://stackoverflow.com/a/49742904/4408538
https://en.wikipedia.org/wiki/Divisor

4 primeFactorizeBig

primeFactorizeBig Vectorized Prime Factorization with GMP

Description

Quickly generates the prime factorization for many (possibly large) numbers, using trial division,
Pollard’s rho algorithm, Lenstra’s Elliptic Curve method, and finally the Quadratic Sieve.

Usage

primeFactorizeBig(v, namedList = FALSE, showStats = FALSE,
skipPolRho = FALSE, skipECM = FALSE, nThreads = NULL)

Arguments

v Vector of integers, numerics, string values, or elements of class bigz.

namedList Logical flag. If TRUE and the length(v) > 1, a named list is returned. The
default is FALSE.

showStats Logical flag for showing summary statistics. The default is FALSE.

skipPolRho Logical flag for skipping the extended pollard rho algorithm. The default is
FALSE.

skipECM Logical flag for skipping the extended elliptic curve algorithm. The default is
FALSE.

nThreads Number of threads to be used for the elliptic curve method and the quadratic
sieve.s The default is NULL.

Details

This function should be preferred in most situations and is identical to quadraticSieve when both
skipECM and skipPolRho are set to TRUE.

It is optimized for factoring big and small numbers by dynamically using different algorithms based
off of the input. It takes cares to not spend too much time in any of the methods and avoids waste-
fully switching to the quadratic sieve when the number is very large.

See quadraticSieve for information regarding showStats.

Value

• Returns an unnamed vector of class bigz if length(v) == 1 regardless of the value of namedList.

• If length(v) > 1, a named/unnamed list of vectors of class bigz will be returned.

Note

Note, the function primeFactorizeBig(n, skipECM = T, skipPolRho = T) is the same as quadraticSieve(n)

https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization
https://en.wikipedia.org/wiki/Quadratic_sieve

quadraticSieve 5

Author(s)

Joseph Wood

References

• Gaj K. et al. (2006) Implementing the Elliptic Curve Method of Factoring in Reconfigurable
Hardware. In: Goubin L., Matsui M. (eds) Cryptographic Hardware and Embedded Systems
- CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/11894063_10

• Integer Factorization

See Also

primeFactorize, primeFactors, factorize, quadraticSieve

Examples

Get the prime factorization of a single number
primeFactorizeBig(100)

Or get the prime factorization of many numbers
set.seed(29)
myVec <- sample(-1000000:1000000, 1000)
system.time(myFacs <- primeFactorizeBig(myVec))

Return named list
myFacsWithNames <- primeFactorizeBig(myVec, namedList = TRUE)

quadraticSieve Prime Factorization with the Parallel Quadratic Sieve

Description

Get the prime factorization of a number, n, using the Quadratic Sieve.

Usage

quadraticSieve(n, showStats = FALSE, nThreads = NULL)

Arguments

n An integer, numeric, string value, or an element of class bigz.

showStats Logical flag. If TRUE, summary statistics will be displayed.

nThreads Number of threads to be used. The default is NULL.

https://www.iacr.org/archive/ches2006/10/10.pdf
https://www.iacr.org/archive/ches2006/10/10.pdf
https://www.iacr.org/archive/ches2006/10/10.pdf
https://www.iacr.org/archive/ches2006/10/10.pdf
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Quadratic_sieve

6 quadraticSieve

Details

First, trial division is carried out to remove small prime numbers, then a constrained version of
Pollard’s rho algorithm is called to quickly remove further prime numbers. Next, we check to make
sure that we are not passing a perfect power to the main quadratic sieve algorithm. After removing
any perfect powers, we finally call the quadratic sieve with multiple polynomials in a recursive
fashion until we have completely factored our number.

When showStats = TRUE, summary statistics will be shown. The frequency of updates is dynamic
as writing to stdout can be expensive. It is determined by how fast smooth numbers (including
partially smooth numbers) are found along with the total number of smooth numbers required in
order to find a non-trivial factorization. The statistics are:

MPQS Time The time measured for the multiple polynomial quadratic sieve section in hours h, min-
utes m, seconds s, and milliseconds ms.

Complete The percent of smooth numbers plus partially smooth numbers required to guarantee
a non-trivial solution when Gaussian Elimination is performed on the matrix of powers of
primes.

Polynomials The number of polynomials sieved

Smooths The number of Smooth numbers found

Partials The number of partially smooth numbers found. These numbers have one large factor, F,
that is not reduced by the prime factor base determined in the algorithm. When we encounter
another number that is almost smooth with the same large factor, F, we can combine them into
one partially smooth number.

Value

Vector of class bigz

Note

• primeFactorizeBig is preferred for general prime factorization.

• Both the extended Pollard’s rho algorithm and the elliptic curve method are skipped. For
general prime factorization, see primeFactorizeBig.

• Safely interrupt long executing commands by pressing Ctrl + c, Esc, or whatever interruption
command offered by the user’s GUI. If you are using multiple threads, you can still interrupt
execution, however there will be a delay up to 30 seconds if the number is very large.

• Note, the function primeFactorizeBig(n, skipECM = T, skipPolRho = T) is the same as
quadraticSieve(n)

Author(s)

Joseph Wood

References

• Pomerance, C. (2008). Smooth numbers and the quadratic sieve. In Algorithmic Number The-
ory Lattices, Number Fields, Curves and Cryptography (pp. 69-81). Cambridge: Cambridge
University Press.

https://en.wikipedia.org/wiki/Trial_division
https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Smooth_number
http://library.msri.org/books/Book44/files/03carl.pdf
http://library.msri.org/books/Book44/files/03carl.pdf
http://library.msri.org/books/Book44/files/03carl.pdf

stdThreadMax 7

• Silverman, R. D. (1987). The Multiple Polynomial Quadratic Sieve. Mathematics of Compu-
tation, 48(177), 329-339. doi:10.2307/2007894

• Integer Factorization using the Quadratic Sieve

• From https://codegolf.stackexchange.com/ (Credit to user primo for answer) P., & Chowdhury,
S. (2012, October 7). Fastest semiprime factorization. Retrieved October 06, 2017

See Also

primeFactorizeBig, factorize

Examples

mySemiPrime <- gmp::prod.bigz(gmp::nextprime(gmp::urand.bigz(2, 50, 17)))
quadraticSieve(mySemiPrime)

stdThreadMax Max Number of Concurrent Threads

Description

Rcpp wrapper of std::thread::hardware_concurrency(). As stated by cppreference, the returned
value should be considered only a hint.

Usage

stdThreadMax()

Value

An integer representing the number of concurrent threads supported by the user implementation. If
the value cannot be determined, 1L is returned.

See Also

detectCores

Examples

stdThreadMax()

http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866119-8/S0025-5718-1987-0866119-8.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866119-8/S0025-5718-1987-0866119-8.pdf
https://micsymposium.org/mics_2011_proceedings/mics2011_submission_28.pdf
https://codegolf.stackexchange.com/questions/8629/fastest-semiprime-factorization/9088#9088
https://codegolf.stackexchange.com/questions/8629/fastest-semiprime-factorization/9088#9088
https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
https://en.cppreference.com/w/

Index

detectCores, 7
divisors, 3
divisorsBig, 2
divisorsRcpp, 3

factorize, 5, 7

primeFactorize, 5
primeFactorizeBig, 2, 3, 4, 6
primeFactors, 5

quadraticSieve, 3–5, 5

stdThreadMax, 7

8

	divisorsBig
	primeFactorizeBig
	quadraticSieve
	stdThreadMax
	Index

