Package 'SIHR'

April 9, 2023

1 - 7
Type Package
Title Statistical Inference in High Dimensional Regression
Version 2.0.1
Author Prabrisha Rakshit, Zhenyu Wang, Tony Cai, Zijian Guo
Maintainer Zijian Guo <zijguo@stat.rutgers.edu></zijguo@stat.rutgers.edu>
Description The goal of SIHR is to provide inference procedures in the high-dimensional setting for (1) linear functionals in generalized linear regression ('Cai et al.' (2019) <arxiv:1904.12891>, 'Guo et al.' (2020) <arxiv:2012.07133>, 'Cai et al.' (2021)), (2) conditional average treatment effects in generalized linear regression, (3) quadratic functionals in generalized linear regression ('Guo et al.' (2019) <arxiv:1909.01503>). (4) inner product in generalized linear regression (5) distance in generalized linear regression.</arxiv:1909.01503></arxiv:2012.07133></arxiv:1904.12891>
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
<pre>URL https://github.com/prabrishar1/SIHR</pre>
Imports CVXR, glmnet, stats
NeedsCompilation no
Repository CRAN
Date/Publication 2023-04-09 16:50:02 UTC
R topics documented:
CATE
Dist
InnProd
LF
QF
Index 12

CATE CATE

CATE

Inference for difference of linear combinations of the regression vectors in high dimensional generalized linear regressions

Description

Computes the bias-corrected estimator of the difference of linear combinations of the regression vectors for the high dimensional generalized linear regressions and the corresponding standard error.

Usage

```
CATE(
 Х1,
 y1,
 Х2,
 y2,
  loading.mat,
 model = c("linear", "logistic", "logistic_alter"),
  intercept = TRUE,
  intercept.loading = FALSE,
  beta.init1 = NULL,
  beta.init2 = NULL,
  lambda = NULL,
 mu = NULL,
  prob.filter = 0.05,
  rescale = 1.1,
  alpha = 0.05,
  verbose = FALSE
)
```

X1	Design matrix for the first sample, of dimension $n_1 \times p$	
y1	Outcome vector for the first sample, of length n_1	
X2	Design matrix for the second sample, of dimension $n_2 \times p$	
y2	Outcome vector for the second sample, of length n_1	
loading.mat	Loading matrix, nrow=p, each column corresponds to a loading of interest	
model	The high dimensional regression model, either "linear" or "logistic" or "logistic_alter"	
intercept	Should intercept(s) be fitted for the initial estimators (default = TRUE)	
intercept.loading		
	Should intercept term be included for the loading (default = FALSE)	
beta.init1	The initial estimator of the regression vector for the 1st data (default = NULL)	
beta.init2	The initial estimator of the regression vector for the 2nd data (default = NULL)	

CATE 3

lambda	The tuning parameter in fitting initial model. If NULL, it will be picked by cross-validation. (default = $NULL$)
mu	The dual tuning parameter used in the construction of the projection direction. If NULL it will be searched automatically. (default = NULL)
prob.filter	The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
rescale	The factor to enlarge the standard error to account for the finite sample bias. $(default = 1.1)$
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed (default = FALSE)

Value

A list consists of plugin estimators, debiased estimators, and confidence intervals. For logistic regression, it also returns those items after probability transformation.

est.plugin.vec	The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat	
est.debias.vec	The vector of bias-corrected estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat	
se.vec	The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); corresponding to different column in loading.mat	
ci.mat	The matrix of two.sided confidence interval for the linear combination, dimension of ncol(loading.mat) x 2; the row corresponding to different column in loading.mat	
prob.debias.vec		
	The vector of bias-corrected estimators after probability transformation, length of ncol(loading.mat); corresponding to different column in loading.mat.	
prob.se.vec	The vector of standard errors of the bias-corrected estimators after probability transformation, length of ncol(loading.mat); corresponding to different column in loading.mat.	
prob.ci.mat	The matrix of two.sided confidence interval of the bias-corrected estimators after probability transformation, dimension of ncol(loading.mat) x 2; the row corresponding to different column in loading.mat.	

```
X1 = matrix(rnorm(100*5), nrow=100, ncol=5)
y1 = -0.5 + X1[,1] * 0.5 + X1[,2] * 1 + rnorm(100)
X2 = matrix(rnorm(90*5), nrow=90, ncol=5)
y2 = -0.4 + X2[,1] * 0.48 + X2[,2] * 1.1 + rnorm(90)
loading1 = c(1, 1, rep(0,3))
loading2 = c(-0.5, -1, rep(0,3))
loading.mat = cbind(loading1, loading2)
Est = CATE(X1, y1, X2, y2, loading.mat, model="linear")
```

4 Dist

```
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

Dist

Inference for weighted quadratic functional of difference of the regression vectors (excluding the intercept term) in high dimensional generalized linear regressions.

Description

Inference for weighted quadratic functional of difference of the regression vectors (excluding the intercept term) in high dimensional generalized linear regressions.

Usage

```
Dist(
  Х1,
  y1,
  Х2,
  y2,
  G,
  A = NULL
  model = c("linear", "logistic", "logistic_alter"),
  intercept = TRUE,
  beta.init1 = NULL,
  beta.init2 = NULL,
  split = TRUE,
  lambda = NULL,
  mu = NULL,
  prob.filter = 0.05,
  rescale = 1.1,
  tau = c(0.25, 0.5, 1),
  alpha = 0.05,
  verbose = FALSE
)
```

X1	Design matrix for the first sample, of dimension $n_1 \times p$
y1	Outcome vector for the first sample, of length n_1
X2	Design matrix for the second sample, of dimension $n_2 \ge p$
y2	Outcome vector for the second sample, of length n_1

Dist 5

G	The set of indices, G in the quadratic form
A	The matrix A in the quadratic form, of dimension $ G \times G $. If NULL A would be set as the $ G \times G $ submatrix of the population covariance matrix corresponding to the index set G (default = NULL)
model	The high dimensional regression model, either "linear" or "logistic" or "logistic_alter"
intercept	Should intercept(s) be fitted for the initial estimators (default = TRUE)
beta.init1	The initial estimator of the regression vector for the 1st data (default = NULL)
beta.init2	The initial estimator of the regression vector for the 2nd data (default = NULL)
split	Sampling splitting or not for computing the initial estimators. It take effects only when beta.init1 = NULL or beta.init2 = NULL. (default = TRUE)
lambda	The tuning parameter in fitting initial model. If NULL, it will be picked by cross-validation. (default = $NULL$)
mu	The dual tuning parameter used in the construction of the projection direction. If $NULL$ it will be searched automatically. (default = $NULL$)
prob.filter	The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
rescale	The factor to enlarge the standard error to account for the finite sample bias. $(default = 1.1)$
tau	The enlargement factor for asymptotic variance of the bias-corrected estimator to handle super-efficiency. It allows for a scalar or vector. (default = $c(0.25, 0.5, 1)$)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed. (default = FALSE)

Value

est.plugin	The plugin(biased) estimator for the quadratic form of the regression vectors restricted to G
est.debias	The bias-corrected estimator of the quadratic form of the regression vectors
se	Standard errors of the bias-corrected estimator, length of tau; corrsponding to different values of tau
ci.mat	The matrix of two.sided confidence interval for the quadratic form of the regression vector; row corresponds to different values of tau

```
X1 = matrix(rnorm(100*5), nrow=100, ncol=5)
y1 = -0.5 + X1[,1] * 0.5 + X1[,2] * 1 + rnorm(100)
X2 = matrix(rnorm(90*5), nrow=90, ncol=5)
y2 = -0.4 + X2[,1] * 0.48 + X2[,2] * 1.1 + rnorm(90)
G = c(1,2)
A = matrix(c(1.5, 0.8, 0.8, 1.5), nrow=2, ncol=2)
Est = Dist(X1, y1, X2, y2, G, A, model="linear")
Est$ci
```

6 InnProd

InnProd

Inference for weighted inner product of the regression vectors in high dimensional generalized linear regressions

Description

Inference for weighted inner product of the regression vectors in high dimensional generalized linear regressions

Usage

```
InnProd(
 X1,
 y1,
 Х2,
 y2,
 G,
 A = NULL
 model = c("linear", "logistic", "logistic_alter"),
  intercept = TRUE,
 beta.init1 = NULL,
  beta.init2 = NULL,
  split = TRUE,
  lambda = NULL,
 mu = NULL,
  prob.filter = 0.05,
  rescale = 1.1,
  tau = c(0.25, 0.5, 1),
  alpha = 0.05,
  verbose = FALSE
)
```

X1	Design matrix for the first sample, of dimension $n_1 \times p$
y1	Outcome vector for the first sample, of length n_1
X2	Design matrix for the second sample, of dimension $n_2 \times p$
y2	Outcome vector for the second sample, of length n_1
G	The set of indices, G in the quadratic form
A	The matrix A in the quadratic form, of dimension $ G \times G $. If NULL A would be set as the $ G \times G $ submatrix of the population covariance matrix corresponding to the index set G (default = NULL)
mode1	The high dimensional regression model, either "linear" or "logistic" or "logistic_alter"
intercept	Should intercept(s) be fitted for the initial estimators (default = TRUE)

InnProd 7

beta.init1	The initial estimator of the regression vector for the 1st data (default = $NULL$)
beta.init2	The initial estimator of the regression vector for the 2nd data (default = NULL)
split	Sampling splitting or not for computing the initial estimators. It take effects only when beta.init1 = $NULL$ or beta.init2 = $NULL$. (default = $TRUE$)
lambda	The tuning parameter in fitting initial model. If NULL, it will be picked by cross-validation. (default = $NULL$)
mu	The dual tuning parameter used in the construction of the projection direction. If NULL it will be searched automatically. (default = NULL)
prob.filter	The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
rescale	The factor to enlarge the standard error to account for the finite sample bias. $(default = 1.1)$
tau	The enlargement factor for asymptotic variance of the bias-corrected estimator to handle super-efficiency. It allows for a scalar or vector. (default = $c(0.25, 0.5, 1)$)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed. (default = FALSE)

Value

est.plugin	The plugin(biased) estimator for the inner product form of the regression vectors restricted to \ensuremath{G}
est.debias	The bias-corrected estimator of the inner product form of the regression vectors
se	Standard errors of the bias-corrected estimator, length of tau; corrsponding to different values of tau $$
ci.mat	The matrix of two.sided confidence interval for the inner product form of the regression vector; row corresponds to different values of tau

```
X1 = matrix(rnorm(100*5), nrow=100, ncol=5)
y1 = -0.5 + X1[,1] * 0.5 + X1[,2] * 1 + rnorm(100)
X2 = matrix(rnorm(90*5), nrow=90, ncol=5)
y2 = -0.4 + X2[,1] * 0.48 + X2[,2] * 1.1 + rnorm(90)
G = c(1,2)
A = matrix(c(1.5, 0.8, 0.8, 1.5), nrow=2, ncol=2)
Est = InnProd(X1, y1, X2, y2, G, A, model="linear")
Est$ci
```

8 LF

LF

Inference for linear combination of the regression vector in high dimensional generalized linear regression

Description

Inference for linear combination of the regression vector in high dimensional generalized linear regression

Usage

```
LF(
    X,
    y,
    loading.mat,
    model = c("linear", "logistic", "logistic_alter"),
    intercept = TRUE,
    intercept.loading = FALSE,
    beta.init = NULL,
    lambda = NULL,
    mu = NULL,
    prob.filter = 0.05,
    rescale = 1.1,
    alpha = 0.05,
    verbose = FALSE
)
```

Χ	Design matrix, of dimension $n \times p$	
у	Outcome vector, of length n	
loading.mat	Loading matrix, nrow=p, each column corresponds to a loading of interest	
mode1	The high dimensional regression model, either "linear" or "logistic" or "logistic_alter"	
intercept	Should intercept be fitted for the initial estimator (default = TRUE)	
intercept.loading		
	Should intercept term be included for the loading (default = FALSE)	
beta.init	The initial estimator of the regression vector (default = NULL)	
lambda	The tuning parameter in fitting initial model. If $NULL$, it will be picked by cross-validation. (default = $NULL$)	
mu	The dual tuning parameter used in the construction of the projection direction. If NULL it will be searched automatically. (default = NULL)	
prob.filter	The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)	

QF 9

rescale	The factor to enlarge the standard error to account for the finite sample bias. $(default = 1.1)$
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed. (default = FALSE)

Value

est.plugin.vec	The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); each corresponding to a loading of interest
est.debias.vec	The vector of bias-corrected estimators for the linear combination of regression coefficients, length of ncol(loading.mat); each corresponding to a loading of interest
se.vec	The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); each corresponding to a loading of interest
ci.mat	The matrix of two.sided confidence interval for the linear combination, of dimension ncol(loading.mat) x 2; each row corresponding to a loading of interest
proj.mat	The matrix of projection directions; each column corresponding to a loading of interest.

Examples

```
X = matrix(rnorm(100*5), nrow=100, ncol=5)
y = -0.5 + X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
loading1 = c(1, 1, rep(0, 3))
loading2 = c(-0.5, -1, rep(0, 3))
loading.mat = cbind(loading1, loading2)
Est = LF(X, y, loading.mat, model="linear")
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

Inference for quadratic forms of the regression vector in high dimensional generalized linear regressions

Description

QF

Inference for quadratic forms of the regression vector in high dimensional generalized linear regressions

10 QF

Usage

```
QF(
 Χ,
 у,
 G,
 A = NULL
 model = c("linear", "logistic", "logistic_alter"),
 intercept = TRUE,
 beta.init = NULL,
 split = TRUE,
 lambda = NULL,
 mu = NULL,
 prob.filter = 0.05,
 rescale = 1.1,
  tau = c(0.25, 0.5, 1),
 alpha = 0.05,
 verbose = FALSE
)
```

V	
Χ	Design matrix, of dimension $n \times p$
У	Outcome vector, of length n
G	The set of indices, G in the quadratic form
A	The matrix A in the quadratic form, of dimension $ G \times G $. If NULL A would be set as the $ G \times G $ submatrix of the population covariance matrix corresponding to the index set G (default = NULL)
model	The high dimensional regression model, either "linear" or "logistic" or "logistic_alter"
intercept	Should intercept be fitted for the initial estimator (default = TRUE)
beta.init	The initial estimator of the regression vector (default = NULL)
split	Sampling splitting or not for computing the initial estimator. It take effects only when beta.init = NULL. (default = TRUE)
lambda	The tuning parameter in fitting initial model. If NULL, it will be picked by cross-validation. (default = NULL)
mu	The dual tuning parameter used in the construction of the projection direction. If NULL it will be searched automatically. (default = NULL)
prob.filter	The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05)
rescale	The factor to enlarge the standard error to account for the finite sample bias. $(default = 1.1)$
tau	The enlargement factor for asymptotic variance of the bias-corrected estimator to handle super-efficiency. It allows for a scalar or vector. (default = $c(0.25, 0.5, 1)$)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed. (default = FALSE)

QF 11

Value

est.plugin	The plugin(biased) estimator for the quadratic form of the regression vector restricted to G
est.debias	The bias-corrected estimator of the quadratic form of the regression vector
se	Standard errors of the bias-corrected estimator, length of tau; corrsponding to different values of tau
ci.mat	The matrix of two.sided confidence interval for the quadratic form of the regression vector; row corresponds to different values of tau

```
X = matrix(rnorm(100*5), nrow=100, ncol=5)
y = X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
G = c(1,2)
A = matrix(c(1.5, 0.8, 0.8, 1.5), nrow=2, ncol=2)
Est = QF(X, y, G, A, model="linear")
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
```

Index

CATE, 2
Dist, 4
InnProd, 6
LF, 8
QF, 9