Package 'SNSchart'

October 12, 2022

Type Package

Title Sequential Normal Scores in Statistical Process Management
Version 1.4.0
Author Victor Tercero [aut],
Luis Benavides [aut, cre],
Jorge Merlo [ctb]
Maintainer Luis Benavides luisbv@tec.mx
Description The methods discussed in this package are new non-parametric methods based on sequential normal scores 'SNS' (Conover et al (2017) doi:10.1080/07474946.2017.1360091), designed for sequences of observations, usually time series data, which may occur singly or in batches, and may be univariate or multivariate. These methods are designed to detect changes in the process, which may occur as changes in location (mean or median), changes in scale (standard deviation, or variance), or other changes of interest in the distribution of the observations, over the time observed. They usually apply to large data sets, so computations need to be simple enough to be done in a reasonable time on a computer, and easily updated as each new observation (or batch of observations) becomes available. Some examples and more detail in 'SNS' is presented in the work by Conover et al (2019) arXiv:1901.04443.
Depends R (>= 2.10)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports parallel, stats, MASS
Suggests testhhat, knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-07 08:40:15 UTC

R topics documented:

calibrateControlLimit 2
dataAlignment 6
example49 7
example65 8
example71 8
example74a 9
example74b 9
example74c 10
example81 10
example82 11
example83 11
example84 12
example85 12
example87 13
example91 13
example93 14
getARL 14
getDist 17
getQuantile 19
getRL 21
mcalibrateControlLimit 24
mgetARL 26
mgetDist 28
mgetRL 29
MNS 31
MSNS 33
NS 35
SNS 36
srank 39
Index 41
calibrateControlLimit Calibration of the control limit for the selected chart

Description

The methodology used to calibrate the control limit for the SNS chart depending on the selected chart

Usage

```
calibrateControlLimit(
        targetARL = NULL,
        targetMRL = NULL,
        n,
        m,
        theta = NULL,
        Ftheta = NULL,
        scoring = "Z",
        Chi2corrector = "None",
        dist,
        mu,
        sigma,
        dist.par = c(0, 1, 1),
        chart,
        chart.par,
        replicates = 50000,
        isParallel = TRUE,
        maxIter = 20,
        progress = TRUE,
        alignment = "unadjusted",
        constant = NULL,
        absolute = FALSE,
        isFixed = FALSE,
        rounding.factor = NULL
    )
```


Arguments

targetARL scalar. is the target ARL to calibrate. By default is set to NULL
targetMRL scalar. is the target ARL to calibrate. By default is set to NULL
n
m
theta
Ftheta scalar. Quantile of the data distribution. The values that take are between $(0,1)$.
scoring character string. If "Z" (normal scores) (default). If "Z-SQ" (normal scores squared).
Chi2corrector character string. Only when scoring is Z-SQ. Select from

- "approx: $\mathrm{Z}^{\wedge} 2^{*}(\mathrm{~m}+1+1.3) /(\mathrm{m}+1)$.
- "exact": $Z^{\wedge} 2 / m e a n(Z)$.
- "none": Z^2.

If "approx" () (default). If "exact" (normal scores squared).
dist character string. Select from:

- "Uniform: Continuous Uniform distribution .

	- "Normal": Normal distribution (default). - "Normal2": Squared Normal distribution (also known as Chi-squared). - "DoubleExp": Double exponential distribution (also known as Laplace distribution). - "DoubleExp2": Double exponential squared distribution from a $\operatorname{DoubleExp}(0,1)$. - "LogNormal": Lognormal distribution. - "Gamma": Gamma distribution. - "Weibull": Weibull distribution. - "t": Student-t distribution.
mu	vector. Two elements, the first one is the mean of the reference sample and the second one is the mean of the monitoring sample.
sigma	vector. Two elements, the first one is the sd of the reference sample and the second one is the sd of the monitoring sample.
dist.par	vector. Distribution parameters. c(par.a, par.b). Default c (0,1).
chart	character string. Selected type of chart. Three options are available: Shewhart, CUSUM, EWMA
chart.par	vector. The size depends on the selected chart:
	Shewhart scheme: is $\mathrm{c}(\mathrm{k})$, where k comes from $U C L=m u+k \sigma, L C L=$ $m u-k \sigma$.
	CUSUM scheme: is $c(k, h, t)$ where k is the reference value and h is the control limit, and t is the type of the chart (1:positive, 2:negative, 3:two sides)
	EWMA scheme: is c(lambda, L), where lambda is the smoothing constant and L multiplies standard deviation to get the control limit
replicates	scalar. Number of replicates to get the ARL
isParallel	logical. If TRUE the code runs in parallel according to the number of cores in the computer,otherwise the code runs sequentially. Default TRUE.
maxIter	scalar. is a numeric. The maximum number of iteration to take the calibration before stops
progress	logical. If TRUE it shows the progress in the console.
alignment	character string. Aligment of the data X and Y. Select from
	- "unadjusted": nothing is sustracte from X and Y (default). - "overallmean": overall mean is sustracted from X and Y. - "overallmedian": overall median is sustracted from X and Y. - "samplemean": mean from corresponding group (X and Y) is sustracted from its corresponing vector. - "samplemedian": median from corresponding group (X and Y) is sustracted from its corresponing vector. - "referencemean": mean from Y is subtracted from X and Y. - "referencemedian": median from Y is subtracted from X and Y. - "constantvalue": a constant value is subtracted from X and Y .
constant	scalar. Only used when the alignment is selected "constantvalue". Default NULL.

```
absolute logical. If TRUE, the absolute aligned values are obtained. (Default FALSE)
isFixed logical. If TRUE the reference sample does not update, otherwise the reference
    sample is updated whenever the batch is in control.
rounding.factor
    scalar. positive value that determine the range between two consecutive rounded
    values.
```


Value

Multiple output. Select by output\$

- objective.function: scalar. The best solution obtained, in terms of the target ARL or MRL
- par .value: scalar. Which parameter of the chart reach this best solution
- iter: scalar. In which iteration is found the objective function.
- found: boolean. Is TRUE if in the maxIter is reached the desired +-5

Note

The argument chart . par in this function correspond to the initial parameters to start the calibration.

Examples

```
n <- 2 # subgroup size
m <- 30 # reference-sample size
dist <- "Normal" # distribution
mu <- c(0, 0) # c(reference sample mean, monitoring sample mean)
sigma <- c(1, 1) # c(reference sample sd, monitoring sample sd)
#### Distribution parameters
dist.par <- c(0, 1) # c(location, scale)
#### Other Parameters
replicates <- 2
targetARL <- 370
isParallel = FALSE
#### Control chart parameters
chart <- "Shewhart"
chart.par <- c(3)
shewhart <- calibrateControlLimit(
    targetARL = targetARL, targetMRL = NULL, n = n, m = m, theta = NULL,
    Ftheta = NULL, dist = dist, mu = mu, sigma = sigma, dist.par = dist.par, chart.par = chart.par,
        replicates = replicates, chart = chart, isParallel = isParallel
)
chart <- "CUSUM"
chart.par <- c(0.5, 2.5, 3)
cusum <- calibrateControlLimit(
    targetARL = targetARL, targetMRL = NULL, n = n, m = m, theta = NULL,
    Ftheta = NULL, dist = dist, mu = mu, sigma = sigma, dist.par = dist.par, chart.par = chart.par,
```

```
        replicates = replicates, chart = chart, isParallel = isParallel
    )
    chart <- "EWMA"
    chart.par <- c(0.2, 2.962)
    ewma <- calibrateControlLimit(
        targetARL = targetARL, targetMRL = NULL, n = n, m = m, theta = NULL,
        Ftheta = NULL, dist = dist, mu = mu, sigma = sigma, dist.par = dist.par, chart.par = chart.par,
        replicates = replicates, chart = chart, isParallel = isParallel
)
```

dataAlignment Alignment of the data

Description

Align the monitoring sample X and the reference sample Y.

Usage

```
dataAlignment(
    X,
    Y,
    alignment = "unadjusted",
    constant = NULL,
    absolute = FALSE
)
```


Arguments

constant scalar. Only used when the alignment is selected "constantvalue". Default
X
Y
alignment
absolute
vector. Monitoring sample.
vector. Reference sample.
character string. Aligment of the data X and Y. Select from

- "unadjusted": nothing is sustracte from X and Y (default).
- "overallmean": overall mean is sustracted from X and Y.
- "overallmedian": overall median is sustracted from X and Y.
- "samplemean": mean from corresponding group (X and Y) is sustracted from its corresponing vector.
- "samplemedian": median from corresponding group (X and Y) is sustracted from its corresponing vector.
- "referencemean": mean from Y is subtracted from X and Y.
- "referencemedian": median from Y is subtracted from X and Y.
- "constantvalue": a constant value is subtracted from X and Y. NULL.
logical. If TRUE, the absolute aligned values are obtained. (Default FALSE)

Value

Multiple output. Select by output\$

- X: vector. Monitor sample with the alignment selected.
- Y: vector. Reference sample with the alignment selected.

Examples

```
X = c(30, 45, 50)
Y = c(20, 22, 25, 30, 70)
dataAlignment(X,Y)
```

 example49
 Data from Example 4.9 Qiu (2014).

Description

A dataset containing the data set used in Example 4.9 of Qiu (2014).

Usage

example49

Format

A data frame with 50 rows and 6 columns:
Y1 Reference sample of the first data set. 10 batches are $\mathrm{N}(0,1)$
X1 Monitoring sample of the first data set. 10 batches are $\mathrm{N}(1,1)$.
Y2 Reference sample of the second data set. 10 batches are $\mathrm{N}(0,1)$
X2 Monitoring sample of the second data set. 10 batches are $\mathrm{N}\left(0,2^{\wedge} 2\right)$.
X.id id of each observation of the batch for the second data set.

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example49.dat

Description

A dataset containing the data set used in Example 6.5 on page 246 of Qiu (2014).

Usage

example65

Format

A data frame with 30 rows and 5 columns:
\mathbf{x} first 9 observations are the reference sample. Batch size equals to 1 .
Wn Wn
Sn2 Sn2
Bmax Bmax
hn hn

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example65.dat

Data from Example 7.1 Qiu (2014).

Description

A dataset containing the data set used in Example 7.1 of Qiu (2014).

Usage

example71

Format

The data (X1,X2,X3) consist of 30 observations each variable.
X 1st batch.
X. 1 2nd batch.
X. 2 3rd batch.

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example71.dat

Description

A dataset containing the data set used in Example 7.4(a) of Qiu (2014).

Usage

example74a

Format

The data ($\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$) consist of 30 observations each variable.
X 1st batch.
X. 1 2nd batch.
X. 2 3rd batch.

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example74a.dat

example74b

Data from Example 7.4(b) Qiu (2014).

Description

A dataset containing the data set used in Example 7.4(b) of Qiu (2014).

Usage

example74b

Format

The data (X1,X2,X3) consist of 30 observations each variable.
X 1st batch.
X. 1 2nd batch.
X. 2 3rd batch.

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example74b.dat

Description

A dataset containing the data set used in Example 7.4(c) of Qiu (2014).

Usage

example74c

Format

The data ($\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$) consist of 30 observations each variable.
X 1st batch.
X. 1 2nd batch.
X. 2 3rd batch.

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example74c.dat
example81
Data from Example 8.1 on page 319 Qiu (2014).

Description

A dataset containing the data set used in Example 8.1 on page 319 of Qiu (2014).

Usage

example81

Format

A data frame with 300 rows (30 batches of size equals to 10)
X observations of all batches
X.id id of each observation of the batch

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example81.dat

Description

A dataset containing the data set used in Example 8.2 on page 323 of Qiu (2014).

Usage

example82

Format

A data frame with 150 rows (30 batches of size equals to 5)
X observations of all batches
X.id id of each observation of the batch

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example82.dat
example83
Data from Example 8.3 on page 326 Qiu (2014).

Description

A dataset containing the data set used in Example 8.3 on page 326 of Qiu (2014).

Usage

example83

Format

A data frame with 180 rows (30 batches of size equals to 6)
X observations of all batches
X.id id of each observation of the batch

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example81.dat

Description

A dataset containing the data set used in Example 8.4 of Qiu (2014).

Usage

example84

Format

A data frame with 150 rows (30 batches of size equals to 5)
X observations of all batches
X.id id of each observation of the batch

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example84.dat
example85
Data from Example 8.5 Qiu (2014).

Description

A dataset containing the data set used in Example 8.5 of Qiu (2014).

Usage

example85

Format

A data frame with 300 rows (30 batches of size equals to 10)
X observations of all batches
X.id id of each observation of the batch

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example85.dat

Description

A dataset containing the data set used in Example 8.7 on page 339 of Qiu (2014).

Usage

example87

Format

A data frame with 86 rows (86 batches of size equals to 1)
X observations of all batches
X.id id of each observation of the batch

Y reference sample of size equals to 14

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example87.dat
example91 Data from Example 9.1 on page 369 Qiu (2014).

Description

A dataset containing the data set used in Example 9.1 on page 369 of Qiu (2014).

Usage

example91

Format

The data (X, Y) consist of 20 batches with 50 observations in each batch.
V1 1st batch.
V2 2 nd batch.

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example91.dat

Description

A dataset containing the data set used in Example 9.3 of Qiu (2014).

Usage

example93

Format

The data (X, Y) consist of 20 batches with 10 observations in each batch.

X 1st batch.
X. 1 2nd batch.

Source

https://users.phhp.ufl.edu/pqiu/research/book/spc/data/example93.dat
getARL Average Run Length (ARL)

Description

Get the ARL getRL

Usage

getARL
n ,
m,
theta $=$ NULL,
Ftheta $=$ NULL,
dist,
mu,
sigma,
dist. par $=c(0,1,1)$,
chart,
chart.par,
scoring = "Z",
Chi2corrector = "None",
replicates $=10000$,

```
    isParallel = TRUE,
    print.RL = FALSE,
    progress = FALSE,
    calibrate = FALSE,
    arl0 = 370,
    alignment = "unadjusted",
    constant = NULL,
    absolute = FALSE,
    isFixed = FALSE,
    rounding.factor = NULL
)
```


Arguments

n scalar. Subroup size
m
theta
Ftheta scalar. Quantile of the data distribution. The values that take are between $(0,1)$.

dist

character string. Select from:

- "Uniform: Continuous Uniform distribution .
- "Normal": Normal distribution (default).
- "Normal2": Squared Normal distribution (also known as Chi-squared).
- "DoubleExp": Double exponential distribution (also known as Laplace distribution).
- "DoubleExp2": Double exponential squared distribution from a DoubleExp (0,1).
- "LogNormal": Lognormal distribution.
- "Gamma": Gamma distribution.
- "Weibull": Weibull distribution.
- "t": Student-t distribution.
mu vector. Two elements, the first one is the mean of the reference sample and the second one is the mean of the monitoring sample.
sigma vector. Two elements, the first one is the sd of the reference sample and the second one is the sd of the monitoring sample.
dist.par vector. Distribution parameters. c(par.a, par.b). Default c (0,1).
chart character string. Selected type of chart. Three options are available: Shewhart, CUSUM, EWMA
chart.par vector. The size depends on the selected chart:
Shewhart scheme: is $\mathrm{c}(\mathrm{k})$, where k comes from $U C L=m u+k \sigma, L C L=$ $m u-k \sigma$.
CUSUM scheme: is $c(k, h, t)$ where k is the reference value and h is the control limit, and t is the type of the chart (1:positive, 2:negative, 3:two sides)
EWMA scheme: is c(lambda, L), where lambda is the smoothing constant and L multiplies standard deviation to get the control limit

Value

Multiple output. Select by output\$

- ARL: scalar. Average Run Length for the RLs of all the replicates.
- SDRL: scalar. Standard Deviation Run Length for the RL in all the replicates.
- MRL: bolean. Median Run Length for the RLs of all the replicates.
- QRL: vector. It retrieve the quantiles $(0.05,0.1,0.2,0.25,0.5,0.75,0.8,0.9,0.95)$ for all the RLs.

Examples

```
n <- 5 # subgroup size
m <- 100 # reference-sample size
dist <- "Normal"
mu <- c(0, 0) # c(reference sample mean, monitoring sample mean)
sigma <- c(1, 1) # c(reference sample sd, monitoring sample sd)
#### Normal distribution parameters
dist.par <- c(0, 1) # c(location, scale)
#### Other Parameters
replicates <- 2
print.RL <- TRUE
isParallel <- FALSE
calibrate <- FALSE
progress <- TRUE
arl0 <- 370
#### Control chart parameters
chart <- "Shewhart"
chart.par <- c(3)
shewhart <- getARL(n, m,
    theta = NULL, Ftheta = NULL, dist, mu, sigma, dist.par = dist.par,
    chart = chart, chart.par = chart.par, print.RL = print.RL,
    replicates = replicates, isParallel = isParallel,
    calibrate = calibrate, arl0 = arl0
)
chart <- "CUSUM"
chart.par <- c(0.25, 4.4181, 3)
cusum <- getARL(n, m,
    theta = NULL, Ftheta = NULL, dist, mu, sigma, dist.par = dist.par,
    chart = chart, chart.par = chart.par, print.RL = print.RL,
    replicates = replicates, isParallel = isParallel,
    calibrate = calibrate, arl0 = arl0
)
chart <- "EWMA"
chart.par <- c(0.2, 2.962)
shewhart <- getARL(n, m,
    theta = NULL, Ftheta = NULL, dist, mu, sigma, dist.par = dist.par,
    chart = chart, chart.par = chart.par, print.RL = print.RL,
    replicates = replicates, isParallel = isParallel,
    calibrate = calibrate, arl0 = arl0
)
```

getDist

Description

Random observations generator selected from several distributions with user defined mean and variance.

```
Usage
    getDist(
        n,
        dist,
        mu,
        sigma,
        par.location = 0,
        par.scale = 1,
        par.shape = 1,
        dist.par = NULL,
        rounding.factor = NULL
    )
```


Arguments

n

dist

mu
sigma
par.location
par.scale
par.shape
dist.par
scalar. Number of observations to be generated.
character string. Select from:

- "Uniform: Continuous Uniform distribution .
- "Normal": Normal distribution (default).
- "Normal2": Squared Normal distribution (also known as Chi-squared).
- "DoubleExp": Double exponential distribution (also known as Laplace distribution).
- "DoubleExp2": Double exponential squared distribution from a DoubleExp (0,1).
- "LogNormal": Lognormal distribution.
- "Gamma": Gamma distribution.
- "Weibull": Weibull distribution.
- "t": Student-t distribution.
scalar. Expected value of the desired distribution.
scalar. Standard deviation of the desired distribution.
scalar. Location parameter of the desired distribution. Default 0**.
scalar. Scale parameter of the desired distribution. Default 1**.
scalar. Shape parameter of the desired distribution, Default 1.
vector. Overwrite par.location, par.scale, par. shape. Depends on the distribution (default NULL):
- "Uniform: no matter how is defined always gives numbers between 0 and 1.
- "Normal": c(location, scale).
- "Normal2": c(location, scale).
- "DoubleExp": c(location, scale).
- "DoubleExp2": c(location, scale).
- "LogNormal": c(location, scale).
- "Gamma": c(scale, shape).
- "Weibull": c(shape, scale).
- "t": c(degrees of freedom).
rounding.factor
scalar. positive value that determine the range between two consecutive rounded values.

Value
A vector x with n observations generated following the selected distribution with its parameters.

**Note

- For "Lognormal", par.location and par.scale correspond to the location and scale parameters of the normal distribution that generales the lognormal. Hence, in this case they are the logmean and the logsigma parameters
- For "Normal2" and "DoubleExp2", par.location and par.scale correspond correspond to the location and scale parameters of the normal and double exponential that are used to generates their squared forms.

Examples

```
    getDist(1, "Normal", 0, 1)
```

 getQuantile Obtain Quantile from Distribution Function

Description

Get the quantile theta from several distributions with user defined mean and variance.

Usage

getQuantile(Ftheta, mu, sigma, dist, par.location $=0$, par.scale = 1, par.shape = 1, dist.par = NULL
)

Arguments

Ftheta
mu
sigma
dist
par.scale
par.shape
dist.par
scalar. Quantile of the data distribution. The values that take are between $(0,1)$.
scalar. Expected value of the desired distribution.
scalar. Standard deviation of the desired distribution.
character string. Select from:

- "Uniform: Continuous Uniform distribution .
- "Normal": Normal distribution (default).
- "Normal2": Squared Normal distribution (also known as Chi-squared).
- "DoubleExp": Double exponential distribution (also known as Laplace distribution).
- "DoubleExp2": Double exponential squared distribution from a DoubleExp(0,1).
- "LogNormal": Lognormal distribution.
- "Gamma": Gamma distribution.
- "Weibull": Weibull distribution.
- "t": Student-t distribution.
par.location scalar. Location parameter of the desired distribution. Default $0^{* *}$. scalar. Scale parameter of the desired distribution. Default $1^{* *}$. scalar. Shape parameter of the desired distribution, Default 1.
vector. Overwrite par.location, par.scale, par. shape. Depends on the distribution (default NULL):
- "Uniform: no matter how is defined always gives numbers between 0 and 1.
- "Normal": c(location, scale).
- "Normal2": c(location, scale).
- "DoubleExp": c(location, scale).
- "DoubleExp2": c(location, scale).
- "LogNormal": c(location, scale).
- "Gamma": c(scale, shape).
- "Weibull": c(shape, scale).
- "t": c(degrees of freedom).

Value

A quantile theta of the selected F theta distribution with its parameters.

Examples

```
    getQuantile(0.5, 0, 1, "Normal")
```

| getRL \quad Run Length |
| :--- | :--- |

Description

Get the run length

Usage

```
getRL(
```

 replica = 1,
 n ,
 m,
 theta \(=\) NULL,
 Ftheta = NULL,
 dist,
 mu,
 sigma,
 dist.par = c(0, 1, 1),
 scoring = "Z",
 chart,
 chart.par,
 calibrate = FALSE,
 arl0 = 370,
 alignment = "unadjusted",
 constant = NULL,
 absolute = FALSE,
 isFixed = FALSE,
 Chi2corrector = "None",
 rounding.factor \(=\) NULL
)

Arguments

replica scalar. It is used for the parallel version of the function (parallel=TRUE). Default 1 .
n
m
theta
Ftheta
dist
scalar. Subroup size
scalar. Reference sample size
scalar. Value corresponig with the Ftheta quantile.
scalar. Quantile of the data distribution. The values that take are between $(0,1)$.
character string. Select from:

- "Uniform: Continuous Uniform distribution .
- "Normal": Normal distribution (default).
- "Normal2": Squared Normal distribution (also known as Chi-squared).
- "DoubleExp": Double exponential distribution (also known as Laplace distribution).
- "DoubleExp2": Double exponential squared distribution from a DoubleExp(0,1).
- "LogNormal": Lognormal distribution.
- "Gamma": Gamma distribution.
- "Weibull": Weibull distribution.
- "t": Student-t distribution.
mu
sigma
dist.par
isFixed
vector. Two elements, the first one is the mean of the reference sample and the second one is the mean of the monitoring sample.
vector. Two elements, the first one is the sd of the reference sample and the second one is the sd of the monitoring sample.
vector. Distribution parameters. c(par.a, par.b). Default c $(0,1)$.
character string. If "Z" (normal scores) (default). If "Z-SQ" (normal scores squared).
character string. Selected type of chart. Three options are available: Shewhart, CUSUM, EWMA
vector. The size depends on the selected chart:
Shewhart scheme: is $\mathrm{c}(\mathrm{k})$, where k comes from $U C L=m u+k \sigma, L C L=$ $m u-k \sigma$.

CUSUM scheme: is $c(k, h, t)$ where k is the reference value and h is the control limit, and t is the type of the chart (1:positive, 2:negative, 3:two sides)
EWMA scheme: is $c(l a m b d a, L)$, where lambda is the smoothing constant and L multiplies standard deviation to get the control limit
logical. If TRUE the RL is limit to 10 times the target ARL.
scalar. Expected value of the RL. Default 370.
character string. Aligment of the data X and Y. Select from

- "unadjusted": nothing is sustracte from X and Y (default).
- "overallmean": overall mean is sustracted from X and Y.
- "overallmedian": overall median is sustracted from X and Y.
- "samplemean": mean from corresponding group (X and Y) is sustracted from its corresponing vector.
- "samplemedian": median from corresponding group (X and Y) is sustracted from its corresponing vector.
- "referencemean": mean from Y is subtracted from X and Y.
- "referencemedian": median from Y is subtracted from X and Y.
- "constantvalue": a constant value is subtracted from X and Y.
scalar. Only used when the alignment is selected "constantvalue". Default NULL.
logical. If TRUE, the absolute aligned values are obtained. (Default FALSE)
logical. If TRUE the reference sample does not update, otherwise the reference sample is updated whenever the batch is in control.

```
Chi2corrector character string. Only when scoring is Z-SQ. Select from
                            - "approx: Z^2*(m+1+1.3)/(m+1).
                            - "exact": Z^2/mean(Z).
                            - "none": Z^2.
                            If "approx" () (default). If "exact" (normal scores squared).
rounding.factor
scalar. positive value that determine the range between two consecutive rounded
values.
```


Value

RL vector. The run length of the chart for the parameter setting.

Examples

```
n <- 5 # subgroup size
m <- 100 # reference-sample size
dist <- "Normal"
mu <- c(0, 0) # c(reference sample mean, monitoring sample mean)
sigma <- c(1, 1) # c(reference sample sd, monitoring sample sd)
#### Distribution parameters
dist.par <- c(0, 1, 1) # c(location, scale, shape)
#### Other Parameters
replicates <- 2
print.RL <- TRUE
calibrate <- FALSE
progress <- TRUE
arl0 <- 370
#### Control chart parameters
chart <- "Shewhart"
chart.par <- c(3)
shewhart <- getRL(1, n, m,
    theta = NULL, Ftheta = NULL,dist, mu, sigma, dist.par = dist.par,
    chart = chart, chart.par = chart.par, calibrate = calibrate, arl0 = arl0
)
chart <- "CUSUM"
chart.par <- c(0.25, 4.4181, 3)
cusum <- getRL(1, n, m,
    theta = NULL, Ftheta = NULL, dist, mu, sigma, dist.par = dist.par,
    chart = chart, chart.par = chart.par, calibrate = calibrate, arl0 = arl0
)
chart <- "EWMA"
chart.par <- c(0.2, 2.962)
shewhart <- getRL(1, n, m,
    theta = NULL, Ftheta = NULL,dist, mu, sigma, dist.par = dist.par,
    chart = chart, chart.par = chart.par, calibrate = calibrate, arl0 = arl0
```

)
mcalibrateControlLimit
Calibration of the control limit for the selected chart

Description

The methodology used to calibrate the control limit for the SNS chart depending on the selected chart

Usage

mcalibrateControlLimit(targetARL = NULL, targetMRL $=$ NULL , n, m, nv, theta $=$ NULL, Ftheta = NULL, dists = c("Normal", "Normal"), $m u=c(0,0)$, sigma = NULL, dists.par $=\operatorname{matrix}(\mathrm{c}(0,1,1,0,1,1)$, ncol = 2), correlation = 0, chart = "T2", chart.par = c(10), replicates = 50000, isParallel = FALSE, maxIter $=20$, progress = TRUE, alignment = "unadjusted", constant = NULL, absolute $=$ FALSE
)

Arguments

targetARL
targetMRL
n
m
nv
theta
scalar. is the target ARL to calibrate. By default is set to NULL
scalar. is the target ARL to calibrate. By default is set to NULL
scalar. Subroup size
scalar. Reference sample size
scalar. Number of variables to be generated.
vector. Value corresponding with the Ftheta quantile.
mcalibrateControlLimit

Ftheta	vector. Quantile of the data distribution. The values that take are between (0,1).
dists	list. Select the
mu	vector. Two elements of the vector the first one is the mean of the reference sample and the second one is the mean of the monitoring sample.
sigma	scalar. Standard deviation of the desired distribution.
dists.par	matrix For each variable (column), specify
	- par. location: Location parameter of the desired distribution. Default 0. - par. scale: Scale parameter of the desired distribution. Default 1. - par. shape: Shape parameter of the desired distribution, Default 1.
correlation	The number of columns must be the same as the number of variables. scalar. Corralation between variables.
chart	character string. Selected type of chart. One option available: "T2".
chart.par	T2 scheme: is $\mathrm{c}(\mathrm{k})$, where k comes from $U C L=m u+k \sigma, L C L=m u-k \sigma$. vector. Control limit and other parameters of the selected chart.
replicates	scalar. Number of replicates to get the ARL
isParallel	logical. If TRUE the code runs in parallel according to the number of cores in the computer,otherwise the code runs sequentially. Default TRUE.
maxIter	scalar. is a numeric. The maximum number of iteration to take the calibration before stops
progress	logical. If TRUE it shows the progress in the console.
alignment	character string. Aligment of the data X and Y. Select from
	- "unadjusted": nothing is sustracte from X and Y (default). - "overallmean": overall mean is sustracted from X and Y. - "overallmedian": overall median is sustracted from X and Y. - "samplemean": mean from corresponding group (X and Y) is sustracted from its corresponing vector.
	- "samplemedian": median from corresponding group (X and Y) is sustracted from its corresponing vector.
	- "referencemean": mean from Y is subtracted from X and Y. - "referencemedian": median from Y is subtracted from X and Y. - "constantvalue": a constant value is subtracted from X and Y.
constant	scalar. Only used when the alignment is selected "constantvalue". Default NULL.
absolute	logical. If TRUE, the absolute aligned values are obtained. (Default FALSE)

Value

Multiple output. Select by output $\$$

- objective. function: scalar. The best solution obtained, in terms of the target ARL or MRL
- par. value: scalar. Which parameter of the chart reach this best solution
- found: boolean. Is TRUE if in the maxIter is reached the desired +-5

Note

The argument chart. par in this function correspond to the initial parameters to start the calibration.

Examples

```
n <- 5 # subgroup size
m <- 10 # reference-sample size
dists <- c("Normal", "Normal") # distribution
mu <- c(0, 0) # c(reference sample mean, monitoring sample mean)
nv <- 2 # number of variables
#### Other Parameters
replicates <- 2
targetARL <- 200
    isParallel = FALSE
    maxIter <- 2
    #### Control chart parameters
    chart <- "T2"
    chart.par <- c(0.005)
    t2 <- mcalibrateControlLimit(targetARL = targetARL, n = n, m = m, nv = nv, theta = NULL,
        Ftheta = NULL, dists = dists, mu = mu, chart.par = chart.par,
        replicates = replicates, chart = chart, isParallel = isParallel,
    maxIter = maxIter
)
```

mgetARL
Multivariate Average Run Length (ARL)

Description

Get the ARL getRL

Usage

```
mgetARL(
    n,
    m,
    nv,
    theta = NULL,
    Ftheta = NULL,
    dists,
    dists.par = NULL,
    mu,
    sigma = NULL,
    chart = "T2",
    chart.par = c(0.005),
    correlation = 0,
    s = NULL,
```

```
    replicates = 10000,
    isParallel = TRUE,
    print.RL = FALSE,
    progress = FALSE,
    calibrate = FALSE,
    arl0 = 370,
    alignment = "unadjusted",
    constant = NULL,
    absolute = FALSE
)
```


Arguments

n	scalar. Subroup size
m	scalar. Reference sample size
nv	scalar. Number of variables to be generated.
theta	vector. Value corresponding with the Ftheta quantile.
Ftheta	vector. Quantile of the data distribution. The values that take are between (0,1).
dists	list. Select the
dists.par	matrix For each variable (column), specify
	- par.location: Location parameter of the desired distribution. Default 0. - par. scale: Scale parameter of the desired distribution. Default 1. - par. shape: Shape parameter of the desired distribution, Default 1.
	The number of columns must be the same as the number of variables.
mu	vector. Two elements of the vector the first one is the mean of the reference sample and the second one is the mean of the monitoring sample.
sigma	scalar. Standard deviation of the desired distribution.
chart	character string. Selected type of chart. One option available: "T2".
	T2 scheme: is c (k), where k comes from $U C L=m u+k \sigma, L C L=m u-k \sigma$.
chart.par	vector. Control limit and other parameters of the selected chart.
correlation	scalar. Corralation between variables.
s	matrix. Correlation matrix of the variables
replicates	scalar. Number of replicates to get the ARL
isParallel	logical. If TRUE the code runs in parallel according to the number of cores in the computer,otherwise the code runs sequentially. Default TRUE.
print.RL	logical. If TRUE return the vectors of RL for each iteration.
progress	logical. If TRUE it shows the progress in the console.
calibrate	logical. If TRUE the RL is limit to 10 times the target ARL.
arl0	scalar. Expected value of the RL. It is only used for stop the RL if exceeds 10 times its value. Default 370.
alignment	character string. Aligment of the data X and Y. Select from

- "unadjusted": nothing is sustracte from X and Y (default).
- "overallmean": overall mean is sustracted from X and Y.
- "overallmedian": overall median is sustracted from X and Y.
- "samplemean": mean from corresponding group (X and Y) is sustracted from its corresponing vector.
- "samplemedian": median from corresponding group (X and Y) is sustracted from its corresponing vector.
- "referencemean": mean from Y is subtracted from X and Y.
- "referencemedian": median from Y is subtracted from X and Y.
- "constantvalue": a constant value is subtracted from X and Y .
constant scalar. Only used when the alignment is selected "constantvalue". Default NULL.
absolute logical. If TRUE, the absolute aligned values are obtained. (Default FALSE)

Value

Multiple output. Select by output\$

- ARL: scalar. Average Run Length for the RLs of all the replicates.
- SDRL: scalar. Standard Deviation Run Length for the RL in all the replicates.
- MRL: bolean. Median Run Length for the RLs of all the replicates.
- QRL: vector. It retrieve the quantiles $(0.05,0.1,0.2,0.25,0.5,0.75,0.8,0.9,0.95)$ for all the RLs.

Examples

mgetARL(replicates=5, $n=5, m=100, n v=2, m u=c(0,0)$,
dists = c("Normal", "Normal"), dists.par = matrix(c(0,1,1, 0,1,1), ncol=2), isParallel=FALSE)
mgetDist
Multivariate Random Observations Generetor

Description

Multivariate Random observations generator selected from several distributions with user defined mean and variance.

Usage

mgetDist(
n,
nv,
mu $=0$,
sigma $=$ NULL,

```
    correlation = 0,
    s = NULL,
    dists = NULL,
    dists.par = NULL
)
```


Arguments

n	scalar. Number of observations to be generated.
nv	scalar. Number of variables to be generated.
mu	scalar. Expected value of the desired distribution.
sigma	scalar. Standard deviation of the desired distribution.
correlation	scalar. Corralation between variables.
s	matrix. Correlation matrix of the variables
dists	list. Select the
dists.par	matrix For each variable (column), specify

- par. location: Location parameter of the desired distribution. Default 0 .
- par. scale: Scale parameter of the desired distribution. Default 1.
- par. shape: Shape parameter of the desired distribution, Default 1.

The number of columns must be the same as the number of variables.

Value

A matrix x with n observations generated following the selected distribution with its parameters.

Examples

```
mgetDist(n=5, nv=2, dists=c("Normal", "Normal"), dists.par= matrix(c(0,1,1,0,1,1), ncol=2))
```

mgetRL Multivariate Run Length

Description

Get the run length

Usage

mgetRL (replica $=1$,
n,
m,
nv,
theta = NULL, Ftheta $=$ NULL,

```
    dists,
    mu,
    sigma = NULL,
    dists.par = NULL,
    correlation = 0,
    s = NULL,
    chart = "T2",
    chart.par = c(0.005),
    null.dist = "Chi",
    alignment = "unadjusted",
    constant = NULL,
    absolute = FALSE,
    calibrate = FALSE,
    arl0 = 370
)
```


Arguments

replica scalar. It is used for the parallel version of the function (parallel=TRUE). Default 1.
n
m
nv
theta
Ftheta
dists
mu
sigma
dists.par
correlation scalar. Corralation between variables.
s
chart
chart.par vector. Control limit and other parameters of the selected chart.
null.dist character string. It is the null distribution choose from "Chi" or "F".
alignment character string. Aligment of the data X and Y. Select from

- "unadjusted": nothing is sustracte from X and Y (default).
- "overallmean": overall mean is sustracted from X and Y.
- "overallmedian": overall median is sustracted from X and Y.
- "samplemean": mean from corresponding group (X and Y) is sustracted from its corresponing vector.
- "samplemedian": median from corresponding group (X and Y) is sustracted from its corresponing vector.
- "referencemean": mean from Y is subtracted from X and Y.
- "referencemedian": median from Y is subtracted from X and Y.
- "constantvalue": a constant value is subtracted from X and Y .
constant scalar. Only used when the alignment is selected "constantvalue". Default NULL.
absolute logical. If TRUE, the absolute aligned values are obtained. (Default FALSE)
calibrate logical. If TRUE the RL is limit to 10 times the target ARL.
arl0 scalar. Expected value of the RL. It is only used for stop the RL if exceeds 10 times its value. Default 370.

Value

RL vector. The run length of the chart for the parameter setting.

Examples

mgetRL($n=5, m=10, n v=2, m u=c(0,0)$, dists $=c(" N o r m a l ", ~ " N o r m a l ")$, dists.par $=\operatorname{matrix}(c(0,1,1,0,1,1)$, ncol=2))

Description

Get conditional or unconditional multivariate normal score (NS) of observations (X) relative to previous observations (Y).

```
Usage
    MNS(
    X,
    Y = NULL,
    theta = NULL,
    Ftheta = NULL,
    scoring = "Z",
    alignment = "unadjusted",
    constant = NULL,
    absolute = FALSE
)
```


Arguments

X	matrix or data.frame. New observations to obtain the normal scores.
Y	matrix or data.frame. If Y is not defined (no previous observation available, NULL), NS is relative to X. Default NULL.
theta	vector. Value corresponding with the Ftheta quantile.
Ftheta scoring	vector. Quantile of the data distribution. The values that take are between $(0,1)$. character string. If "Z" (normal scores) (default). If "Z-SQ" (normal scores squared).
alignment	character string. Aligment of the data X and Y. Select from - "unadjusted": nothing is sustracte from X and Y (default). - "overallmean": overall mean is sustracted from X and Y. - "overallmedian": overall median is sustracted from X and Y. - "samplemean": mean from corresponding group (X and Y) is sustracted from its corresponing vector. - "samplemedian": median from corresponding group (X and Y) is sustracted from its corresponing vector. - "referencemean": mean from Y is subtracted from X and Y. - "referencemedian": median from Y is subtracted from X and Y. - "constantvalue": a constant value is subtracted from X and Y.
constant	scalar. Only used when the alignment is selected "constantvalue". Default NULL.
absolute	logical. If TRUE, the absolute aligned values are obtained. (Default FALSE)

Value

Multiple output. Select by output\$

- R: matrix. Multivariate Ranks for the X observations. If ties occurs, average ranks are used.
- P: matrix. Multivariate Probability of the ranks for the X observations. Instead of Van Der Waerden normal scores where $P=R /(n+1), P=(R-0.5) / n$, where R stands for rank and P for the input evaluated in the inverse of a Standard Normal Distribution.
- Z: matrix. Multivariate Normal scores for the X observations. Z if scoring is " Z " and Z^{2} if scoring is "Z-SQ".

Examples

```
Y <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
Y = matrix(Y, ncol=2)
X <- c(30, 35, 45, 30, 35, 45)
X = matrix(X, ncol=2)
theta <- c(40, 40)
Ftheta <- c(0.5, 0.5)
# EXAMPLE CONDITIONAL
MNS(X = X, Y = Y, theta = theta, Ftheta = Ftheta)
```


Description

Transform a matrix X into SNS using initial observations Y if available SNS follow the order of X.

```
Usage
    MSNS(
        X,
        X.id,
        Y = NULL,
        theta = NULL,
        Ftheta = NULL,
        scoring = "Z",
        alignment = "unadjusted",
        constant = NULL,
        absolute = FALSE,
        chart = "T2",
        chart.par = c(0.005),
        null.dist = "Chi",
        isFixed = FALSE,
        omit.id = NULL,
        auto.omit.alarm = TRUE
    )
```


Arguments

X
X.id
Y matrix or data.frame. If Y is not defined (no previous observation available, NULL), NS is relative to X. Default NULL.
theta vector. Value corresponding with the Ftheta quantile.
Ftheta vector. Quantile of the data distribution. The values that take are between $(0,1)$.
scoring character string. If "Z" (normal scores) (default). If "Z-SQ" (normal scores squared).
alignment character string. Aligment of the data X and Y. Select from

- "unadjusted": nothing is sustracte from X and Y (default).
- "overallmean": overall mean is sustracted from X and Y.
- "overallmedian": overall median is sustracted from X and Y.
- "samplemean": mean from corresponding group (X and Y) is sustracted from its corresponing vector.
- "samplemedian": median from corresponding group (X and Y) is sustracted from its corresponing vector.
- "referencemean": mean from Y is subtracted from X and Y.
- "referencemedian": median from Y is subtracted from X and Y.
- "constantvalue": a constant value is subtracted from X and Y.
constant scalar. Only used when the alignment is selected "constantvalue". Default NULL.
absolute logical. If TRUE, the absolute aligned values are obtained. (Default FALSE)
chart character string. Selected type of chart. One option available: "T2". T2 scheme: is $\mathrm{c}(\mathrm{k})$, where k comes from $U C L=m u+k \sigma, L C L=m u-k \sigma$.
chart.par vector. Control limit and other parameters of the selected chart.
null.dist character string. It is the null distribution choose from "Chi" or "F".
isFixed logical. If TRUE the reference sample does not update, otherwise the reference sample is updated when the batch is in control.
omit.id vector. Elements of the vector are the id which are omitted in the analysis.
auto.omit.alarm
logical. Determine if OC signals are added (or not) to reference sample. By default is set to TRUE.

Value

Multiple output. Select by output\$

- coefficients: list. Two elements: n the number of observation per group in X and chart the selected chart to perform the analysis.
- X: vector. New observations (Monitoring sample) to obtain the SNS.
- Z: vector. SNS of the X monitoring sample.
- T2: vector. T2 statistic for each of the groups in X.
- X.id: vector. The id of each column (variable) of the matrix X.
- UCL: vector. Upper control limit for each group in X.

Comments

If ties, average ranks are used.

See Also

MNS for multivariate normal scores

Examples

```
X = cbind(example91$X1, example91$X2)
X.id = example91$X.id
msns = MSNS(X, X.id)
```


Description

Get conditional or unconditional normal score (NS) of observations (X) relative to previous observations (Y).

```
Usage
    NS(
        X,
        Y = NULL,
        theta = NULL,
        Ftheta = NULL,
        scoring = "Z",
        Chi2corrector = "None",
        alignment = "unadjusted",
        constant = NULL,
        absolute = FALSE
    )
```


Arguments

X
Y vector. If Y is not defined (no previous observation available, NULL), NS is relative to X. Default NULL.
theta scalar. Value corresponig with the Ftheta quantile.
Ftheta scalar. Quantile of the data distribution. The values that take are between $(0,1)$.
scoring character string. If "Z" (normal scores) (default). If "Z-SQ" (normal scores squared).
Chi2corrector character string. Only when scoring is Z-SQ. Select from

- "approx: $\mathrm{Z}^{\wedge} 2^{*}(\mathrm{~m}+1+1.3) /(\mathrm{m}+1)$.
- "exact": $Z^{\wedge} 2 / \operatorname{mean}(Z)$.
- "none": Z^2.

If "approx" () (default). If "exact" (normal scores squared).
alignment character string. Aligment of the data X and Y. Select from

- "unadjusted": nothing is sustracte from X and Y (default).
- "overallmean": overall mean is sustracted from X and Y.
- "overallmedian": overall median is sustracted from X and Y.
- "samplemean": mean from corresponding group (X and Y) is sustracted from its corresponing vector.
- "samplemedian": median from corresponding group (X and Y) is sustracted from its corresponing vector.
- "referencemean": mean from Y is subtracted from X and Y.
- "referencemedian": median from Y is subtracted from X and Y.
- "constantvalue": a constant value is subtracted from X and Y .
constant scalar. Only used when the alignment is selected "constantvalue". Default NULL.
absolute logical. If TRUE, the absolute aligned values are obtained. (Default FALSE)

Value

Multiple output. Select by output\$

- R: vector. Ranks for the X observations. If ties occurs, average ranks are used.
- P: vector. Probability of the ranks for the X observations. Instead of Van Der Waerden normal scores where $P=R /(n+1), P=(R-0.5) / n$, where R stands for rank and P for the input evaluated in the inverse of a Standard Normal Distribution.
- Z: vector. Normal scores for the X observations. Z if scoring is " Z " and Z^{2} if scoring is "Z-SQ".

Examples

```
Y<-c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
X <- c(30, 35, 45)
theta <- 40
Ftheta <- 0.5
# EXAMPLE CONDITIONAL
NS(X = X, Y = Y, theta = theta, Ftheta = Ftheta)
# EXAMPLE UNCONDITIONAL
theta <- NULL
Ftheta <- NULL
NS(X = X, Y = Y, theta = theta, Ftheta = Ftheta)
```


SNS

Sequential Normal Scores

Description

Transform a vector X into SNS using initial observations Y if available SNS follow the order of X.

Usage

SNS(
X,
X.id,
$Y=N U L L$,
theta $=$ NULL,
Ftheta $=$ NULL,

```
    scoring = "Z",
    Chi2corrector = "None",
    alignment = "unadjusted",
    constant = NULL,
    absolute = FALSE,
    chart = "Shewhart",
    chart.par = c(3),
    snsRaw = FALSE,
    isFixed = FALSE,
    omit.id = NULL,
    auto.omit.alarm = TRUE
)
```


Arguments

X

X.id

Y
theta
Ftheta
scoring

Chi2corrector
vector. New observations to obtain the N_{i} normal scores.
vector. The id of the vector X.
vector. If Y is not defined (no previous observation available, NULL), NS is relative to X. Default NULL.
scalar. Value corresponig with the Ftheta quantile.
scalar. Quantile of the data distribution. The values that take are between $(0,1)$.
character string. If "Z" (normal scores) (default). If "Z-SQ" (normal scores squared).
character string. Only when scoring is Z-SQ. Select from

- "approx: $\mathrm{Z}^{\wedge} 2^{*}(\mathrm{~m}+1+1.3) /(\mathrm{m}+1)$.
- "exact": $Z^{\wedge} 2 / m e a n(Z)$.
- "none": Z^2.

If "approx" () (default). If "exact" (normal scores squared).
alignment character string. Aligment of the data X and Y. Select from

- "unadjusted": nothing is sustracte from X and Y (default).
- "overallmean": overall mean is sustracted from X and Y.
- "overallmedian": overall median is sustracted from X and Y.
- "samplemean": mean from corresponding group (X and Y) is sustracted from its corresponing vector.
- "samplemedian": median from corresponding group (X and Y) is sustracted from its corresponing vector.
- "referencemean": mean from Y is subtracted from X and Y.
- "referencemedian": median from Y is subtracted from X and Y.
- "constantvalue": a constant value is subtracted from X and Y.
constant scalar. Only used when the alignment is selected "constantvalue". Default NULL.
absolute logical. If TRUE, the absolute aligned values are obtained. (Default FALSE)
chart character string. Selected type of chart. Three options are available: Shewhart, CUSUM, EWMA
chart.par vector. The size depends on the selected chart:
Shewhart scheme: is $\mathrm{c}(\mathrm{k})$, where k comes from $U C L=m u+k \sigma, L C L=$ $m u-k \sigma$.
CUSUM scheme: is $c(k, h, t)$ where k is the reference value and h is the control limit, and t is the type of the chart (1:positive, 2:negative, 3:two sides)
EWMA scheme: is c(lambda, L), where lambda is the smoothing constant and L multiplies standard deviation to get the control limit
snsRaw logical. If TRUE return also the sns for each observation in vector X.
isFixed logical. If TRUE the reference sample does not update, otherwise the reference sample is updated whenever the batch is in control.
omit.id vector. Elements of the vector are the id which are omitted in the analysis.
auto.omit.alarm
logical. Determine if OC signals are added (or not) to reference sample. By default is set to TRUE.

Value

Multiple output. Select by output\$

- coefficients: list. Three elements: n the number of observation per group in X, chart the selected chart to perform the analysis, and chart. par the parameters of the selected chart.
- R: vector. Ranks for the new observations (Monitoring sample).
- X: vector. New observations (Monitoring sample) to obtain the SNS.
- Z: vector. SNS of the X monitoring sample.
- X.id: vector. The id of each column (variable) of the matrix X.
- UCL: vector. Upper control limit for each group in X.
- LCL: vector. Lower control limit for each group in X.
- scoring: string. Selected score to evaluate SNS.

Comments

If ties occur, average ranks are used.

See Also

NS for normal scores

Examples

\# EXAMPLE CONDITIONAL WITH REFERENCE SAMPLE
$Y<-c(10,20,30,40,50,60,70,80,90,100)$
$X<-c(30,35,45)$
theta <- 40
Ftheta <- 0.5
sample.id <- c("a", "b", "c")
srank

```
    SNS(X = X, X.id = sample.id, Y = Y, theta = theta, Ftheta = Ftheta)
    # EXAMPLE CONDITIONAL WITH REFERENCE SAMPLE
    Y <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
    X <- c(30, 35, 45)
    theta <- 40
    Ftheta <- 0.5
    sample.id <- c("a", "b", "c")
    SNS(X = X, X.id = sample.id, Y = Y, theta = theta, Ftheta = Ftheta)
    # EXAMPLE UNCONDITIONAL WITH REFERENCE SAMPLE
    Y <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
    X <- c(30, 35, 45)
    theta <- NULL
    Ftheta <- NULL
    sample.id <- c("a", "b", "c")
    SNS(X = X, X.id = sample.id, Y = Y, theta = theta, Ftheta = Ftheta)
    # EXAMPLE CONDITIONAL WITHOUT REFERENCE SAMPLE
    Y <- NULL # c(10, 20, 30, 40,50,60,70, 80, 90, 100)
    X <- c(30, 35, 45)
    theta <- 40
    Ftheta <- 0.5
    sample.id <- c("a", "b", "c")
    SNS(X = X, X.id = sample.id, Y = Y, theta = theta, Ftheta = Ftheta)
    # EXAMPLE UNCONDITIONAL WITHOUT REFERENCE SAMPLE
    Y <- NULL
    X <- c(30, 35, 45)
    theta <- NULL
    Ftheta <- NULL
    sample.id <- c("a", "b", "c")
    SNS(X = X, X.id = sample.id, Y = Y, theta = theta, Ftheta = Ftheta)
```

 srank Sequential Rank

Description

Get the sequential rank of observations (X) relative to previous observations (Y).

Usage

$\operatorname{srank}(X, Y=N U L L)$

Arguments

X

Y
vector. New observations to obtain the N_{i} normal scores.
vector. If Y is not defined (no previous observation available, NULL), NS is relative to X. Default NULL.
srank

Value

vector. Sequentil Ranks for the X observations. If ties occurs, average of the ranks are used.

Examples

```
X <- c(30, 35, 45)
srank(X)
```


Index

```
* datasets
    example49,7
    example65,8
    example71,8
    example74a,9
    example74b,9
    example74c,10
    example81,10
    example82,11
    example83,11
    example84,12
    example85,12
    example87,13
    example91,13
    example93,14
calibrateControlLimit,2
dataAlignment,6
example49,7
example65,8
example71,8
example74a,9
example74b,9
example74c,10
example81,10
example82,11
example83,11
example84,12
example85,12
example87,13
example91,13
example93,14
getARL, 14
getDist,17
getQuantile, 19
getRL, 14, 21, 26
mcalibrateControlLimit, 24
```

mgetARL, 26
mgetDist, 28
mgetRL, 29
MNS, 31, 34
MSNS, 33
NS, 35, 38
SNS, 36
srank, 39

