
Package ‘SeqExpMatch’
October 12, 2022

Type Package

Title Sequential Experimental Design via Matching on-the-Fly

Version 0.1.0

Description Generates the following sequential two-arm experimental designs:
(1) completely randomized (Bernoulli)
(2) balanced completely randomized
(3) Efron's (1971) Biased Coin
(4) Atkinson's (1982) Covariate-Adjusted Biased Coin
(5) Kapelner and Krieger's (2014) Covariate-Adjusted Matching on the Fly
(6) Kapelner and Krieger's (2021) CARA Matching on the Fly with Differential Covari-
ate Weights (Naive)
(7) Kapelner and Krieger's (2021) CARA Matching on the Fly with Differential Covari-
ate Weights (Stepwise)
and also provides the following types of inference:
(1) estimation (with both Z-style estimators and OLS estimators),
(2) frequentist testing (via asymptotic distribution results and via employing the nonparamet-
ric randomization test) and
(3) frequentist confidence intervals (only under the superpopulation sampling assumption cur-
rently). Details can be found
in our publication: Kapelner and Krieger ``A Matching Procedure for Sequential Experi-
ments that Iteratively Learns which
Covariates Improve Power'' (2020) <arXiv:2010.05980>.

License GPL-3

Encoding UTF-8

Depends R6, checkmate, doParallel, R (>= 3.6.3)

Imports stats

URL https:
//github.com/kapelner/matching_on_the_fly_designs_R_package_and_paper_repr

RoxygenNote 7.1.1

NeedsCompilation no

Author Adam Kapelner [aut, cre] (<https://orcid.org/0000-0001-5985-6792>),
Abba Krieger [aut]

1

https://arxiv.org/abs/2010.05980
https://github.com/kapelner/matching_on_the_fly_designs_R_package_and_paper_repr
https://github.com/kapelner/matching_on_the_fly_designs_R_package_and_paper_repr
https://orcid.org/0000-0001-5985-6792

2 SeqDesign

Maintainer Adam Kapelner <kapelner@qc.cuny.edu>

Repository CRAN

Date/Publication 2021-06-01 07:50:01 UTC

R topics documented:
SeqDesign . 2
SeqDesignInference . 8
SeqExpMatch . 14

Index 16

SeqDesign A Sequential Design

Description

An R6 Class encapsulating the data and functionality for a sequential experimental design. This
class takes care of data intialization and sequential assignments. The class object should be saved
securely after each assignment e.g. on an encrypted cloud server.

Public fields

t The current number of subjects in this sequential experiment (begins at zero).

design The type of sequential experimental design (see constructor’s documentation).

X A numeric matrix of subject data with number of rows n (the number of subjects) and number of
columns p (the number of characteristics measured for each subject). This matrix is filled in
sequentially and thus will have data present for rows 1...t (i.e. the number of subjects in the
experiment currently) but otherwise will be missing.

y A numeric vector of subject responses with number of entries n (the number of subjects). During
the KK21 designs this must be filled in sequentially (similar to X) and will have data present
for entries 1...t (i.e. the number of subjects in the experiment currently) but otherwise will
be missing. For non-KK21 designs, this vector can be set at anytime (but must be set before
inference is desired).

w A binary vector of subject assignments with number of entries n (the number of subjects). This
vector is filled in sequentially (similar to X) and will have assignments present for entries 1...t
(i.e. the number of subjects in the experiment currently) but otherwise will be missing.

verbose A flag that indicates whether messages should be displayed to the user

Methods

Public methods:
• SeqDesign$new()

• SeqDesign$add_subject_to_experiment()

• SeqDesign$print_current_subject_assignment()

SeqDesign 3

• SeqDesign$add_current_subject_response()

• SeqDesign$add_all_subject_responses()

• SeqDesign$matching_statistics()

• SeqDesign$assert_experiment_completed()

• SeqDesign$check_experiment_completed()

• SeqDesign$clone()

Method new(): Initialize a sequential experimental design

Usage:
SeqDesign$new(n, p, design, verbose = TRUE, ...)

Arguments:
n Number of subjects fixed beforehand. A future version of this software will allow for sequen-

tial stopping and thus n will not need to be prespecified.
p Number of characteristics measured for each subject. If measurement j are categorical with

L_j levels, you must select a reference level and convert this information to L_j-1 dummies.
Thus p := # of numeric variables + sum_j (L_j - 1).

design The type of sequential experimental design. This must be one of the following "CRD"
for the completely randomized design / Bernoulli design, "BCRD" for the balanaced com-
pletely randomized design with n/2 T’s and n/2 C’s, "Efron" for Efron’s (1971) Biased Coin
Design "Atkinson" for Atkinson’s (1982) Covariate-Adjusted Biased Coin Design "KK14"
for Kapelner and Krieger’s (2014) Covariate-Adjusted Matching on the Fly Design "KK21"
for Kapelner and Krieger’s (2021) CARA Matching on the Fly with Differential Covariate
Weights Design "KK21stepwise" for Kapelner and Krieger’s (2021) CARA Matching on
the Fly with Differential Covariate Weights Stepwise Design

verbose A flag indicating whether messages should be displayed to the user. Default is TRUE.
... Design-specific parameters: "Efron" requires "weighted_coin_prob" which is the probabil-

ity of the weighted coin for assignment. If unspecified, default is 2/3. All "KK" designs
require "lambda", the quantile cutoff of the subject distance distribution for determining
matches. If unspecified, default is 10 All "KK" designs require "t_0_pct", the percentage of
total sample size n where matching begins. If unspecified, default is 35 All "KK21" designs
further require "num_boot" which is the number of bootstrap samples taken to approximate
the subject-distance distribution. If unspecified, default is 500.

Returns: A new ‘SeqDesign‘ object.

Examples:
seq_des = SeqDesign$new(n = 100, p = 10, design = "KK21stepwise")

Method add_subject_to_experiment(): Add subject-specific measurements for the next sub-
ject entrant

Usage:
SeqDesign$add_subject_to_experiment(x_vec)

Arguments:
x_vec A p-length numeric vector

Examples:

4 SeqDesign

seq_des = SeqDesign$new(n = 100, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))

Method print_current_subject_assignment(): Prints the current assignment to screen.
Should be called after add_subject_to_experiment.

Usage:
SeqDesign$print_current_subject_assignment()

Examples:
seq_des = SeqDesign$new(n = 100, p = 10, design = "CRD")

seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$print_current_subject_assignment()

Method add_current_subject_response(): For CARA designs, add subject response for the
current subject entrant

Usage:
SeqDesign$add_current_subject_response(y)

Arguments:
y The response as a numeric scalar

Examples:
seq_des = SeqDesign$new(n = 100, p = 10, design = "KK21")

seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))

seq_des$add_current_subject_response(4.71)

Method add_all_subject_responses(): For non-CARA designs, add all subject responses

Usage:
SeqDesign$add_all_subject_responses(y)

Arguments:
y The responses as a numeric vector of length n

Examples:
seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")

seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

SeqDesign 5

Method matching_statistics(): For KK designs only, this returns a list with useful matching
statistics.

Usage:
SeqDesign$matching_statistics()

Returns: A list with the following data: num_matches, prop_subjects_matched, num_subjects_remaining_in_reservoir,
prop_subjects_remaining_in_reservoir.
Examples:
seq_des = SeqDesign$new(n = 6, p = 10, design = "KK14")

seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$matching_statistics()

Method assert_experiment_completed(): Asserts if the experiment is completed (all n as-
signments are assigned in the w vector and all n responses in the y vector are recorded), i.e. throws
descriptive error if the experiment is incomplete.

Usage:
SeqDesign$assert_experiment_completed()

Examples:
seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))

#if run, it would throw an error since all of the covariate vectors are not yet recorded
#seq_des$assert_experiment_completed()

seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))

#if run, it would throw an error since the responses are not yet recorded
#seq_des$assert_experiment_completed()

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$assert_experiment_completed() #no response means the assert is true

Method check_experiment_completed(): Checks if the experiment is completed (all n as-
signments are assigned in the w vector and all n responses in the y vector are recorded).

6 SeqDesign

Usage:
SeqDesign$check_experiment_completed()

Returns: TRUE if experiment is complete, FALSE otherwise.

Examples:

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))

#returns FALSE since all of the covariate vectors are not yet recorded
seq_des$check_experiment_completed()

seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))

#returns FALSE since the responses are not yet recorded
seq_des$check_experiment_completed()

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$check_experiment_completed() #returns TRUE

Method clone(): The objects of this class are cloneable with this method.

Usage:
SeqDesign$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `SeqDesign$new`
--

seq_des = SeqDesign$new(n = 100, p = 10, design = "KK21stepwise")

--
Method `SeqDesign$add_subject_to_experiment`
--

seq_des = SeqDesign$new(n = 100, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))

SeqDesign 7

--
Method `SeqDesign$print_current_subject_assignment`
--

seq_des = SeqDesign$new(n = 100, p = 10, design = "CRD")

seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$print_current_subject_assignment()

--
Method `SeqDesign$add_current_subject_response`
--

seq_des = SeqDesign$new(n = 100, p = 10, design = "KK21")

seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))

seq_des$add_current_subject_response(4.71)

--
Method `SeqDesign$add_all_subject_responses`
--

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")

seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

--
Method `SeqDesign$matching_statistics`
--

seq_des = SeqDesign$new(n = 6, p = 10, design = "KK14")

seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$matching_statistics()

8 SeqDesignInference

--
Method `SeqDesign$assert_experiment_completed`
--

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))

#if run, it would throw an error since all of the covariate vectors are not yet recorded
#seq_des$assert_experiment_completed()

seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))

#if run, it would throw an error since the responses are not yet recorded
#seq_des$assert_experiment_completed()

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$assert_experiment_completed() #no response means the assert is true

--
Method `SeqDesign$check_experiment_completed`
--

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))

#returns FALSE since all of the covariate vectors are not yet recorded
seq_des$check_experiment_completed()

seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))

#returns FALSE since the responses are not yet recorded
seq_des$check_experiment_completed()

seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des$check_experiment_completed() #returns TRUE

SeqDesignInference Inference for A Sequential Design

SeqDesignInference 9

Description

An R6 Class that estimates, tests and provides intervals for a treatment effect in a sequential design.
This class takes a SeqDesign object as an input where this object contains data for a fully com-
pleted sequential experiment (i.e. all treatment assignments were allocated and all responses were
collected). Then the user specifies the type of estimation (difference-in-means or OLS) and the type
of sampling assumption (i.e. the superpopulation assumption leading to normal-based inference or
the finite population assumption implying randomization-exact-based inference) and then can query
the estimate and pval for the test. If the test is normal-theory based it is testing the population H_0:
beta_T = 0 and if the test is a randomization test, it is testing the sharp null that H_0: Y_T_i =
Y_C_i for all subjects. Confidence interval construction is available for normal-theory based test
type as well.

Public fields

estimate_type The type of estimate to compute (either "difference-in-means" or "OLS").

test_type The type of test to run (either "normal-based" or "randomization-exact").

num_cores The number of CPU cores to employr during sampling within randomization inference

verbose A flag that indicates whether messages should be displayed to the user

Methods

Public methods:

• SeqDesignInference$new()

• SeqDesignInference$compute_treatment_estimate()

• SeqDesignInference$compute_pval_for_no_treatment_effect()

• SeqDesignInference$randomization_inference_samples_for_no_treatment_effect()

• SeqDesignInference$compute_confidence_interval()

• SeqDesignInference$clone()

Method new(): Initialize a sequential experimental design estimation and test object after the
sequential design is completed.

Usage:
SeqDesignInference$new(
seq_des_obj,
estimate_type = "OLS",
test_type = "randomization-exact",
num_cores = 1,
verbose = TRUE

)

Arguments:

seq_des_obj A SeqDesign object whose entire n subjects are assigned and response y is
recorded within.

estimate_type The type of estimate to compute (either "difference-in-means" or "OLS"). De-
fault is "OLS" as this provided higher power in our simulations.

10 SeqDesignInference

test_type The type of test to run (either "normal-based" implying your subject entrant sam-
pling assumption is from a superpopulation or "randomization-exact" implying a finite sam-
pling assumption). The default option is "randomization-exact" as it provided properly-
sized tests in our simulations.

num_cores The number of CPU cores to use to parallelize the sampling during randomization-
based inference (which is very slow). The default is 1 for serial computation. This parameter
is ignored for test_type = "normal-based".

verbose A flag indicating whether messages should be displayed to the user. Default is TRUE

Returns: A new ‘SeqDesignTest‘ object.

Examples:
seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)

Method compute_treatment_estimate(): Computes either the classic different-in-means es-
timate of the additive treatment effect, i.e. ybar_T - ybar_C or the OLS estimate of the additive
treatment effect linearly i.e. the treatment different adjusted linearly for the p covariates.

Usage:
SeqDesignInference$compute_treatment_estimate()

Returns: The numeric estimate of the treatment effect

Examples:
seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)
seq_des_inf$compute_treatment_estimate()

Method compute_pval_for_no_treatment_effect(): Computes either the classic different-
in-means estimate of the additive treatment effect, i.e. ybar_T - ybar_C or the OLS estimate of the
additive treatment effect linearly i.e. the treatment different adjusted linearly for the p covariates.

Usage:

SeqDesignInference 11

SeqDesignInference$compute_pval_for_no_treatment_effect(nsim_exact_test = 501)

Arguments:

nsim_exact_test The number of randomization vectors to use in the randomization test (ig-
nored if test_type is not "randomization-exact"). The default is 501 providing pvalue
resolution to a fifth of a percent.

Returns: The frequentist p-val for the test of nonzero treatment effect

Examples:

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)
seq_des_inf$compute_pval_for_no_treatment_effect()

Method randomization_inference_samples_for_no_treatment_effect(): Computes many
randomization samples of either the classic different-in-means estimate of the additive treatment
effect, i.e. ybar_T - ybar_C or the OLS estimate of the additive treatment effect linearly i.e. the
treatment different adjusted linearly for the p covariates. This function is useful if you wish to run
your own, custom hypothesis tests.

Usage:
SeqDesignInference$randomization_inference_samples_for_no_treatment_effect(
nsim_exact_test = 501

)

Arguments:

nsim_exact_test The number of randomization vectors. The default is 501 providing pvalue
resolution to a fifth of a percent.

Returns: The nsim_exact_test samples of the treatment effect under the null hypothesis of
no treatment effect where each sample is estimated from a different assignment vector for the
prespecified design

Examples:

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

12 SeqDesignInference

seq_des_inf = SeqDesignInference$new(seq_des)
samps = seq_des_inf$randomization_inference_samples_for_no_treatment_effect()
summary(samps)

Method compute_confidence_interval(): Computes either a:
1. classic frequentist confidence interval (CI) of the additive treatment effect employing the nor-
mal theory approximation for both the (a) difference in means estimator i.e. [ybar_T - ybar_C
+/- t_alpha/2, n_T + n_C - 2 s_ybar_T - ybar_C] or (b) the OLS estimator i.e. [beta_hat_T +/-
t_alpha/2, n + p - 2 s_beta_hat_T] where the z approximation is employed in lieu of the t is the
design is a KK design or
2. a randomization-based CI of an additive shift effect of the potential outcomes under treatment
and control by an inversion of the randomization test at level alpha (this feature is incomplete).

Usage:
SeqDesignInference$compute_confidence_interval(
alpha = 0.05,
nsim_exact_test = 501

)

Arguments:

alpha The confidence level in the computed confidence interval is 1 - alpha. The default is
0.05.

nsim_exact_test The number of randomization vectors. The default is 1000 providing good
resolutions to confidence intervals.

Returns: A 1 - alpha sized frequentist confidence interval for the treatment effect

Examples:

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des, test_type = "normal-based")
seq_des_inf$compute_confidence_interval()

Method clone(): The objects of this class are cloneable with this method.

Usage:
SeqDesignInference$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

SeqDesignInference 13

Examples

--
Method `SeqDesignInference$new`
--

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)

--
Method `SeqDesignInference$compute_treatment_estimate`
--

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)
seq_des_inf$compute_treatment_estimate()

--
Method `SeqDesignInference$compute_pval_for_no_treatment_effect`
--

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)
seq_des_inf$compute_pval_for_no_treatment_effect()

14 SeqExpMatch

--
Method `SeqDesignInference$randomization_inference_samples_for_no_treatment_effect`
--

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des)
samps = seq_des_inf$randomization_inference_samples_for_no_treatment_effect()
summary(samps)

--
Method `SeqDesignInference$compute_confidence_interval`
--

seq_des = SeqDesign$new(n = 6, p = 10, design = "CRD")
seq_des$add_subject_to_experiment(c(1, 38, 142, 71, 5.3, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(0, 27, 127, 60, 5.5, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 42, 169, 74, 5.1, 0, 1, 0, 0, 0))
seq_des$add_subject_to_experiment(c(0, 59, 105, 62, 5.9, 0, 0, 0, 1, 0))
seq_des$add_subject_to_experiment(c(1, 32, 186, 66, 5.6, 1, 0, 0, 0, 0))
seq_des$add_subject_to_experiment(c(1, 37, 178, 75, 6.5, 0, 0, 0, 0, 1))
seq_des$add_all_subject_responses(c(4.71, 1.23, 4.78, 6.11, 5.95, 8.43))

seq_des_inf = SeqDesignInference$new(seq_des, test_type = "normal-based")
seq_des_inf$compute_confidence_interval()

SeqExpMatch Sequential Experimental Designs via Matching On-the-Fly

Description

SeqExpMatch

Details

Generates the following sequential two-arm experimental designs (1) completely randomized (Bernoulli)
(2) balanced completely randomized (3) Efron’s (1971) Biased Coin (4) Atkinson’s (1982) Covariate-
Adjusted Biased Coin (5) Kapelner and Krieger’s (2014) Covariate-Adjusted Matching on the Fly
(6) Kapelner and Krieger’s (2021) CARA Matching on the Fly with Weighted Covariates (7) Kapel-
ner and Krieger’s (2021) CARA Matching on the Fly with Weighted Covariates Stepwise

SeqExpMatch 15

Author(s)

Adam Kapelner <kapelner@qc.cuny.edu>

References

Adam Kapelner and Abba Krieger A Matching Procedure for Sequential Experiments that Itera-
tively Learns which Covariates Improve Power, Arxiv 2010.05980

Index

∗ design
SeqExpMatch, 14

∗ htest
SeqExpMatch, 14

SeqDesign, 2
SeqDesignInference, 8
SeqExpMatch, 14

16

	SeqDesign
	SeqDesignInference
	SeqExpMatch
	Index

