
Package ‘foreach’
October 13, 2022

Type Package

Title Provides Foreach Looping Construct

Version 1.5.2

Description Support for the foreach looping construct. Foreach is an
idiom that allows for iterating over elements in a collection,
without the use of an explicit loop counter. This package in
particular is intended to be used for its return value, rather
than for its side effects. In that sense, it is similar to the
standard lapply function, but doesn't require the evaluation
of a function. Using foreach without side effects also
facilitates executing the loop in parallel.

License Apache License (== 2.0)

URL https://github.com/RevolutionAnalytics/foreach

BugReports https://github.com/RevolutionAnalytics/foreach/issues

Depends R (>= 2.5.0)

Imports codetools, utils, iterators

Suggests randomForest, doMC, doParallel, testthat, knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.1.1

Collate 'callCombine.R' 'foreach.R' 'do.R' 'foreach-ext.R'
'foreach-pkg.R' 'getDoPar.R' 'getDoSeq.R' 'getsyms.R' 'iter.R'
'nextElem.R' 'onLoad.R' 'setDoPar.R' 'setDoSeq.R' 'times.R'
'utils.R'

NeedsCompilation no

Author Folashade Daniel [cre],
Hong Ooi [ctb],
Rich Calaway [ctb],
Microsoft [aut, cph],
Steve Weston [aut]

Maintainer Folashade Daniel <fdaniel@microsoft.com>

Repository CRAN

Date/Publication 2022-02-02 09:20:02 UTC

1

https://github.com/RevolutionAnalytics/foreach
https://github.com/RevolutionAnalytics/foreach/issues

2 foreach

R topics documented:
foreach . 2
foreach-ext . 5
getDoParWorkers . 7
getDoSeqWorkers . 8
registerDoSEQ . 9
setDoPar . 9
setDoSeq . 10

Index 11

foreach foreach

Description
%do% and %dopar% are binary operators that operate on a foreach object and an R expression.
The expression, ex, is evaluated multiple times in an environment that is created by the foreach
object, and that environment is modified for each evaluation as specified by the foreach object.
%do% evaluates the expression sequentially, while %dopar% evaluates it in parallel. The results of
evaluating ex are returned as a list by default, but this can be modified by means of the .combine
argument.

Usage

foreach(
...,
.combine,
.init,
.final = NULL,
.inorder = TRUE,
.multicombine = FALSE,
.maxcombine = if (.multicombine) 100 else 2,
.errorhandling = c("stop", "remove", "pass"),
.packages = NULL,
.export = NULL,
.noexport = NULL,
.verbose = FALSE

)

e1 %:% e2

when(cond)

obj %do% ex

obj %dopar% ex

foreach 3

times(n)

Arguments

... one or more arguments that control how ex is evaluated. Named arguments
specify the name and values of variables to be defined in the evaluation environ-
ment. An unnamed argument can be used to specify the number of times that ex
should be evaluated. At least one argument must be specified in order to define
the number of times ex should be executed.
If multiple arguments are supplied, the number of times ex is evaluated is equal
to the smallest number of iterations among the supplied arguments. See the
examples.

.combine function that is used to process the tasks results as they generated. This can
be specified as either a function or a non-empty character string naming the
function. Specifying ’c’ is useful for concatenating the results into a vector, for
example. The values ’cbind’ and ’rbind’ can combine vectors into a matrix. The
values ’+’ and ’*’ can be used to process numeric data. By default, the results
are returned in a list.

.init initial value to pass as the first argument of the .combine function. This should
not be specified unless .combine is also specified.

.final function of one argument that is called to return final result.

.inorder logical flag indicating whether the .combine function requires the task results
to be combined in the same order that they were submitted. If the order is not
important, then it setting .inorder to FALSE can give improved performance.
The default value is ‘TRUE.

.multicombine logical flag indicating whether the .combine function can accept more than two
arguments. If an arbitrary .combine function is specified, by default, that func-
tion will always be called with two arguments. If it can take more than two ar-
guments, then setting .multicombine to TRUE could improve the performance.
The default value is FALSE unless the .combine function is cbind, rbind, or c,
which are known to take more than two arguments.

.maxcombine maximum number of arguments to pass to the combine function. This is only
relevant if .multicombine is TRUE.

.errorhandling specifies how a task evaluation error should be handled. If the value is "stop",
then execution will be stopped via the stop function if an error occurs. If the
value is "remove", the result for that task will not be returned, or passed to
the .combine function. If it is "pass", then the error object generated by task
evaluation will be included with the rest of the results. It is assumed that the
combine function (if specified) will be able to deal with the error object. The
default value is "stop".

.packages character vector of packages that the tasks depend on. If ex requires a R package
to be loaded, this option can be used to load that package on each of the workers.
Ignored when used with %do%.

.export character vector of variables to export. This can be useful when accessing a
variable that isn’t defined in the current environment. The default value in NULL.

4 foreach

.noexport character vector of variables to exclude from exporting. This can be useful to
prevent variables from being exported that aren’t actually needed, perhaps be-
cause the symbol is used in a model formula. The default value in NULL.

.verbose logical flag enabling verbose messages. This can be very useful for trouble
shooting.

e1 foreach object to merge.

e2 foreach object to merge.

cond condition to evaluate.

obj foreach object used to control the evaluation of ex.

ex the R expression to evaluate.

n number of times to evaluate the R expression.

Details

The foreach and %do%/%dopar% operators provide a looping construct that can be viewed as a
hybrid of the standard for loop and lapply function. It looks similar to the for loop, and it
evaluates an expression, rather than a function (as in lapply), but its purpose is to return a value
(a list, by default), rather than to cause side-effects. This facilitates parallelization, but looks more
natural to people that prefer for loops to lapply.

The %:% operator is the nesting operator, used for creating nested foreach loops. Type vignette("nested")
at the R prompt for more details.

Parallel computation depends upon a parallel backend that must be registered before performing
the computation. The parallel backends available will be system-specific, but include doParallel,
which uses R’s built-in parallel package. Each parallel backend has a specific registration function,
such as registerDoParallel.

The times function is a simple convenience function that calls foreach. It is useful for evaluating
an R expression multiple times when there are no varying arguments. This can be convenient for
resampling, for example.

See Also

iterators::iter

Examples

equivalent to rnorm(3)
times(3) %do% rnorm(1)

equivalent to lapply(1:3, sqrt)
foreach(i=1:3) %do%

sqrt(i)

multiple ... arguments
foreach(i=1:4, j=1:10) %do%
sqrt(i+j)

equivalent to colMeans(m)

foreach-ext 5

m <- matrix(rnorm(9), 3, 3)
foreach(i=1:ncol(m), .combine=c) %do%

mean(m[,i])

normalize the rows of a matrix in parallel, with parenthesis used to
force proper operator precedence
Need to register a parallel backend before this example will run
in parallel
foreach(i=1:nrow(m), .combine=rbind) %dopar%

(m[i,] / mean(m[i,]))

simple (and inefficient) parallel matrix multiply
library(iterators)
a <- matrix(1:16, 4, 4)
b <- t(a)
foreach(b=iter(b, by='col'), .combine=cbind) %dopar%

(a %*% b)

split a data frame by row, and put them back together again without
changing anything
d <- data.frame(x=1:10, y=rnorm(10))
s <- foreach(d=iter(d, by='row'), .combine=rbind) %dopar% d
identical(s, d)

a quick sort function
qsort <- function(x) {

n <- length(x)
if (n == 0) {
x

} else {
p <- sample(n, 1)
smaller <- foreach(y=x[-p], .combine=c) %:% when(y <= x[p]) %do% y
larger <- foreach(y=x[-p], .combine=c) %:% when(y > x[p]) %do% y
c(qsort(smaller), x[p], qsort(larger))

}
}
qsort(runif(12))

foreach-ext foreach extension functions

Description

These functions are used to write parallel backends for the foreach package. They should not be
used from normal scripts or packages that use the foreach package.

Usage

makeAccum(it)

6 foreach-ext

accumulate(obj, result, tag, ...)

getResult(obj, ...)

getErrorValue(obj, ...)

getErrorIndex(obj, ...)

S3 method for class 'iforeach'
accumulate(obj, result, tag, ...)

S3 method for class 'iforeach'
getResult(obj, ...)

S3 method for class 'iforeach'
getErrorValue(obj, ...)

S3 method for class 'iforeach'
getErrorIndex(obj, ...)

S3 method for class 'ixforeach'
accumulate(obj, result, tag, ...)

S3 method for class 'ixforeach'
getResult(obj, ...)

S3 method for class 'ixforeach'
getErrorValue(obj, ...)

S3 method for class 'ixforeach'
getErrorIndex(obj, ...)

S3 method for class 'ifilteredforeach'
accumulate(obj, result, tag, ...)

S3 method for class 'ifilteredforeach'
getResult(obj, ...)

S3 method for class 'ifilteredforeach'
getErrorValue(obj, ...)

S3 method for class 'ifilteredforeach'
getErrorIndex(obj, ...)

getexports(ex, e, env, good = character(0), bad = character(0))

getDoParWorkers 7

Arguments

it foreach iterator.

obj foreach iterator object.

result task result to accumulate.

tag tag of task result to accumulate.

... unused.

ex call object to analyze.

e local environment of the call object.

env exported environment in which call object will be evaluated.

good names of symbols that are being exported.

bad names of symbols that are not being exported.

Note

These functions are likely to change in future versions of the foreach package. When they become
more stable, they will be documented.

getDoParWorkers Functions Providing Information on the doPar Backend

Description

The getDoParWorkers function returns the number of execution workers there are in the currently
registered doPar backend. It can be useful when determining how to split up the work to be executed
in parallel. A 1 is returned by default.

The getDoParRegistered function returns TRUE if a doPar backend has been registered, otherwise
FALSE.

The getDoParName function returns the name of the currently registered doPar backend. A NULL is
returned if no backend is registered.

The getDoParVersion function returns the version of the currently registered doPar backend. A
NULL is returned if no backend is registered.

Usage

getDoParWorkers()

getDoParRegistered()

getDoParName()

getDoParVersion()

8 getDoSeqWorkers

Examples

cat(sprintf('%s backend is registered\n',
if(getDoParRegistered()) 'A' else 'No'))

cat(sprintf('Running with %d worker(s)\n', getDoParWorkers()))
(name <- getDoParName())
(ver <- getDoParVersion())
if (getDoParRegistered())

cat(sprintf('Currently using %s [%s]\n', name, ver))

getDoSeqWorkers Functions Providing Information on the doSeq Backend

Description

The getDoSeqWorkers function returns the number of execution workers there are in the currently
registered doSeq backend. A 1 is returned by default.

The getDoSeqRegistered function returns TRUE if a doSeq backend has been registered, other-
wise FALSE.

The getDoSeqName function returns the name of the currently registered doSeq backend. A NULL is
returned if no backend is registered.

The getDoSeqVersion function returns the version of the currently registered doSeq backend. A
NULL is returned if no backend is registered.

Usage

getDoSeqRegistered()

getDoSeqWorkers()

getDoSeqName()

getDoSeqVersion()

Examples

cat(sprintf('%s backend is registered\n',
if(getDoSeqRegistered()) 'A' else 'No'))

cat(sprintf('Running with %d worker(s)\n', getDoSeqWorkers()))
(name <- getDoSeqName())
(ver <- getDoSeqVersion())
if (getDoSeqRegistered())

cat(sprintf('Currently using %s [%s]\n', name, ver))

registerDoSEQ 9

registerDoSEQ registerDoSEQ

Description

The registerDoSEQ function is used to explicitly register a sequential parallel backend with the
foreach package. This will prevent a warning message from being issued if the %dopar% function is
called and no parallel backend has been registered.

Usage

registerDoSEQ()

See Also

doParallel::registerDoParallel

Examples

specify that %dopar% should run sequentially
registerDoSEQ()

setDoPar setDoPar

Description

The setDoPar function is used to register a parallel backend with the foreach package. This isn’t
normally executed by the user. Instead, packages that provide a parallel backend provide a function
named registerDoPar that calls setDoPar using the appropriate arguments.

Usage

setDoPar(fun, data = NULL, info = function(data, item) NULL)

Arguments

fun A function that implements the functionality of %dopar%.

data Data to be passed to the registered function.

info Function that retrieves information about the backend.

See Also

%dopar%

10 setDoSeq

setDoSeq setDoSeq

Description

The setDoSeq function is used to register a sequential backend with the foreach package. This
isn’t normally executed by the user. Instead, packages that provide a sequential backend provide a
function named registerDoSeq that calls setDoSeq using the appropriate arguments.

Usage

setDoSeq(fun, data = NULL, info = function(data, item) NULL)

Arguments

fun A function that implements the functionality of %dopar%.

data Data to be passed to the registered function.

info Function that retrieves information about the backend.

See Also

%dopar%

Index

∗ utilities
foreach, 2
foreach-ext, 5
getDoParWorkers, 7
getDoSeqWorkers, 8
registerDoSEQ, 9
setDoPar, 9
setDoSeq, 10

%:% (foreach), 2
%do% (foreach), 2
%dopar% (foreach), 2
%dopar%, 9, 10

accumulate (foreach-ext), 5

doParallel::registerDoParallel, 9

foreach, 2
foreach-ext, 5

getDoParName (getDoParWorkers), 7
getDoParRegistered (getDoParWorkers), 7
getDoParVersion (getDoParWorkers), 7
getDoParWorkers, 7
getDoSeqName (getDoSeqWorkers), 8
getDoSeqRegistered (getDoSeqWorkers), 8
getDoSeqVersion (getDoSeqWorkers), 8
getDoSeqWorkers, 8
getErrorIndex (foreach-ext), 5
getErrorValue (foreach-ext), 5
getexports (foreach-ext), 5
getResult (foreach-ext), 5

iterators::iter, 4

makeAccum (foreach-ext), 5

registerDoSEQ, 9

setDoPar, 9
setDoSeq, 10

times (foreach), 2

when (foreach), 2

11

	foreach
	foreach-ext
	getDoParWorkers
	getDoSeqWorkers
	registerDoSEQ
	setDoPar
	setDoSeq
	Index

