Package 'gStream'

October 13, 2022
Version 0.2.0
Date 2019-04-28
Title Graph-Based Sequential Change-Point Detection for Streaming Data
Author Hao Chen and Lynna Chu
Maintainer Hao Chen hxchen@ucdavis.edu
Depends R (>= 3.0.1)
Description Uses an approach based on k-nearest neighbor information to sequentially detect changepoints. Offers analytic approximations for false discovery control given user-specified average run length. Can be applied to any type of data (high-dimensional, nonEuclidean, etc.) as long as a reasonable similarity measure is available. See references (1) Chen, H. (2019) Sequential change-point detection based on nearest neighbors. The Annals of Statistics, 47(3):1381-1407. (2) Chu, L. and Chen, H. (2018) Sequential change-point detection for high-dimensional and non-Euclidean data arXiv:1810.05973.

License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2019-05-01 22:00:03 UTC

R topics documented:

\qquad
Stream
2
gStream . 2
gstream . 3

Index 6

distM1

An distance matrix constructed from L2 distance

Description

This is the variable name for a distance matrix in the "Example" data. It is constructed from a sequence of 40 observations of dimension 10. The first 20 observations are considered historical observations. There is a change in mean at $\mathrm{t}=10$.

Description

This package can be used to estimate change-points in a sequence of sequentially generated observations, where the observation can be a vector or a data object, e.g., a network. A distance matrix is required.
The function gstream will report the graph-based test statistics and the thresholds used in the stopping rules for a given average run length.

Author(s)

Hao Chen and Lynna Chu

Maintainer: Hao Chen (hxchen@ucdavis.edu) and Lynna Chu (lbchu@ucdavis.edu)

References

Chen, H. (2019) Sequential Change-point Detection Based on Nearest Neighbors. The Annals of Statistics, 47(3):1381-1407.
Chu, L. and Chen, H. (2018) Sequential Change-point Detection for High-dimensional and nonEuclidean Data. arXiv:1810.05973.

See Also

gstream

Examples

```
# This example contains two distance matrices constructed using L2 distance (distM1 and distM2).
    #In this example, the data is treated as if it were being observed sequentally
    # in order to illustrate how the package works.
    # Example:
    # distM1 is a distance matrix constructed from a dataset with n=40 observation.
    # The first 20 observations are treated as historical observations.
```

```
# It has been determined that there are no change-points among the
# first 20 observations (see package gSeg for offline change-point detection).
# There is change in mean when tau = 20 (This means a change happens 20 observations
# after we start the tests. We start the test at N0+1 = 21.)
# The following code shows the data generating scheme to create distM1:
# (uncomment to run)
# N0 = 20 # the first 20 observations are historical observations
# N1 = N0 + 10
# N2 = N1 + 10
# d = 10
# vmu = 10
# set.seed(15)
# y1 = matrix(0,N1,d)
# y2 = matrix(0,N2-N1,d)
# for (i in 1:N1) y1[i,] = rnorm(d)
# for (i in 1:(N2-N1)) y2[i,] = rnorm(d, vmu)
# y = rbind(y1,y2)
# distM1 = as.matrix(dist(y))
# diag(distM1) = max(distM1)+100
# Uncomment the following to run
# N0 = 20
# L = 20 # the k-nn graph is constructed on only the L most recent observations.
# k = 1
# r1= gstream(distM1, L, N0, k, statistics="all", n0=0.3*L, n1=L-0.3*L,
# ARL=200,alpha=0.05, skew.corr=TRUE,asymp=FALSE)
# output results based on all four statistics; the scan statistics can be found in r1$scanZ
# r1$tauhat # reports the locations where a change-point is detected
# r1$b # reports the analytical approximations of the thresholds used in the stopping rules
# Set ARL = 10,000
# r1= gstream(distM1, L, N0, k, statistics="all", n0=0.3*L, n1=L-0.3*L,
# ARL=10000,alpha=0.05, skew.corr=TRUE,asymp=FALSE) # uncomment to run this function
```

gstream Sequential Change-Point Detection based on k-Nearest Neighbors

Description

This function finds change-points in the sequence when the underlying distribution changes. It reports four graph-based test statistics and the analytical approximations for thresholds used in their corresponding stopping rules.

Usage

gstream(distM, L, N0, k, statistics = c("all", "o", "w", "g", "m"), n0 $=0.3 * \mathrm{~L}$, $\mathrm{n} 1=0.7 * \mathrm{~L}$, ARL = 10000, alpha = 0.05, skew.corr $=$ TRUE, asymp $=$ FALSE)

Arguments

distM	A distance matrix constructed based on some distance measure.
L	The number of observations the k-NN graph will be constructed from.
N 0	The number of historical observations.
k	A fixed integer used to construct k-NN graph.

Value

Returns a list with items scanZ, b and tauhat for each type of statistic specified. See below for more details.

scanZ	A vector of the test statistic (maximum of the scan statistics) for each time $\mathrm{n}=$ $\mathrm{N} 0+1, . \mathrm{N}$.
ori: A vector of the original scan statistics (standardized counts) if statistic	
specified is "all" or "o".	
weighted: A vector of the weighted scan statistics (standardized counts) if	
statistic specified is "all" or "w".	
generalized: A vector of the generalized scan statistics (standardized counts)	
if statistic specified is "all" or "g".	
max.type: A vector of the max-type scan statistics (standardized counts) if	
statistic specified is "all" or "m".	
b	Thresholds used in the stopping rules for each test statistic. These thresholds are based on analytical approximations of the average run length.
tauhat	Estimate of the locations of change-points based on the thresholds.

See Also

gStream

Examples

\# This example contains two distance matrices (distM1 and distM2).
\# Information on how distM1 and distM2 are generated can be found in gStream.
\# data(Example)
\# Example:
\# distM1 is a distance matrix constructed from a dataset with $\mathrm{n}=40$ observation. \# The first 20 observations are treated as historical observations.
\# It has been determined that there are no change-points among the
\# first 20 observations (see package gSeg for offline change-point detection).
\# There is change in mean when tau $=20$ (This means a change happens 20 observations
\# after we start the tests. We start the test at $\mathrm{N} 0+1=21$.)
\# Uncomment the following to run
\# N0 = 20
\# L = 20 \# the $k-n n$ graph is constructed on only the L most recent observations.
\# k = 1
\# r1= gstream(distM1, L, N0, k, statistics="all", n $0=0.3 * \mathrm{~L}, \mathrm{n} 1=0.7 * \mathrm{~L}$,
\# ARL=200,alpha=0.05, skew.corr=TRUE, asymp=FALSE)
\# output results based on all four statistics; the scan statistics can be found in r1\$scanZ
\# r1\$tauhat \# reports the locations where a change-point is detected
\# r1\$b \# reports the analytical approximations of the thresholds used in the stopping rules
\# Set ARL = 10,000
\# r1= gstream(distM1, L, N0, k, statistics="all", n0=0.3*L, n1=L-0.3*L,
\# ARL=10000, alpha=0.05, skew.corr=TRUE, asymp=FALSE) \# uncomment to run this function

Index

distM1, 2
gStream, 2, 5
gstream, 2, 3

