This vignette is intended to provide a set of examples that nearly
exhaustively demonstrate the functionalities provided by
infer
. Commentary on these examples is limited—for more
discussion of the intuition behind the package, see the “Getting to Know
infer” vignette, accessible by calling
vignette("infer")
.
Throughout this vignette, we’ll make use of the gss
dataset supplied by infer
, which contains a sample of data
from the General Social Survey. See ?gss
for more
information on the variables included and their source. Note that this
data (and our examples on it) are for demonstration purposes only, and
will not necessarily provide accurate estimates unless weighted
properly. For these examples, let’s suppose that this dataset is a
representative sample of a population we want to learn about: American
adults. The data looks like this:
## Rows: 500
## Columns: 11
## $ year <dbl> 2014, 1994, 1998, 1996, 1994, 1996, 1990, 2016, 2000, 1998, 20…
## $ age <dbl> 36, 34, 24, 42, 31, 32, 48, 36, 30, 33, 21, 30, 38, 49, 25, 56…
## $ sex <fct> male, female, male, male, male, female, female, female, female…
## $ college <fct> degree, no degree, degree, no degree, degree, no degree, no de…
## $ partyid <fct> ind, rep, ind, ind, rep, rep, dem, ind, rep, dem, dem, ind, de…
## $ hompop <dbl> 3, 4, 1, 4, 2, 4, 2, 1, 5, 2, 4, 3, 4, 4, 2, 2, 3, 2, 1, 2, 5,…
## $ hours <dbl> 50, 31, 40, 40, 40, 53, 32, 20, 40, 40, 23, 52, 38, 72, 48, 40…
## $ income <ord> $25000 or more, $20000 - 24999, $25000 or more, $25000 or more…
## $ class <fct> middle class, working class, working class, working class, mid…
## $ finrela <fct> below average, below average, below average, above average, ab…
## $ weight <dbl> 0.8960, 1.0825, 0.5501, 1.0864, 1.0825, 1.0864, 1.0627, 0.4785…
Calculating the observed statistic,
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 40) %>%
generate(reps = 1000) %>%
calculate(stat = "mean")
Visualizing the observed statistic alongside the null distribution,
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.038 |
Calculating the observed statistic,
t_bar <- gss %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 40) %>%
calculate(stat = "t")
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 40) %>%
generate(reps = 1000) %>%
calculate(stat = "t")
Alternatively, finding the null distribution using theoretical
methods using the assume()
verb,
Visualizing the observed statistic alongside the null distribution,
Alternatively, visualizing the observed statistic using the theory-based null distribution,
Alternatively, visualizing the observed statistic using both of the null distributions,
Note that the above code makes use of the randomization-based null distribution.
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.028 |
Alternatively, using the t_test
wrapper:
statistic | t_df | p_value | alternative | estimate | lower_ci | upper_ci |
---|---|---|---|---|---|---|
2.085 | 499 | 0.0376 | two.sided | 41.38 | 40.08 | 42.68 |
infer
does not support testing on one numerical variable
via the z
distribution.
Calculating the observed statistic,
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss %>%
specify(response = age) %>%
hypothesize(null = "point", med = 40) %>%
generate(reps = 1000) %>%
calculate(stat = "median")
Visualizing the observed statistic alongside the null distribution,
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.008 |
The example under this header is compatible with stat
s
"mean"
, "median"
, "sum"
, and
"sd"
.
Suppose that each of these survey respondents had provided the number
of hours
worked per week when surveyed 5 years prior,
encoded as hours_previous
.
set.seed(1)
gss_paired <- gss %>%
mutate(
hours_previous = hours + 5 - rpois(nrow(.), 4.8),
diff = hours - hours_previous
)
gss_paired %>%
select(hours, hours_previous, diff)
hours | hours_previous | diff |
---|---|---|
50 | 52 | -2 |
31 | 32 | -1 |
40 | 40 | 0 |
40 | 37 | 3 |
40 | 42 | -2 |
53 | 50 | 3 |
32 | 28 | 4 |
20 | 19 | 1 |
40 | 40 | 0 |
40 | 43 | -3 |
23 | 25 | -2 |
52 | 54 | -2 |
38 | 37 | 1 |
72 | 73 | -1 |
48 | 47 | 1 |
40 | 40 | 0 |
40 | 39 | 1 |
28 | 22 | 6 |
30 | 31 | -1 |
40 | 39 | 1 |
40 | 37 | 3 |
20 | 22 | -2 |
40 | 39 | 1 |
3 | 6 | -3 |
55 | 57 | -2 |
60 | 61 | -1 |
40 | 44 | -4 |
71 | 72 | -1 |
50 | 48 | 2 |
32 | 33 | -1 |
40 | 40 | 0 |
50 | 50 | 0 |
50 | 50 | 0 |
72 | 74 | -2 |
42 | 40 | 2 |
40 | 39 | 1 |
40 | 38 | 2 |
40 | 43 | -3 |
42 | 41 | 1 |
56 | 57 | -1 |
30 | 28 | 2 |
20 | 20 | 0 |
15 | 14 | 1 |
40 | 40 | 0 |
56 | 56 | 0 |
40 | 39 | 1 |
72 | 76 | -4 |
40 | 40 | 0 |
30 | 29 | 1 |
40 | 39 | 1 |
44 | 44 | 0 |
40 | 38 | 2 |
36 | 37 | -1 |
40 | 42 | -2 |
89 | 92 | -3 |
50 | 53 | -3 |
40 | 41 | -1 |
40 | 40 | 0 |
50 | 49 | 1 |
40 | 41 | -1 |
65 | 62 | 3 |
45 | 47 | -2 |
40 | 41 | -1 |
42 | 43 | -1 |
40 | 40 | 0 |
40 | 42 | -2 |
36 | 36 | 0 |
50 | 49 | 1 |
40 | 43 | -3 |
30 | 28 | 2 |
20 | 21 | -1 |
35 | 33 | 2 |
40 | 41 | -1 |
50 | 51 | -1 |
50 | 50 | 0 |
37 | 34 | 3 |
35 | 33 | 2 |
16 | 17 | -1 |
60 | 59 | 1 |
40 | 36 | 4 |
55 | 56 | -1 |
56 | 55 | 1 |
72 | 73 | -1 |
40 | 41 | -1 |
52 | 51 | 1 |
40 | 42 | -2 |
6 | 5 | 1 |
78 | 81 | -3 |
13 | 15 | -2 |
44 | 46 | -2 |
20 | 22 | -2 |
8 | 11 | -3 |
40 | 40 | 0 |
40 | 38 | 2 |
60 | 59 | 1 |
40 | 38 | 2 |
15 | 16 | -1 |
60 | 61 | -1 |
40 | 38 | 2 |
14 | 14 | 0 |
40 | 39 | 1 |
20 | 21 | -1 |
40 | 42 | -2 |
50 | 44 | 6 |
24 | 24 | 0 |
48 | 50 | -2 |
40 | 43 | -3 |
48 | 48 | 0 |
48 | 45 | 3 |
50 | 50 | 0 |
40 | 35 | 5 |
40 | 39 | 1 |
48 | 49 | -1 |
44 | 45 | -1 |
10 | 12 | -2 |
40 | 44 | -4 |
35 | 34 | 1 |
40 | 43 | -3 |
12 | 13 | -1 |
40 | 40 | 0 |
40 | 34 | 6 |
60 | 60 | 0 |
30 | 30 | 0 |
35 | 37 | -2 |
56 | 55 | 1 |
45 | 46 | -1 |
46 | 46 | 0 |
45 | 47 | -2 |
40 | 42 | -2 |
40 | 40 | 0 |
89 | 89 | 0 |
40 | 43 | -3 |
59 | 63 | -4 |
43 | 43 | 0 |
40 | 37 | 3 |
44 | 44 | 0 |
20 | 20 | 0 |
20 | 20 | 0 |
45 | 40 | 5 |
12 | 12 | 0 |
40 | 39 | 1 |
37 | 37 | 0 |
40 | 42 | -2 |
15 | 17 | -2 |
30 | 29 | 1 |
38 | 39 | -1 |
41 | 43 | -2 |
50 | 49 | 1 |
30 | 33 | -3 |
40 | 38 | 2 |
40 | 40 | 0 |
40 | 40 | 0 |
45 | 46 | -1 |
40 | 41 | -1 |
53 | 53 | 0 |
32 | 34 | -2 |
40 | 40 | 0 |
56 | 59 | -3 |
40 | 42 | -2 |
40 | 42 | -2 |
40 | 42 | -2 |
40 | 37 | 3 |
40 | 41 | -1 |
10 | 9 | 1 |
45 | 43 | 2 |
34 | 35 | -1 |
45 | 48 | -3 |
65 | 66 | -1 |
48 | 47 | 1 |
40 | 41 | -1 |
27 | 27 | 0 |
40 | 38 | 2 |
50 | 48 | 2 |
40 | 41 | -1 |
40 | 41 | -1 |
50 | 47 | 3 |
50 | 50 | 0 |
15 | 14 | 1 |
40 | 40 | 0 |
20 | 17 | 3 |
43 | 45 | -2 |
20 | 22 | -2 |
38 | 36 | 2 |
40 | 40 | 0 |
40 | 38 | 2 |
40 | 42 | -2 |
40 | 39 | 1 |
56 | 55 | 1 |
43 | 40 | 3 |
53 | 53 | 0 |
32 | 31 | 1 |
25 | 26 | -1 |
40 | 43 | -3 |
40 | 37 | 3 |
40 | 42 | -2 |
40 | 40 | 0 |
45 | 48 | -3 |
32 | 30 | 2 |
32 | 33 | -1 |
38 | 37 | 1 |
60 | 62 | -2 |
27 | 29 | -2 |
43 | 43 | 0 |
89 | 91 | -2 |
48 | 50 | -2 |
40 | 40 | 0 |
40 | 40 | 0 |
20 | 23 | -3 |
20 | 22 | -2 |
30 | 29 | 1 |
60 | 56 | 4 |
56 | 59 | -3 |
40 | 39 | 1 |
40 | 36 | 4 |
45 | 43 | 2 |
72 | 73 | -1 |
40 | 40 | 0 |
51 | 47 | 4 |
40 | 36 | 4 |
60 | 61 | -1 |
24 | 26 | -2 |
40 | 42 | -2 |
40 | 41 | -1 |
80 | 80 | 0 |
24 | 21 | 3 |
40 | 40 | 0 |
30 | 32 | -2 |
52 | 56 | -4 |
50 | 51 | -1 |
22 | 20 | 2 |
40 | 41 | -1 |
35 | 38 | -3 |
37 | 38 | -1 |
50 | 50 | 0 |
47 | 48 | -1 |
30 | 29 | 1 |
40 | 39 | 1 |
25 | 25 | 0 |
35 | 36 | -1 |
27 | 28 | -1 |
40 | 41 | -1 |
30 | 30 | 0 |
36 | 33 | 3 |
40 | 42 | -2 |
48 | 49 | -1 |
40 | 42 | -2 |
40 | 41 | -1 |
30 | 33 | -3 |
40 | 41 | -1 |
63 | 60 | 3 |
40 | 39 | 1 |
30 | 27 | 3 |
40 | 41 | -1 |
89 | 89 | 0 |
55 | 55 | 0 |
6 | 9 | -3 |
40 | 42 | -2 |
50 | 50 | 0 |
64 | 65 | -1 |
10 | 7 | 3 |
45 | 45 | 0 |
40 | 41 | -1 |
40 | 42 | -2 |
40 | 39 | 1 |
15 | 14 | 1 |
45 | 47 | -2 |
75 | 78 | -3 |
38 | 37 | 1 |
75 | 75 | 0 |
8 | 10 | -2 |
40 | 43 | -3 |
12 | 15 | -3 |
55 | 56 | -1 |
10 | 12 | -2 |
40 | 41 | -1 |
55 | 57 | -2 |
40 | 42 | -2 |
40 | 42 | -2 |
43 | 43 | 0 |
35 | 34 | 1 |
18 | 22 | -4 |
48 | 48 | 0 |
60 | 58 | 2 |
60 | 61 | -1 |
40 | 43 | -3 |
45 | 48 | -3 |
40 | 41 | -1 |
44 | 46 | -2 |
40 | 43 | -3 |
40 | 42 | -2 |
50 | 52 | -2 |
56 | 59 | -3 |
50 | 45 | 5 |
55 | 56 | -1 |
20 | 20 | 0 |
40 | 39 | 1 |
45 | 48 | -3 |
35 | 38 | -3 |
40 | 43 | -3 |
40 | 37 | 3 |
50 | 49 | 1 |
40 | 43 | -3 |
48 | 48 | 0 |
50 | 51 | -1 |
65 | 66 | -1 |
46 | 40 | 6 |
40 | 42 | -2 |
16 | 14 | 2 |
35 | 38 | -3 |
40 | 41 | -1 |
75 | 78 | -3 |
50 | 52 | -2 |
40 | 38 | 2 |
22 | 21 | 1 |
50 | 52 | -2 |
40 | 40 | 0 |
40 | 43 | -3 |
89 | 90 | -1 |
40 | 36 | 4 |
43 | 43 | 0 |
45 | 44 | 1 |
40 | 41 | -1 |
40 | 41 | -1 |
48 | 41 | 7 |
40 | 38 | 2 |
60 | 56 | 4 |
45 | 43 | 2 |
40 | 39 | 1 |
40 | 42 | -2 |
5 | 4 | 1 |
60 | 55 | 5 |
70 | 72 | -2 |
50 | 51 | -1 |
40 | 38 | 2 |
60 | 63 | -3 |
37 | 38 | -1 |
5 | 6 | -1 |
40 | 42 | -2 |
24 | 24 | 0 |
40 | 36 | 4 |
80 | 75 | 5 |
60 | 62 | -2 |
36 | 36 | 0 |
50 | 51 | -1 |
25 | 24 | 1 |
40 | 42 | -2 |
30 | 31 | -1 |
38 | 40 | -2 |
50 | 51 | -1 |
40 | 39 | 1 |
57 | 57 | 0 |
40 | 43 | -3 |
40 | 39 | 1 |
50 | 51 | -1 |
36 | 31 | 5 |
80 | 82 | -2 |
55 | 53 | 2 |
40 | 43 | -3 |
64 | 62 | 2 |
45 | 46 | -1 |
40 | 43 | -3 |
40 | 41 | -1 |
25 | 23 | 2 |
89 | 91 | -2 |
40 | 40 | 0 |
40 | 38 | 2 |
40 | 43 | -3 |
15 | 14 | 1 |
23 | 22 | 1 |
48 | 49 | -1 |
55 | 56 | -1 |
27 | 27 | 0 |
52 | 49 | 3 |
40 | 42 | -2 |
40 | 42 | -2 |
41 | 42 | -1 |
40 | 41 | -1 |
38 | 36 | 2 |
44 | 46 | -2 |
50 | 50 | 0 |
40 | 41 | -1 |
56 | 56 | 0 |
40 | 39 | 1 |
40 | 35 | 5 |
42 | 44 | -2 |
40 | 42 | -2 |
70 | 68 | 2 |
48 | 46 | 2 |
30 | 33 | -3 |
50 | 46 | 4 |
16 | 18 | -2 |
42 | 44 | -2 |
40 | 37 | 3 |
50 | 50 | 0 |
60 | 62 | -2 |
35 | 36 | -1 |
40 | 39 | 1 |
40 | 41 | -1 |
40 | 41 | -1 |
40 | 42 | -2 |
19 | 18 | 1 |
40 | 42 | -2 |
40 | 36 | 4 |
40 | 37 | 3 |
40 | 37 | 3 |
30 | 29 | 1 |
70 | 71 | -1 |
30 | 29 | 1 |
40 | 44 | -4 |
20 | 17 | 3 |
70 | 64 | 6 |
50 | 51 | -1 |
56 | 55 | 1 |
40 | 38 | 2 |
39 | 38 | 1 |
6 | 7 | -1 |
25 | 25 | 0 |
30 | 31 | -1 |
40 | 39 | 1 |
30 | 28 | 2 |
20 | 21 | -1 |
60 | 60 | 0 |
45 | 44 | 1 |
48 | 50 | -2 |
60 | 61 | -1 |
40 | 41 | -1 |
55 | 58 | -3 |
38 | 35 | 3 |
57 | 55 | 2 |
35 | 33 | 2 |
27 | 24 | 3 |
50 | 53 | -3 |
15 | 16 | -1 |
40 | 40 | 0 |
45 | 48 | -3 |
40 | 38 | 2 |
28 | 27 | 1 |
60 | 63 | -3 |
40 | 40 | 0 |
50 | 47 | 3 |
4 | 8 | -4 |
40 | 42 | -2 |
44 | 44 | 0 |
40 | 40 | 0 |
35 | 37 | -2 |
50 | 51 | -1 |
43 | 44 | -1 |
70 | 67 | 3 |
40 | 43 | -3 |
40 | 43 | -3 |
20 | 16 | 4 |
40 | 41 | -1 |
40 | 41 | -1 |
20 | 22 | -2 |
37 | 40 | -3 |
88 | 87 | 1 |
44 | 44 | 0 |
30 | 25 | 5 |
40 | 40 | 0 |
24 | 27 | -3 |
30 | 32 | -2 |
80 | 81 | -1 |
40 | 45 | -5 |
40 | 41 | -1 |
60 | 62 | -2 |
80 | 77 | 3 |
40 | 39 | 1 |
15 | 17 | -2 |
43 | 44 | -1 |
50 | 49 | 1 |
40 | 41 | -1 |
40 | 36 | 4 |
53 | 52 | 1 |
22 | 23 | -1 |
30 | 33 | -3 |
40 | 42 | -2 |
12 | 10 | 2 |
86 | 87 | -1 |
45 | 45 | 0 |
25 | 24 | 1 |
30 | 29 | 1 |
55 | 57 | -2 |
50 | 48 | 2 |
40 | 36 | 4 |
20 | 20 | 0 |
25 | 25 | 0 |
40 | 42 | -2 |
40 | 45 | -5 |
25 | 23 | 2 |
40 | 43 | -3 |
40 | 44 | -4 |
30 | 27 | 3 |
40 | 42 | -2 |
40 | 42 | -2 |
40 | 41 | -1 |
21 | 22 | -1 |
75 | 76 | -1 |
40 | 40 | 0 |
40 | 38 | 2 |
40 | 43 | -3 |
We’d like to test the null hypothesis that the "mean"
hours worked per week did not change between the sampled time and five
years prior.
infer supports paired hypothesis testing via the
null = "paired independence"
argument to
hypothesize()
.
Calculating the observed statistic,
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss_paired %>%
specify(response = diff) %>%
hypothesize(null = "paired independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "mean")
Note that the diff
column itself is not permuted, but
rather the signs of the values in the column.
Visualizing the observed statistic alongside the null distribution,
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.028 |
Calculating the observed statistic,
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss %>%
specify(response = sex, success = "female") %>%
hypothesize(null = "point", p = .5) %>%
generate(reps = 1000) %>%
calculate(stat = "prop")
Visualizing the observed statistic alongside the null distribution,
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.276 |
Note that logical variables will be coerced to factors:
Calculating the observed statistic,
p_hat <- gss %>%
specify(response = sex, success = "female") %>%
hypothesize(null = "point", p = .5) %>%
calculate(stat = "z")
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss %>%
specify(response = sex, success = "female") %>%
hypothesize(null = "point", p = .5) %>%
generate(reps = 1000, type = "draw") %>%
calculate(stat = "z")
Visualizing the observed statistic alongside the null distribution,
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.252 |
The package also supplies a wrapper around prop.test
for
tests of a single proportion on tidy data.
statistic | chisq_df | p_value | alternative |
---|---|---|---|
635.6 | 1 | 0 | two.sided |
infer
does not support testing two means via the
z
distribution.
The infer
package provides several statistics to work
with data of this type. One of them is the statistic for difference in
proportions.
Calculating the observed statistic,
d_hat <- gss %>%
specify(college ~ sex, success = "no degree") %>%
calculate(stat = "diff in props", order = c("female", "male"))
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
d_hat <- gss %>%
observe(college ~ sex, success = "no degree",
stat = "diff in props", order = c("female", "male"))
Then, generating the null distribution,
null_dist <- gss %>%
specify(college ~ sex, success = "no degree") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000) %>%
calculate(stat = "diff in props", order = c("female", "male"))
Visualizing the observed statistic alongside the null distribution,
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
1 |
infer
also provides functionality to calculate ratios of
proportions. The workflow looks similar to that for
diff in props
.
Calculating the observed statistic,
r_hat <- gss %>%
specify(college ~ sex, success = "no degree") %>%
calculate(stat = "ratio of props", order = c("female", "male"))
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
r_hat <- gss %>%
observe(college ~ sex, success = "no degree",
stat = "ratio of props", order = c("female", "male"))
Then, generating the null distribution,
null_dist <- gss %>%
specify(college ~ sex, success = "no degree") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000) %>%
calculate(stat = "ratio of props", order = c("female", "male"))
Visualizing the observed statistic alongside the null distribution,
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
1 |
In addition, the package provides functionality to calculate odds
ratios. The workflow also looks similar to that for
diff in props
.
Calculating the observed statistic,
or_hat <- gss %>%
specify(college ~ sex, success = "no degree") %>%
calculate(stat = "odds ratio", order = c("female", "male"))
Then, generating the null distribution,
null_dist <- gss %>%
specify(college ~ sex, success = "no degree") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000) %>%
calculate(stat = "odds ratio", order = c("female", "male"))
Visualizing the observed statistic alongside the null distribution,
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.984 |
Finding the standardized observed statistic,
z_hat <- gss %>%
specify(college ~ sex, success = "no degree") %>%
hypothesize(null = "independence") %>%
calculate(stat = "z", order = c("female", "male"))
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
z_hat <- gss %>%
observe(college ~ sex, success = "no degree",
stat = "z", order = c("female", "male"))
Then, generating the null distribution,
null_dist <- gss %>%
specify(college ~ sex, success = "no degree") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000) %>%
calculate(stat = "z", order = c("female", "male"))
Alternatively, finding the null distribution using theoretical
methods using the assume()
verb,
Visualizing the observed statistic alongside the null distribution,
Alternatively, visualizing the observed statistic using the theory-based null distribution,
Alternatively, visualizing the observed statistic using both of the null distributions,
Note that the above code makes use of the randomization-based null distribution.
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.98 |
Note the similarities in this plot and the previous one.
The package also supplies a wrapper around prop.test
to
allow for tests of equality of proportions on tidy data.
statistic | chisq_df | p_value | alternative | lower_ci | upper_ci |
---|---|---|---|---|---|
0 | 1 | 0.9964 | two.sided | -0.0918 | 0.0834 |
Calculating the observed statistic,
Note the need to add in the hypothesized values here to compute the observed statistic.
Chisq_hat <- gss %>%
specify(response = finrela) %>%
hypothesize(null = "point",
p = c("far below average" = 1/6,
"below average" = 1/6,
"average" = 1/6,
"above average" = 1/6,
"far above average" = 1/6,
"DK" = 1/6)) %>%
calculate(stat = "Chisq")
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Chisq_hat <- gss %>%
observe(response = finrela,
null = "point",
p = c("far below average" = 1/6,
"below average" = 1/6,
"average" = 1/6,
"above average" = 1/6,
"far above average" = 1/6,
"DK" = 1/6),
stat = "Chisq")
Then, generating the null distribution,
null_dist <- gss %>%
specify(response = finrela) %>%
hypothesize(null = "point",
p = c("far below average" = 1/6,
"below average" = 1/6,
"average" = 1/6,
"above average" = 1/6,
"far above average" = 1/6,
"DK" = 1/6)) %>%
generate(reps = 1000, type = "draw") %>%
calculate(stat = "Chisq")
Alternatively, finding the null distribution using theoretical
methods using the assume()
verb,
Visualizing the observed statistic alongside the null distribution,
Alternatively, visualizing the observed statistic using the theory-based null distribution,
Alternatively, visualizing the observed statistic using both of the null distributions,
visualize(null_dist_theory, method = "both") +
shade_p_value(obs_stat = Chisq_hat, direction = "greater")
Note that the above code makes use of the randomization-based null distribution.
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0 |
Alternatively, using the chisq_test
wrapper:
chisq_test(gss,
response = finrela,
p = c("far below average" = 1/6,
"below average" = 1/6,
"average" = 1/6,
"above average" = 1/6,
"far above average" = 1/6,
"DK" = 1/6))
statistic | chisq_df | p_value |
---|---|---|
488 | 5 | 0 |
Calculating the observed statistic,
Chisq_hat <- gss %>%
specify(formula = finrela ~ sex) %>%
hypothesize(null = "independence") %>%
calculate(stat = "Chisq")
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss %>%
specify(finrela ~ sex) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "Chisq")
Alternatively, finding the null distribution using theoretical
methods using the assume()
verb,
Visualizing the observed statistic alongside the null distribution,
Alternatively, visualizing the observed statistic using the theory-based null distribution,
Alternatively, visualizing the observed statistic using both of the null distributions,
Note that the above code makes use of the randomization-based null distribution.
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.118 |
Alternatively, using the wrapper to carry out the test,
statistic | chisq_df | p_value |
---|---|---|
9.105 | 5 | 0.1049 |
Calculating the observed statistic,
d_hat <- gss %>%
specify(age ~ college) %>%
calculate(stat = "diff in means", order = c("degree", "no degree"))
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss %>%
specify(age ~ college) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in means", order = c("degree", "no degree"))
Visualizing the observed statistic alongside the null distribution,
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.46 |
Finding the standardized observed statistic,
t_hat <- gss %>%
specify(age ~ college) %>%
hypothesize(null = "independence") %>%
calculate(stat = "t", order = c("degree", "no degree"))
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss %>%
specify(age ~ college) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "t", order = c("degree", "no degree"))
Alternatively, finding the null distribution using theoretical
methods using the assume()
verb,
Visualizing the observed statistic alongside the null distribution,
Alternatively, visualizing the observed statistic using the theory-based null distribution,
Alternatively, visualizing the observed statistic using both of the null distributions,
Note that the above code makes use of the randomization-based null distribution.
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.442 |
Note the similarities in this plot and the previous one.
Calculating the observed statistic,
d_hat <- gss %>%
specify(age ~ college) %>%
calculate(stat = "diff in medians", order = c("degree", "no degree"))
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss %>%
specify(age ~ college) %>% # alt: response = age, explanatory = season
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in medians", order = c("degree", "no degree"))
Visualizing the observed statistic alongside the null distribution,
Calculating the p-value from the null distribution and observed statistic,
p_value |
---|
0.172 |
Calculating the observed statistic,
Alternatively, using the observe()
wrapper to calculate
the observed statistic,
Then, generating the null distribution,
null_dist <- gss %>%
specify(age ~ partyid) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "F")
Alternatively, finding the null distribution using theoretical
methods using the assume()
verb,
null_dist_theory <- gss %>%
specify(age ~ partyid) %>%
hypothesize(null = "independence") %>%
assume(distribution = "F")
Visualizing the observed statistic alongside the null distribution,
Alternatively, visualizing the observed statistic using the theory-based null distribution,
Alternatively, visualizing the observed statistic using both of the null distributions,