An efficient procedure for feature selection for generalized linear models with L0 penalty, including linear, logistic, Poisson, gamma, inverse Gaussian regression. Adaptive ridge algorithms are used to fit the models.
Version: | 0.1.6 |
Imports: | Rcpp (≥ 0.12.6) |
LinkingTo: | Rcpp, RcppArmadillo |
Published: | 2020-02-06 |
DOI: | 10.32614/CRAN.package.l0ara |
Author: | Wenchuan Guo, Shujie Ma, Zhenqiu Liu |
Maintainer: | Wenchuan Guo <wguo007 at ucr.edu> |
License: | GPL-2 |
NeedsCompilation: | yes |
Materials: | README NEWS |
CRAN checks: | l0ara results |
Reference manual: | l0ara.pdf |
Package source: | l0ara_0.1.6.tar.gz |
Windows binaries: | r-devel: l0ara_0.1.6.zip, r-release: l0ara_0.1.6.zip, r-oldrel: l0ara_0.1.6.zip |
macOS binaries: | r-release (arm64): l0ara_0.1.6.tgz, r-oldrel (arm64): l0ara_0.1.6.tgz, r-release (x86_64): l0ara_0.1.6.tgz, r-oldrel (x86_64): l0ara_0.1.6.tgz |
Old sources: | l0ara archive |
Please use the canonical form https://CRAN.R-project.org/package=l0ara to link to this page.