Package ‘musicMCT’

November 3, 2025
Title Analyze the Structure of Musical Scales
Version 0.3.0

Description Analysis of musical scales (& modes, grooves, etc.) in the vein of
Sherrill 2025 <doi:10.1215/00222909-11595194>.
The initials MCT in the package title refer to the article's title: * * Modal
Color Theory." Offers support for conventional musical pitch class set
theory as developed by Forte (1973, ISBN: 9780300016109) and David Lewin
(1987, ISBN: 9780300034936), as well as for the continuous geometries of
Callender, Quinn, & Tymoczko (2008) <doi:10.1126/science.1153021>.
Identifies structural properties of scales and calculates derived values
(sign vector, color number, brightness ratio, etc.). Creates plots such as
* “brightness graphs" which visualize these properties.

License GPL (>=3)

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>=3.5)

LazyData true

Imports igraph, utils, stats, graphics

Suggests grDevices, knitr, rmarkdown, testthat (>= 3.0.0), vdiffr,
withr,

VignetteBuilder knitr

URL https://satbq.github.io/musicMCT/,
https://github.com/satbg/musicMCT

BugReports https://github.com/satbq/musicMCT/issues
Config/testthat/edition 3
NeedsCompilation no

Author Paul Sherrill [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0002-3617-016X>)

Maintainer Paul Sherrill <paul.sherrill@utah.edu>
Repository CRAN
Date/Publication 2025-11-03 03:20:08 UTC

https://doi.org/10.1215/00222909-11595194
https://doi.org/10.1126/science.1153021
https://satbq.github.io/musicMCT/
https://github.com/satbq/musicMCT
https://github.com/satbq/musicMCT/issues
https://orcid.org/0009-0002-3617-016X

2 Contents

Contents
anazero_fingerprint L. L. e e 4
asword L L e e e e 5
brightnessgraph L 6
brightness_comparisons 7
CarloS_SIEP e e e 9
clampitt_q e e e 10
clockface e e e e 11
colornum e e e 12
COMPATESIZNVECS . .« v o v e v v it e e e e e e e e e e 13
070 117 o 14
coord_to_edo e 15
dft . . e e e e 16
edoo . . . e e e e 17
130 o 18
EPS « e e e 19
EVEINESS . . & & v v e e e e e e e e e e e e e e e e e 20
flex_points. 22
fortenum e 23
fortenums L e e e 24
fpmod e e e 24
fpunique L L e e 25
get_Televant_ToOWS ot i e e e e e e e e e 26
howfree e 27
IANFINE o oo o e 28
ifunc . . . e e 29
IMEqMALS L e e e 30
INEQSYM . . . v v o vt e 31
intervalspectrum L. e e e e e e 32
ISgWE L e e 33
ISPIOPET o o e e 34
iswellformed 35
ISYM . o o e e 37
IVEC & o o e e e 38
S 39
makeineqmat e e e e e e 41
make_anaglyph_ineqmat oL 42
make_black_ineqmat 43
make_infrared_ineqmat 44
make_offset_ineqmat 45
make_roth_ineqmat 46
make_white_ineqmat L L 47
MAXEVEI . . o v v v e v e 48
meantone_fifth 49
minimize_vl e e e 50
normal_form 51

OPLC_ESE .« . o o o e e e e e e e 52

Contents

Index

3
populate_flat 54
primary_hue 55
primeform e 57
PrOJECE_ONO o v i vttt e e e e e e e e e e 58
quantize_color. L e e e 60
quantize_hue 61
readSCL e e 63
realize_stepword L. L e e e e 63
TOLAE e e e 64
roth_ineqmats e e e e 65
same_hue e 66
SAtUTALE o . e e e e e e e e e e e e e e e e e 67
SC e e e e e e 68
scale_palette L. e 68
SC_COMD & v v v v e 69
set_from_signvector 70
set_to_distribution L. L e e 72
signed_interval_class L 73
SIGNVECIOT .« . v v v v v et e e e e e e e e e e e e e e e e 74
SIM . . v vt e e e e e e e e e 75
simplify_scale 76
SEEP_SIGNVECIOT o v v v i i e e e e e e e e e e 78
SUDSELSPECtIUM o e e 79
subset_multiplicities e e 81
subset_varieties e e e e e e e e e e 82
surround_Set L e e s 83
svzero_fingerprint e e e e 84
B o e 85
15 0 86
tNdiStS L e e e e e e e 88
tPrime e e 89
17317 . 90
VISIZ . o L 91
VISt . . L e e e e e e 93
vl_generators e e 94
vi_rolodeX e e 95
whichmodebest e 96
whichsvzeroes e 97
writeSCL e e e e 99
T e e e 100
ZIMAE . . v v v e 101

4 anazero_fingerprint

anazero_fingerprint Are regularities within or between sets in a pair?

Description

As for other hyperplane arrangements, it is useful to consider the number of entries which equal
0 in an anaglyph signvector. However, such entries can represent three different types of regular-
ity: regularity within the first set, regularity within the second set, or regularity in the comparison
between them. This function distinguishes between those three types of hyperplanes.

Usage

anazero_fingerprint(set, edo = 12, rounder = 10)

Arguments
set A vector of even length representing a pair of sets
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

A vector with three entries, representing regularities in the first set, regularities in the second set,
and regularities between them.

See Also

make_anaglyph_inegmat (), svzero_fingerprint()

Examples

maj <- c(o, 4, 7)
sus2 <- c(0, 2, 7)
anazero_fingerprint(c(maj, sus2))

The first zero shows that the major triad has no regularities.
This is equivalent to:
countsvzeroes(maj)

The second zero shows that the sus2 trichord has 1 regularity.
This is equivalent to:
countsvzeroes(sus2)

The final zero shows that the major triad's perfect fifth

equals the size of the xtwox perfect fifths in the sus2 trichord.
We can visualize the whole set of relationships using a brightness
graph:

asword 5

brightnessgraph(maj, sus2)

asword Algebraic word of a set’s step sizes

Description

Among others, Carey & Clampitt (1989) and Clampitt (1997) have shown that much can be learned
about a set by representing it as a word on m "letters" which represent the m distinct steps between
adjacent members of the set. This is more or less what is done in theory fundamentals classes when
a major scale is represented as TTSTTTS (if we temporarily forget that T and S represent specific
interval sizes). In scholarship the algebraic letters are usually represented as letters of the Latin
alphabet, but for some computational purposes it is useful for these to be explicitly ordered. That is,
the major scale should be represented as integers 2212221, which is distinct from 1121112. (Thus
asword makes finer distinctions than you might expect coming from a word-theoretic context.)

Usage

asword(set, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Vector of integers of the same length as set. 1 should always be the lowest value, representing the
smallest step size in the set.

Examples

dia_12edo <- c(@, 2, 4, 5, 7, 9, 11)
gecm_fifth <- meantone_fifth()

gcm_dia <- sort(((0:6)*qcm_fifth)%%12)
just_dia <- j(dia)

asword(dia_12edo)

asword(qgcm_dia)

asword(just_dia)

asword() is less discriminating than colornum().
See "Modal Color Theory,” 16

setl <- c(0, 1, 4, 7, 8)

set2 <- c(0, 1, 3, 5, 6)

set1_word <- asword(set1)

6 brightnessgraph

set2_word <- asword(set2)

isTRUE(all.equal(set1_word, set2_word))

colornum(set1) == colornum(set2)

(Last line only works with representative_signvectors loaded.)

brightnessgraph Visualize brightness relationships among modes of a scale

Description

Discussed in "Modal Color Theory" (pp. 7-11), the brightness graph of a scale is a Hasse diagram
that represents the sum- and voice-leading brightness relationships between the modes of a scale.
Each node of the graph represents a mode. With default options, the large Roman numeral of each
node indicates which mode of the input scale it represents. (The input scale is roman numeral I.)
Small Arabic numerals beneath the Roman numeral indicate the pitch-classes of the mode (relative
to scale degree 1 as 0). In parentheses, the sum brightness of the mode is shown. Modes with higher
sum brightness are farther up on the graph. Arrows connect modes that can be compared by voice-
leading brightness. The arrows only show a transitive reduction of all VL-brightness comparisons,
so that if you can travel between two sets by only going "up" or "down" the arrows, the source and
destination are indeed related by voice-leading brightness.

If goal=NULL (as it is by default), the brightness graph includes simply the modes of set. However,
goal can be any other scale of the same length as set, in which case the brightness graph includes
modes of both sets and their interconnections. The modes of goal are represented by lower-case
roman numerals, while upper-case numerals represent the modes of set.

Various visual parameters can be configured: numdigits determines how many digits of each pitch-
class to display; show_sums toggles on or off the sum brightness values; show_pitches toggles on
or off the individual pitch classes of each mode; fixed_do, if set to TRUE switches the graph from
showing "parallel" modes (e.g. C ionian vs C aeolian) to showing "relative”" modes (e.g. C ionian
to A aeolian).

For now, the function doesn’t have a smart way to determine the horizontal positioning of modes in
the graph. It uses a heuristic that works well for many sets, but sometimes it will create too much
visual overlap or won’t clarify underlying structure particularly well. Think of these automatically
generated graphs as the starting point for manual fine tuning.

Usage
brightnessgraph(
set,
goal = NULL,

numdigits = 2,
show_sums = TRUE,
show_pitches = TRUE,
fixed_do = FALSE,
edo = 12,

rounder = 10

brightness_comparisons 7

Arguments

set Numeric vector of pitch-classes in the set

goal Numeric vector of same length as set. Defaults to NULL.

numdigits Integer: how many digits of each pitch-class to show? Defaults to 2.

show_sums Boolean: should the graph show sum brightness values? Defaults to TRUE.

show_pitches Boolean: should the graph show values for each note of the scale? Defaults to
TRUE.

fixed_do Boolean: should the graph use only the fixed pitches of the input set? Defaults
to FALSE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

Value

Invisibly, an igraph graph object (the structure of the plotted brightness graph)

Examples
brightnessgraph(c(9,2,4,5,7,9,11))
brightnessgraph(c(9,2,4,5,7,9,11), fixed_do=TRUE)
brightnessgraph(c(0,1,4,9,11),edo=15)

A more complicated graph

werck_ratios <- c(1, 256/243, 64xsqrt(2)/81, 32/27, (256/243)*2*(1/4), 4/3,
1024/729, (8/9)*2*(3/4), 128/81, (1024/729)*2*(1/4), 16/9, (128/81)*2*(1/4))

werckmeister_3 <- z(werck_ratios)

brightnessgraph(werckmeister_3, show_sums=FALSE, show_pitches=FALSE)

Graph for both inversions of the Tristan genus:
dom7 <- c(0, 4, 7, 10)

halfdim <- c(@, 3, 6, 10)

brightnessgraph(dom7, halfdim)

brightness_comparisons
Voice-leading brightness relationships for a scale’s modes

Description

The essential step in creating the brightness graph of a scale’s modes is to compute the pairwise
comparisons between all the modes. Which ones are strictly brighter than others according to
"voice-leading brightness" (see "Modal Color Theory," 6-7)? This function makes those pairwise
comparisons in a manner that’s useful for more computation.

8 brightness_comparisons

Usage

brightness_comparisons(set, goal = NULL, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
goal Numeric vector of same length as set. Defaults to NULL.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Details

Note that the returned value shows all voice-leading brightness comparisons, not just the transi-
tive reduction of those comparisons. (That is, dorian is shown as darker than ionian even though
mixolydian intervenes in the brightness graph.)

Value

If goal=NULL, an n-by-n matrix where n is the size of the scale. Row i represents mode i of the scale
in comparison to all n modes. If the entry in row i, column j is -1, then mode i is "voice-leading
darker" than mode j. If 1, mode i is "voice-leading brighter". If O, mode i is neither brighter nor
darker, either because contrary motion is involved or because mode i is identical to mode j. (Entries
on the principal diagonal are always 0.)

If goal is a set, the result is a 2n-by-2n matrix whose first n rows and columns represent the modes
of set and whose last n rows and columns represent the modes of goal. (Thus the upper left n-by-n
square is the same as if goal were NULL and the lower right n-by-n square is the result of entering
goal as set with an empty goal parameter. The upper-right and lower-left quadrants of the matrix
make comparisons between the modes of set and goal.) The meaning of entries -1, 9, and 1 are as
above.

See Also

brightnessgraph() for a human-readable presentation of the same information.

Examples

Because the diatonic scale, sc7-35, is non-degenerate well-formed, the only
@ entries should be on its diagonal.
brightness_comparisons(sc(7, 35))

mystic_chord <- sc(6,34)

colSums(sim(mystic_chord)) # The sum brightnesses of the mystic chord's 6 modes
brightness_comparisons(mystic_chord)

Almost all @s because very few mode pairs are comparable.

That's because nearly all modes have the same sum, which means they have sum-brightness
ties, and voice-leading brightness can't break a sum-brightness tie.

(See "Modal Color Theory,” 7.)

carlos_step 9

major <- c(0, 4, 7)
minor <- c(0, 3, 7)
brightness_comparisons(major, minor)

carlos_step Define a step size for one of Wendy Carlos’s scales

Description

For her album Beauty in the Beast, Wendy Carlos developed several non-octave scales whose step
sizes are calculated to optimize approximations of three intervals: the 3:2 fifth, the 5:4 major third,
and the 6:5 minor third. The alpha, beta, gamma, and delta scales differ in terms of how strongly
they privilege each of those just intervals. The basic step size for each scale is created by calling
this function with the appropriate name argument (e.g. "alpha"). You can also choose your own
weights for the three approximated just intervals, in which case the name argument is overridden.

Usage

carlos_step(name = "alpha"”, weights = NULL, edo = 12)

Arguments
name Which of Carlos’s four scales to create: "alpha”, "beta”, "gamma”, or "delta".
Defaults to "alpha”
weights Numeric vector of length 3 assigning the number of steps that correspond to 3:2,
5:4, and 6:5, respectively. Overrides name if specified.
edo Number of unit steps in an octave. Defaults to 12.
Value

Single numeric value containing the step size for the desired scale

Examples

alpha_scale <- (0:31) * carlos_step()
practically_12tet <- (0:24) * carlos_step(weights=c(7, 4, 3))

10 clampitt_q

clampitt_q Voice leadings between inversions with maximal common tones

Description

Clampitt (2007, 467; doi:10.1007/9783642045790_46) defines two n-note sets to be Q-related if
they:

¢ Have all but one tone in common
* Are related by tni()

» Have a strictly crossing-free voice leading which preserves all n — 1 common tones This
function finds all sets which are Q-related to an input set in this sense. The relation is defined
to generalize the smooth voice leadings between consonant triads and diatonic scales to other
sets, in particular demonstrating that non-singular pairwise well-formed scales (see isgwf())
demonstrate similarly nice voice leading properties.

(Strictly speaking, Clampitt includes tn() in the second part of the definition. However, the first
criterion is only possible under tn() if the set is generated and therefore inversionally symmetrical.
Therefore if a set satisfies Clampitt’s definition by tn(), it also satisfies the tni () requirement.)

If the third part of the definition is relaxed, allowing the voice leading to involve voice crossing,
Clampitt (1997, 121) identifies this as the Q*-relation. The Q*-relation can be computed with this
function by setting method="hamming". (All other methods provided by v1_dist() give equivalent
results in this context.)

Usage
clampitt_q(
set,
index = NULL,
method = c("taxicab”, "euclidean”, "chebyshev”, "hamming"),
edo = 12,
rounder = 10
)
Arguments
set Numeric vector of pitch-classes in the set
index Integer: which Q-related set and voice leading should be returned? Defaults to
NULL, in which case all options are returned.
method What distance metric should be used? Defaults to "taxicab” but can be "euclidean”,
"chebyshev”, or "hamming"”.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

https://doi.org/10.1007/978-3-642-04579-0_46

clockface 11

Value

A list with two entries, "sets” and "v1s". The former is a matrix whose columns are the sets which
are Q-related to the input set, in OPC-normal form. The latter is a matrix whose rows represent
the voice-leading motions which transform set into its goals. (This follows the general practice
of musicMCT of representing scales as columns and voice leadings as rows.) The rows of "vls”
correspond to the columns of "sets”, but the columns of "v1s" correspond to the order of the input
set, which may not match the normal form of the output sets. (See the last example.)

See Also

isgwf (), minimize_v1(), normal_form()

Examples

The Neo-Riemannian P, L, and R transformations on triads are all Q-relations:
major_triad <- c(0, 4, 7)
clampitt_qg(major_triad)

A well-formed scale like the diatonic has two Q-relations given by its signature transformations:
major_scale <- c(@, 2, 4, 5, 7, 9, 11)
clampitt_q(major_scale)

A non-singular pairwise well-formed scale also has Q-relations:
clampitt_q(j(dia))

Set-class 7-31 is pairwise well-formed:
clampitt_q(sc(7, 31))

It also has two additional Qx-related sets:
clampitt_q(sc(7, 31), method="hamming")

Most other types of scales have at most one Q-relation:
dominant_seventh <- c(0, 4, 7, 10)
clampitt_g(dominant_seventh)

The order of "sets” may not match the order of "vls":
clampitt_q(c(o, 1, 4, 7))

clockface Visualize a set in pitch-class space

Description
No-frills way to plot the elements of a set on the circular "clockface" of pc-set theory pedagogy.
(See e.g. Straus 2016, ISBN: 9781324045076.)

Usage

clockface(set, edo = 12)

12 colornum

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.
Value

Invisible copy of the input set

Examples

just_diatonic <- j(dia)
clockface(just_diatonic)

double_tresillo <- c(0, 3, 6, 9, 12, 14)
clockface(double_tresillo, edo=16)

colornum Reference numbers for scale structures

Description

As described on p. 28 of "Modal Color Theory," it’s convenient to have a systematic labeling system
("color numbers") to refer to the distinct colors in the hyperplane arrangements. This serves a sim-

ilar function as Forte’s set class numbers do in traditional pitch-class set theory. Color numbers are
defined with reference to a complete list of the possible sign vectors for each cardinality, so they de-

pend on the extensive prior computation that is stored in the object representative_signvectors.

(This is a large file that cannot be included in the package musicMCT itself. It needs to be down-
loaded separately, saved in your working directory, and loaded by entering representative_signvectors
<- readRDS("representative_signvectors.rds"). Color numbers are currently only defined

for scales with 7 or fewer notes.

Usage

colornum(set, inegmat = NULL, signvector_list = NULL, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-

itly entering "mct") it supplies the standard "Modal Color Theory" arrangements

of getinegmat(), but can be set to strings "white," "black", "gray", "roth",

"infrared", "pastel", "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat(), make_black_inegmat(), make_gray_inegmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat (), or make_anaglyph_inegmat (). For other arrange-

ments, this parameter accepts explicit matrices.

comparesignvecs 13

signvector_list

A list of signvectors to use as the reference by which colornum assigns a value.
Defaults to NULL and will attempt to use representative_signvectors, which
needs to be downloaded and assigned separately from the package musicMCT.
(If a named inegmat other than "mct" is chosen, the function attempts to re-
place a NULL signvector list with a corresponding object in the global envi-
ronment. For instance, if ineqmat="pastel” then the function tries to use
pastel_signvectors for signvector_list.)

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Details

Note that the perfectly even "white" scale is number @ for every cardinality by definition.

The function assumes that you don’t need to be reminded of the cardinality of the set you’ve entered.
That is, there’s a color number 2 for every cardinality, so you can get that value returned by entering
a trichord, tetrachord, etc.

Value

Single non-negative integer (the color number) if a signvector_list is specified or representative_signvectors
is loaded; otherwise NULL

Examples

colornum(edoo(5))

colornum(c(@, 3, 7))

colornum(c(@, 2, 7))

colornum(c(o, 1, 3, 7))

colornum(c(o, 1, 3, 6, 10, 15, 21), edo=33)
colornum(c(o, 2, 4, 5, 7, 9, 11))

comparesignvecs Do two sign vectors represent adjacent colors?

Description

As "Modal Color Theory" (pp. 31ff.) describes, it can be useful to know whether two colors are
adjacent to each other in the MCT space. That is, can one scalar color be continuously modified
until it becomes the other, without crossing through any third color? For instance, the 5-limit just
diatonic scale is a two-dimensional color that is adjacent to the 1-d line of meantone diatonic scales.
This means, in some sense, that the meantone structure is a good approximation of the 5-limit just
structure.

Usage

comparesignvecs(signvecX, signvecY)

14 convert

Arguments

signvecX, signvecY

A pair of sign vectors to be compared. Note that these must be sign vectors, not
scales themselves.

Value

Integer: @ if the sign vectors represent the same color, 1 if they are adjacent, and -1 if they are
neither adjacent nor identical.

Examples

meantone_major_sv <- signvector(c(@, 2, 4, 5, 7, 9, 11))
meantone_dorian_sv <- signvector(c(@, 2, 3, 5, 7, 9, 10))
just_major <- j(dia)

just_dorian <- sim(just_major)[,2]

just_major_sv <- signvector(just_major)

just_dorian_sv <- signvector(just_dorian)

comparesignvecs(meantone_major_sv, just_major_sv)
comparesignvecs(meantone_dorian_sv, just_major_sv)
comparesignvecs(meantone_dorian_sv, just_dorian_sv)

convert Convert between octave measurements

Description

By default the period of a scale (normally the octave) has a size of 12 units (semitones). But it can
be useful to convert to a different measurement unit, e.g. to compare a scale defined in 19-tone
equal temperament (19edo) to the size of its intervals when measured in normal 12edo semitones,
or vice versa.

Usage

convert(x, edol, edo2)

Arguments
X The set to convert as a numeric vector.
edo1 The size of the period measured in the same units as the input x. Numeric.
edo? The period size to convert to. Numeric.

Value

A numeric vector the same length as x representing the input set converted to the desired cardinality
(edo?2).

coord_to_edo 15

Examples

magam_rast <- c(0, 2, 3.5, 5, 7, 9, 10.5)
convert(magam_rast, 12, 24)

perfect_fifth <- z(3/2)
lydian_scale <- sort((perfect_fifth x (0:6)) %% 12)
convert(lydian_scale, 12, 53)

coord_to_edo Coordinate systems for scale representation

Description

Usually, it is most intuitive to music theorists to represent a scale as a vector of the pitch-classes
it contains. However, for certain computations in the setting of Modal Color Theory, it is more
convenient to use a coordinate system with the "white" perfectly even scale as the origin (because
this is the point where all of the hyperplanes in the arrangement defining scalar "colors" intersect).
Therefore, these two functions convert between the two coordinate systems: coord_to_edo takes
in a scale represented by its pitch classes and returns its displacement vector from "white" and
coord_from_edo does the reverse.

Usage

coord_to_edo(set, edo = 12)

coord_from_edo(set, edo = 12)

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.
Details

It should be noted that the representative "white" scale used is not necessarily the closest one to the
scale in question. Instead, it is the unique transposition of white that has 0 as its first coordinate. This
is natural in the context of Modal Color Theory, which essentially always assumes transpositional
equivalence with g = 0. The closest transposition of "white" to set will be the one that has
the same sum class as set, guaranteeing that the voice leading between them is "pure contrary"
(Tymoczko 2011, 81ff; explored further in Straus 2018 doi:10.1215/002229097127694).

Value

Numeric vector of same length as set. Same scale, new coordinate system.

https://doi.org/10.1215/00222909-7127694

16 dft

Examples

dominant_seventh_chord <- c(@, 2, 6, 9)
coord_to_edo(dominant_seventh_chord)

aitl <- c(o, 1, 4, 6)
ait2 <- c(o, 1, 3, 7)
coord_to_edo(ait1)

coord_to_edo(ait2) # !

weitzmann_pentachord <- coord_from_edo(c(@, -1, @, @, 0)) # See note 53 of "Modal Color Theory”
convert(weitzmann_pentachord, 12, 60)
coord_to_edo(weitzmann_pentachord)

dft The musical Discrete Fourier Transform of a pitch-class set

Description

Computes the magnitudes and phases of the DFT components for a given (multi)set which can be
input as either a vector of elements or as a distribution. (See Amiot (2016, doi:10.1007/9783319-
455815) for an overview of applications of the DFT in this vein.) Entering a distribution takes
priority over an entered set.

Usage

dft(set, distro = NULL, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
distro Numeric vector representing a pitch-class distribution. Defaults to NULL and
overrides set and edo if entered.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Details

The scaling and orientation of phases corresponds to that used in Yust (2021) doi:10.1093/mts/
mtaa@@17: phases are reported as multiples of one kth of an octave (where the set is entered in k-
edo), and oriented so that the f1 component of a singleton points in the direction of the singleton (i.e.
the phase of f1 for pitch class 4 is 4). This differs from the phase values use in other publications,
such as Yust (2015, doi:10.1215/002229092863409). Magnitudes are not squared, following Amiot
(2016) rather than Yust (2021).

https://doi.org/10.1007/978-3-319-45581-5
https://doi.org/10.1007/978-3-319-45581-5
doi:10.1093/mts/mtaa0017
doi:10.1093/mts/mtaa0017
https://doi.org/10.1215/00222909-2863409

edoo 17

Value

A 2-by-k real matrix, where k is the number of independent components. The ith column corre-
sponds to the (i-1)th component (so that the first column gives the zeroth component). The first row
gives the magnitudes of the components and the second row gives the phases. (See details regarding
interpretation of the values: they are scaled by edo/(2*pi) from radians.)

Examples

Compare to Yust (2021), Example 10
reich_signature <- c(@, 1, 2, 4, 5, 7, 9, 10)
dft(reich_signature)

Magnitudes differ from Yust by squaring:
round(dft(reich_signature)[1, 172, digits=3)

reich_sig_distribution <- c(1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, @)
dft(distro=reich_sig_distribution)

Z-related AITs differ in phase but not magnitude:
aitl <- c(o, 1, 4, 6)

ait2 <- c(o, 1, 3, 7)

dft(ait1)

dft(ait2)

edoo Perfectly even scales (the color white)

Description

Creates a perfectly even scale that divides the octave into n equal steps. Such scales serve as the
origin for the hyperplane arrangements of Modal Color Theory, whence the name edoo for "equal
division of the octave origin."

Usage

edoo(card, edo = 12)

Arguments

card Number of notes in the scale. Numeric.

edo Number of unit steps in an octave. Defaults to 12.
Value

Numeric vector of length card representing a scale of card notes.

18 emb

Examples

edoo(5)

edoo(5, edo=15)

octatonic_scale <- tc(edoo(4), c(@, 1))
print(octatonic_scale)

emb How many instances of a subset-type exist within a scale? How many
scales embed a subset?

Description

David Lewin’s EMB and COV functions: see Lewin, Generalized Musical Intervals and Trans-
formations (New Haven, CT: Yale University Press, 1987), 105-120. For EMB, given a group
("CANON") of transformations which are considered to preserve a set’s type, find the number of
instances of that type in a larger set (scale). Lewin characterizes this generally, but emb() only
offers T, and T,,/T,,I transformation groups as available canonical groups. Conversely, Lewin’s
COV function asks how many instances of a scale type include subset: this is implemented as
cover() (not cov()!).

Usage
emb(subset, scale, canon = c("tni”, "tn"), edo = 12, rounder = 10)
cover(subset, scale, canon = c("tni", "tn"), edo = 12, rounder = 10)
Arguments
subset Numeric vector of pitch-classes in any representative of the subset type (Lewin’s
X)
scale Numeric vector of pitch-classes in the larger set to embed into (Lewin’s Y)
canon What transformations should be considered equivalent? Defaults to "tni" (using
standard set classes) but can be "tn" (using transposition classes)
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Integer: count of subset or scale types satisfying the desired relation.

eps 19

Examples

emb(c(0Q, 4, 7), sc(7, 35))
emb(c(@, 4, 7), sc(7, 35), canon="tn")

Works for continuous pc-space too:
emb(j(1, 3, 5), j(dia))

emb(j(1, 2, 3, 5, 6), j(dia))

emb(j(1, 2, 4, 5, 6), j(dia), canon="tn")

emb(c(0, 4, 7), c(0, 1, 3, 7))
emb(c(0, 4, 7), c(o, 1, 3, 7), canon="tn")

emb(c(0, 4), c(o, 4, 8))
cover(c(Q, 4), c(0, 4, 8))

harmonic_minor <- c(0, 2, 3, 5, 7, 8, 11)
cover(c(@, 4, 8), harmonic_minor)
cover(c(@, 4, 8), harmonic_minor, canon="tn")

eps The brightness ratio

Description

Section 3.3 of "Modal Color Theory" describes a "brightness ratio" which characterizes the modes
of a scale in terms of how well "sum brightness" acts as a proxy for "voice-leading brightness."
Scales with a brightness ratio less than 1 are pretty well behaved from this perspective, while ones
with a brightness ratio greater than 1 are poorly behaved. When the brightness ratio is 0, sum
brightness and voice-leading brightness give exactly the same results. (This can happen for sets on
two extremes: those like the diatonic scale which are well formed and those like the Weitzmann
scales, which differ from "white" in only one scale degree.)

I wish I had come up with a more descriptive name than "brightness ratio" for this property, because
it’s not really a ratio of brightness in the sense you might expect (i.e. "this scale is 20% bright").
Rather, it’s a ratio of two brightness-related properties, delta and eps. "Modal Color Theory"
(p- 20) offers definitions of these. Delta is "the largest sum difference between (voice-leading)
incomparable modes," with value 0 by definition if all of the modes are comparable. ("This, in a
sense, is a measure of how badly voice-leading brightness breaks down from the perspective of sum
brightness.") Epsilon "represents the smallest sum difference between non-identical but comparable
modes." This is harder to give an intuitive gloss on, but my attempt in "MCT" was "Essentially,
epsilon measures the finest distinction that voice-leading brightness is capable of parsing."

The brightness ratio (ratio) itself is simply delta divided by epsilon.

Usage

eps(set, edo = 12, rounder = 10)

20 evenness

delta(set, edo = 12, rounder = 10)

ratio(set, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Single non-negative numeric value

Examples

harmonic_minor <- c(o, 2, 3, 5, 7, 8, 11)

hypersaturated_harmonic_minor <- saturate(2, harmonic_minor)
c(deltaCharmonic_minor), eps(harmonic_minor))
c(delta(hypersaturated_harmonic_minor), eps(hypersaturated_harmonic_minor))

Delta and epsilon depend on the precise scale, but ratio() is constant on a hue
ratio(harmonic_minor)
ratio(hypersaturated_harmonic_minor)

Sort all 12tet heptachords by brightness ratio

heptas12 <- unique(apply(combn(12, 7), 2, primeform),MARGIN=2)
hepta_ratios <- apply(heptasl12, 2, ratio)

sorted_heptas <- heptas12[, order(hepta_ratios)]
colnames(sorted_heptas) <- apply(sorted_heptas, 2, fortenum)
sorted_heptas

Compare evenness to ratio for 12tet hetpachords
plot(apply(heptasi2, 2, evenness), hepta_ratios, xlab="Evenness", ylab="Brightness Ratio")

evenness How even is a scale?

Description

Calculates the distance from a set to the nearest perfectly even division of the octave, which will
not be the one with a first entry of 0, unlike almost every other usage in this package. That’s
because, for most purposes, we do want to distinguish between different modes of a set, but it
seems counterintuitive to me to say that one mode of a scale is less even than another. Since this
value is a distance from the perfectly even ("white") scale, lower values indicate more evenness.

evenness 21

Usage
evenness(
set,
method = c("euclidean”, "taxicab”, "chebyshev”, "hamming”),
edo = 12,
rounder = 10
)
Arguments
set Numeric vector of pitch-classes in the set
method What distance metric should be used? Defaults to "euclidean” (unlike most
functions with a method parameter in musicMCT) but can be "taxicab"”, "chebyshev"”,
or "hamming”.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Details

Note that the values this function returns depend on what measurement unit you’re using (i.e. are
you in 12edo or 16edo?). Their absolute value isn’t terribly significant: you should only make
relative comparisons between calculations done with the same value for edo.

Currently, methods other than "Euclidean" are somewhat experimental.

Value

Single non-negative numeric value

Examples

evenness(c(0, 4, 8))
evenness(c(@, 4, 7)) < evenness(c(0, 1, 2))

dim_triad <- c(@, 3, 6)

sus_2 <- c(0, 2, 7)
coord_to_edo(dim_triad)
coord_to_edo(sus_2)
evenness(dim_triad) == evenness(sus_2)

22

flex_points

flex_points

Voice-leading inflection points

Description

When considering an n-note set’s potential voice leadings to transpositions of a goal (along the
lines of vl_rolodex() and tndists()), there will always be some transposition in continuous
pc-space for which a given modal rotation is the best potential target for voice leading. (That is,
there is always some x such that whichmodebest(set, tn(set, x)) ==k for any k between 1 and
n.) Moreover, there will always be a transposition level at the boundary between two different
ideal modes, where both modes require the same amount of voice leading work. flex_points()
identifies those inflection points where one mode gives way to another. (Note: flex_points()
identifies these points by numerical approximation, so it may not give exact values. For more
precision, increase the value of subdivide.)

Usage
flex_points(
set,
goal = NULL,
method = c("taxicab”, "euclidean”, "chebyshev”, "hamming”),
subdivide = 100,
edo = 12,
rounder =
)
Arguments
set Numeric vector of pitch-classes in the set
goal Numeric vector like set: what is the tn-type of the voice leading’s destination?
Defaults to NULL, in which case the function uses set as the tn-type.
method What distance metric should be used? Defaults to "taxicab” but can be "euclidean”,
"chebyshev”, or "hamming".
subdivide Numeric: how many small amounts should each edo step be divided into? De-
faults to 100.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Numeric vector of the transposition indices that are inflection points. Length of result matches size
of set, except in the case of some multisets, which can have fewer inflection points.

fortenum 23

Examples

major_triad_12tet <- c(0, 4, 7)
major_triad_just <- z(1, 5/4, 3/2)
major_triad_19tet <- c(0, 6, 11)

flex_points(major_triad_12tet, method="euclidean”, subdivide=1000)
flex_points(major_triad_just, method="euclidean”, subdivide=1000)

Note that the units of measurement correspond to edo.
The value 3.16 here corresponds to exactly 1/6 of an octave.
flex_points(major_triad_19tet, edo=19)

fortenum Forte number from set class

Description

Given a pitch-class set (in 12edo only), look up Forte 1973’s catalog number for the corresponding
set class.

Usage

fortenum(set)

Arguments

set Numeric vector of pitch-classes in the set

Value

Character string in the form "n-x" where n is the number of notes in the set and x is the ordinal
position in Forte’s list.

Examples

fortenum(c(0, 4, 7))
fortenum(c(0, 3, 7))
fortenum(c(4, 8, 11))

24 fpmod

fortenums Allen Forte’s list of set classes

Description

For compatibility with music theory’s traditional pitch-class set theory, whose landmark text is
Allen Forte’s 1973 The Structure of Atonal Music, the data set fortenums hard-codes the ordinal
positions of 12-equal pitch-class set classes from Allen Forte’s list. This allows us to look up
specific set classes from Forte numbers or vice versa. sc() does the former and fortenum() does
the latter. There’s very little need to ever interact with the file fortenums itself: you should be able
to get anything you need from this data through either sc() or fortenum().

Note that primeform() in musicMCT uses Rahn’s algorithm rather than Forte’s for finding a canon-
ical representative of each set class. Consequently, the entries of fortenums also use Rahn’s prime
forms rather than Forte’s.

Usage

fortenums

Format

A list of length 12. The nth entry of the list corresponds to set classes of cardinality n. Each list
entry is a vector of character strings; every element of the vector contains a Rahn prime form as a
comma-delimited string. These prime forms are ordered in the same sequence as Forte’s list. Thus,
for instance, the set class of the minor triad is represented by the string "9, 3, 7", which is the 11th
element in fortenums[[3]].

Source

Forte, Allen. 1973. The Structure of Atonal Music. New Haven, CT: Yale University Press. Ap-
pendix 1, pp. 179-181.

fpmod Modulo division with rounding

Description

When working with sets in continuous pitch-class spaces (i.e., where octave equivalence is needed),
R’s normal operator for modulo division %% does not always give ideal results. Values that are very
close to (but below) the octave appear to be far from 0. This function uses rounding to give octave-
equivalent results that music theorists expect.

Usage

fpmod(set, edo = 12, rounder = 10)

fpunique 25

Arguments
set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Numeric vector the same length as set

Examples

really_small <- 1e-13

c_major <- c(@, 4, 7, 12-really_small)
c_major %% 12

fpmod(c_major, 12)

fpunique Unique real values up to some tolerance

Description

Working with scales in continuous pitch space, many pitches and intervals are irrationals repre-
sented as floating point numbers. This can cause arithmetic and rounding errors, leading to it
looking like there are more distinct pitches/intervals in the set than there really are. Use fpunique
rather than base: :unique () whenever you handle scales in continuous pitch space.

Usage

fpunique(x, MARGIN = @, rounder = 10)

Arguments
X Numeric array whose unique elements are to be determined
MARGIN Numeric @, 1, or 2 depending on whether you want unique individual numbers,
unique rows, or unique columns, respectively. Defaults to .
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Details

Sometimes you may need to adjust the tolerance (rounder) to get correct results, especially if you
have done several operations in a row which may have introduced rounding errors.

26 get_relevant_rows

Value

Numeric array of unique elements (vector if MARGIN is 0; matrix otherwise)

Examples

just_dia <- j(dia)

intervals_in_just_dia <- sort(as.vector(sim(just_dia)))
failed_unique_intervals <- unique(intervals_in_just_dia)
fpunique_intervals <- fpunique(intervals_in_just_dia)
length(failed_unique_intervals)
length(fpunique_intervals)

get_relevant_rows Which hyperplanes affect a given generic interval?

Description

Given an inegmat (i.e. a matrix representing a hyperplane arrangement), this function tells us
which of those hyperplanes affect a specific generic interval size. (One specific application of this
is is step_signvector(), which pays attention only to the comparisons between step sizes in a
scale.)

Usage

get_relevant_rows(generic_intervals, inegmat)

Arguments

generic_intervals
A vector of one or more integers representing generic intervals that can be found
within the scale. Unisons are @, generic steps are 1, etc.

inegmat The matrix of hyperplane normal vectors that you want to search.

Value

Vector of integers indicating the relevant hyperplanes from inegmat

Examples

heptachord_inegmat <- getinegmat(7)
heptachord_step_comparisons <- get_relevant_rows(1, heptachord_inegmat)

Create an inegmat that attends only to the quality of (024) trichordal
subsets in a heptachord.

heptachord_triads <- get_relevant_rows(c(@, 2, 4), heptachord_inegmat)
triads_in_7_inegmat <- heptachord_inegmat[heptachord_triads,]

Now, the following two heptachords have different colors

howfree 27

but the same pattern of (024) trichordal subsets, so their signvector
using triads_in_7_inegmat is identical:

heptachord_1 <- convert(c(o, 1, 3, 6, 8, 12, 13), 17, 12)

heptachord_2 <- convert(c(o, 1, 3, 5, 7, 10, 11), 14, 12)
colornum(heptachord_1) == colornum(heptachord_2)

sv_1 <- signvector(heptachord_1, inegmat=triads_in_7_inegmat)

sv_2 <- signvector(heptachord_2, inegmat=triads_in_7_inegmat)
isTRUE(all.equal(sv_1, sv_2))

subset_varieties(c(@, 2, 4), heptachord_1, unique=FALSE)
subset_varieties(c(@, 2, 4), heptachord_2, unique=FALSE)

Both have identical qualities for triads on scale degree 3, 5, and 7,
which you can see by comparing columns 3, 5, and 7 in the two

matrices above.

howfree Count a scale’s degrees of freedom

Description

Some scalar structures can vary their specific pitches much more flexibly than others while retaining
the same overall "color." For instance, the meantone family of diatonic scales is generated by a line
of fifths and can only vary along one dimension: the size of the generating fifth. This literally
defines a line in the MCT geometry, and if the scale moves off that line it ceases to have the same
structure as the diatonic scale. (Notably, it stops being non-degenerate well-formed.) By contrast,
the 5-limit just diatonic scale is defined by two distinct parameters: the size of its major third and
the size of its perfect fifth. See "Modal Color Theory," pp. 26-27, for more discussion.

Usage

howfree(set, inegmat = NULL, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_inegmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat(), or make_anaglyph_ineqgmat (). For other arrange-
ments, this parameter accepts explicit matrices.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

28 ianring

Value

Single non-negative integer

Examples

c_natural_minor <- c(o0, 2, 3, 5, 7, 8, 10)
c_melodic_minor <- c(0, 2, 3, 5, 7, 9, 11)
just_diatonic <- j(dia)
howfree(c_natural_minor)
howfree(c_melodic_minor)
howfree(just_diatonic)

howfree(c(0, 4, 7))
howfree(c(@, 4, 7), inegmat="white")

howfree(c(@, 2, 6), inegmat="mct")
howfree(c(@, 2, 6), inegmat="roth")
ianring Look up a scale at lan Ring’s Exciting Universe of Music Theory
Description

Ian Ring’s website The Exciting Universe of Music Theory is a comprehensive and useful com-
pilation of information about pitch-class sets in twelve-tone equal temperament. It tracks many
properties that musicMCT is unlikely to duplicate, so this function opens the corresponding page
for a pc-set in your browser. This only works for sets in 12-edo which include pitch-class 0.

Usage

ianring(set)

Arguments

set Numeric vector of pitch-classes in the set

Value

Invisibly, the integer which Ring’s site uses to index the input set. The main purpose of the function
is its side effect of opening a page of Ring’s site in a browser.

Examples

c_major <- c(@, 2, 4, 5, 7, 9, 11)

c_major_value <- ianring(c_major)

print(c_major_value)

And indeed you should find information about the major scale
at https://ianring.com/musictheory/scales/2741

https://ianring.com/musictheory/

ifunc 29

ianring(c(o, 2, 3, 7, 8))

ifunc All intervals from one set to another

Description

David Lewin’s interval function (IFUNC) calculates all the intervals from some source set x to some
goal set y. See Lewin, Generalized Musical Intervals and Transformations (New Haven, CT: Yale
University Press, 1987), 88. Lewin’s definition of the IFUNC depends on the GIS it applies to, but
this package’s ifunc() is less flexible. It uses only ordered pitch-class intervals as the group of
IVLS to be measured. Its intervals can, however, be any continuous value and are not restricted to
integers mod edo. The format of the result depends on whether non-integer intervals occur.

Usage
ifunc(
X’
y = NULL,
edo = 12,

rounder = 10,
display_digits = 2,
show_zeroes = TRUE

)
Arguments
X The source set from which the intervals originate
y The goal set to which the intervals lead. Defaults to NULL, in which case ifunc()
gives the intervals from x to itself.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

display_digits Integer: how many digits to display when naming any non-integral interval sizes.
Defaults to 2.

show_zeroes Boolean: if x and y belong to a single mod edo universe, should @ values be
listed for any intervals mod edo which do not occur in their [FUNC? Defaults to
TRUE.

30 inegmats

Value

Numeric vector counting the number of occurrences of each interval. The names() of the result
indicate which interval size is counted by each entry. If x and y both belong to a single mod
edo universe (and show_zeroes=TRUE), the result is a vector of length edo and includes explicit
0 results for missing intervals. If x and y must be measured in continuous pitch-class space, no
missing intervals are identified (since there would be infinitely many to list).

Examples

ifunc(c(o, 3, 7))
ifunc(c(0, 3, 7), c(o, 4, 7))
ifunc(c(e, 4, 7), c(o, 3, 7))

ifunc(c(0, 2, 4, 7, 9), show_zeroes=FALSE)

just_dia <- j(dia)
ifunc(just_dia)
ifunc(just_dia, display_digits=4)

See Lewin, GMIT p. 89:

lewin_x <- c(4, 10)

lewin_y1 <- c(9, 1, 5)

lewin_y2 <- c(7, 11, 9)

isTRUE(all.equal(ifunc(lewin_x, lewin_y1), ifunc(lewin_x, lewin_y2)))
apply(cbind(lewin_y1, lewin_y2), 2, fortenum)

inegmats Hyperplane arrangements for MCT spaces

Description

The data file inegmats represents the hyperplane arrangements at the core of Modal Color The-
ory as matrices containing the hyperplanes’ normal vectors. See Appendix 1.2 of Sherrill (2025)
for a discussion of the format of these matrices. The matrices can be generated on the fly by
makeinegmat (), but for large computations it’s faster simply to call on precalculated data rather
than to run makeinegmat () many thousands of times. Thus the object inegmats saves the inequal-
ity matrices for scales of cardinality 1-53, to be called upon by getinegmat().

Usage

inegmats

Format

inegmats A list with 53 entries. The nth entry of the list gives the inequality matrix for n-note
scales. Each inequality matrix itself is an m by (n+1) matrix, where m is an element of OEIS
A034828 (see Sherrill 2025, 40-42). The last column of the matrix contains an offset related to

https://oeis.org/A034828
https://oeis.org/A034828

ineqsym 31

whether any of the generic intervals "wrap around the octave," as e.g. the third from 7 to 2 does
in a heptachord. This column is linearly dependent on the previous n columns, which contain the
coefficients of the hyperplane’s normal vectors. That is, the first row of the matrix (dropping its last
entry) is the normal vector for the first hyperplane of the arrangement, and so on.

Source

The data in inegmats can be recreated with the command sapply(2:53, makeinegmat) and then
appending integer (@) as the first element of the list (for the case of one-note scales which have
no pairwise interval comparisons and therefore need a matrix of size 0).

inegsym Symmetries of hyperplane arrangements define equivalent scales

Description

Produces scales of different colors which have equivalent scalar properties. The hyperplane ar-
rangements of MCT have three types of symmetry, which allows us to find scales at different but
equivalent points in the arrangement. Such scales will be nearly structurally identical in most senses
although their specific intervals will be rather different. See details for a discussion of the symme-
tries involved.

Usage

ineqsym(set, a = 1, b = @, involution = FALSE, edo = 12)

Arguments
set Numeric vector of pitch-classes in the set
a Integer: controls permutations of generic intervals. Must be coprime to the size
of the set. Defaults to 1.
b Integer: controls modal rotation. Defaults to .
involution Boolean: controls involutional symmetry. Defaults to FALSE.
edo Number of unit steps in an octave. Defaults to 12.
Details

Two symmetries of the MCT hyperplane arrangement are familiar. One is modal "rotation": two
modes of the same scale must have equivalent structures, by the defining relations of the theory. The
parameter b controls these rotations. The second familiar symmetry is involution (see "Modal Color
Theory," 32). Set parameter involution to TRUE to apply this symmetry. The more interesting
symmetry of the MCT arrangements is controlled by parameter a. This symmetry allows us to per-
mute the roles of the scale’s generic intervals in its scalar makeup. For instance, non-degenerate
well-formed scales (see iswellformed() are all generated by a particular generic interval. The
familiar diatonic scale is generated by its generic fourths, whereas another well-formed scale like
0,2,3,5,6,7,9) in 10edo (with step-word LSLSSLS) is generated by its generic sixths. We can

32 intervalspectrum

permute the hyperplanes of the heptachordal MCT arrangement so that the overall structure is pre-
served but the diatonic scale is mapped onto LSLSSLS. In general, the permutations of ineqsym()
allow us to map any non-degenerate well-formed scale onto any other: they form an orbit under
the symmetries of the space. This gives another sense in which "well-formedness" is a large family
of scale structures. That sense generalizes to all scales, not just ones that are highly regular like
well-formed scales.

In short, inegsym() preserves many scalar properties, including:

e countsvzeroes() and svzero_fingerprint()

* howfree()

e ratio(), delta(), and eps()

* brightnessgraph() structure

e evenness()

* isgwf() and a fortiori iswellformed()

* Number and respective properties of adjacent colors
* spectrumcount() up to permutation of the values

Value

Numeric vector representing a scale of same length as set. Default parameters determine the iden-
tity symmetry and will return set itself.

Examples

wt_plus_1 <- sc(7,33)

equiv_scale <- inegsym(wt_plus_1, 3, 2)

both_scales <- cbind(wt_plus_1, equiv_scale)

freedoms <- apply(both_scales, 2, howfree)

evennesses <- round(apply(both_scales, 2, evenness), 3)
svzeroes <- apply(both_scales, 2, countsvzeroes)

ratios <- round(apply(both_scales, 2, ratio), 3)
spectra <- apply(apply(both_scales, 2, spectrumcount), 2, toString)
cbind(freedoms, evennesses, svzeroes, ratios, spectra)
brightnessgraph(wt_plus_1)

brightnessgraph(equiv_scale)

intervalspectrum Specific sizes corresponding to each generic interval

Description

As defined by Clough and Myerson 1986 (doi:10.1080/00029890.1986.11971924), an "interval
spectrum” is a list of all the specific (or "chromatic") intervals that occur as instances of a single
generic (or "diatonic") interval within some reference scale. For instance, in the usual diatonic
scale, the generic interval 1 (a "step" in the scale) comes in two specific sizes: 1 semitone and 2
semitones. Therefore its interval spectrum (1) = {1,2}. These functions calculates the spectrum
for every generic interval within a set and return either a list of specific values in each spectrum or
a summary of how many distinct values there are.

https://doi.org/10.1080/00029890.1986.11971924

isgwf 33

Usage

intervalspectrum(set, edo = 12, rounder = 10)

spectrumcount(set, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

intervalspectrum returns a list of length one less than length(set). The nth entry of the list
represents the specific sizes of generic interval n. spectrumcount returns a vector that reports
the length of each entry in that list (i.e. the number of distinct specific intervals for each generic

interval).

Examples

intervalspectrum(sc(7,35))

gecm_fifth <- meantone_fifth()

gcm_dia <- sort(((0:6)*gcm_fifth)%%12)
intervalspectrum(gcm_dia)

just_dia <- 12 * log2(c(1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8))
intervalspectrum(just_dia)

spectrumcount(just_dia) # The just diatonic scale is trivalent.

Melodic minor nearly has "Myhill's Property"” except for its 3 sizes of fourth and fifth
spectrumcount(sc(7,34))

isgwf Is a scale n-wise well formed?

Description

Tests whether a scale has a generalized type of well formedness (pairwise or n-wise well formed-
ness).

Usage
isgwf(set, stepword = NULL, allow_de = FALSE, edo = 12, rounder = 10)

34 isproper

Arguments
set Numeric vector of pitch-classes in the set
stepword A vector representing the ranked step sizes of a scale (e.g. c(2, 2, 1, 2, 2, 2,
1) for the diatonic). The distinct values of the setword should be consecutive
integers. If you want to test a step word instead of a list of pitch classes, set
must be entered as NULL.
allow_de Should the function test for degenerate well-formed and distributionally even
scales too? Defaults to FALSE.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Details

David Clampitt’s 1997 dissertation ("Pairwise Well-Formed Scales: Structural and Transforma-
tional Properties,” SUNY Buffalo) offers a generalization of the notion of well-formedness from
1-dimensional structures with a single generator to 2-dimensional structures that mediate between
two well-formed scales. Ongoing research suggests that this can be extended further to "n-wise"
or "general" well-formedness, though n-wise well-formed scales are increasingly rare as n grows
larger.

Value

Boolean: is the set n-wise well formed?

Examples

meantone_diatonic <- c(0, 2, 4, 5, 7, 9, 11)

just_diatonic <- j(dia)

some_weird_thing <- convert(c(o, 1, 3, 6, 8, 12, 14), 17, 12)
example_scales <- cbind(meantone_diatonic, just_diatonic, some_weird_thing)

apply(example_scales, 2, howfree)
apply(example_scales, 2, isgwf)

isproper Rothenberg propriety

Description

Rothenberg (1978, doi:10.1007/BF01768477) identifies a potentially desirable trait for scales which
he calls "propriety." Loosely speaking, a scale is proper if its specific intervals are well sorted in
terms of the generic intervals they belong to. A scale is strictly proper if, given two generic sizes
g and h such that g < h, every specific size corresponding to g is smaller than every specific size
corresponding to h. A scale if improper if any specific size of g is larger than any specific size of
h. An ambiguity occurs if any size of g equals any size of h: scales with ambiguities are weakly but
not strictly proper.

https://doi.org/10.1007/BF01768477

iswellformed 35
Usage

isproper(set, strict = FALSE, edo = 12, rounder = 10)

has_contradiction(set, edo = 12, rounder = 10)

strictly_proper(set, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
strict Boolean: should only strictly proper scales pass?
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Boolean which answers whether the input satisfies the property named by the function

See Also

make_roth_inegmat() creates an inegmat for a hyperplane arrangement that lets you explore
propriety-related issues in finer detail.

Examples

c_major <- c(o, 2, 4, 5, 7, 9, 11)
has_contradiction(c_major)
strictly_proper(c_major)
isproper(c_major)
isproper(c_major, strict=TRUE)

isproper(j(dia), strict=TRUE)
pythagorean_diatonic <- sort(((0:6)*z(3/2))%%12)

isproper(pythagorean_diatonic)
has_contradiction(pythagorean_diatonic)

iswellformed Well-formedness, Myhill’s property, and/or moment of symmetry

Description

Tests whether a scale has the property of "well-formedness" or "moment of symmetry."

36 iswellformed

Usage

iswellformed(set, stepword = NULL, allow_de = FALSE, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
stepword A vector representing the ranked step sizes of a scale (e.g. c(2, 2, 1, 2, 2, 2,
1) for the diatonic). The distinct values of the setword should be consecutive
integers. If you want to test a step word instead of a list of pitch classes, set
must be entered as NULL.
allow_de Should the function test for degenerate well-formed and distributionally even
scales too? Defaults to FALSE.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Details

The three concepts of "well-formedness," "Myhill’s property,” and "moment of symmetry" refer
to nearly the same scalar property, generalizing one of the most important features of the familiar
diatonic scale. See Clough, Engebretsen, and Kochavi (1999, 77; doi:10.2307/745921) for a useful
discussion of their relationships. In short, except for a few edge cases, a scale possesses these
properties if it is generated by copies of a single interval (as the Pythagorean diatonic is generated by
the ratio 3:2) and all copies of the generator belong to the same generic interval (as the 3:2 generator
of the diatonic always corresponds to a "fifth" within the scale). Such a structure typically means
that all generic intervals come in 2 distinct sizes, which is the definition of "Myhill’s property."
An exception occurs if the generator manages to produce a perfectly even scale, e.g. when the
whole tone scale is generated by 6 copies of 1/6 of the octave. Such a scale lacks Myhill’s property
and Carey & Clampitt (1989, 200; doi:10.2307/745935) call such cases "degenerate well-formed."
Instead of Myhill’s property, such scales have only 1 specific value in each intervalspectrum().

Clough, Engebretsen, and Kochavi define a related concept, distributionally even scales, which
include the hexatonic and octatonic scales (Forte sc6-20 and sc8-28). Such scales are in some sense
halfway between "degenerate" and "non-degenerate well-formed" because some of their interval
spectra have 1 element while others have 2. From another perspective, distributionally even scales
are non-degenerate well formed with a period smaller than the octave (e.g. as the hexatonic scales
1-3 step pattern repeats every third of an octave).

The term "moment of symmetry" refers to the non-degenerate well-formed scales and was coined
by Erv Wilson 1975 (cited in Clough, Engebretsen, and Kochavi). It tends to be more widely used
in microtonal music theory, e.g. https://en.xen.wiki/w/M0S_scale.

Scales with this property have considerably interesting voice-leading properties and are some of the
most important landmarks in the geometry of MCT. See "Modal Color Theory," pp. 14, 17, 29, 33-
34, and 36-37. A substantial portion of MCT amounts to an attempt to generalize ideas developed
for MOS/NDWEF scales to all scale structures.

https://doi.org/10.2307/745921
https://doi.org/10.2307/745935
https://en.xen.wiki/w/MOS_scale

isym 37

Value

Boolean answering "Is the scale MOS (with equivalence interval equal to the period)?" (if al-
low_de=FALSE) or "Is the scale well-formed in any sense?" (if allow_de=TRUE).

Examples

iswellformed(sc(7, 35))

iswellformed(c(@, 2, 4, 6))

iswellformed(c(@, 1, 6, 7))

iswellformed(c(@, 1, 6, 7), allow_de=TRUE)
iswellformed(NULL, stepword=c(2, 2, 1, 2, 1, 2, 1))

isym Test for inversional symmetry

Description

Is the pc-set inversionally symmetrical? That is, does it map onto itself under 7;,I for some appro-
priate n? isym() can return either TRUE/FALSE or an index of symmetry but defaults to the former.
isym_index() is a simple wrapper for isym() that returns the latter. isym_degree() counts the
total number of inversional symmetries (i.e. the number of distinct inversional axes of symmetry).

Usage

isym(set, return_index = FALSE, edo = 12, rounder = 10)

isym_index(set, ...)
isym_degree(set, ...)
Arguments
set Numeric vector of pitch-classes in the set

return_index Should the function return a specific index at which the set is symmetrical?
Defaults to FALSE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Arguments to be passed to isym()

Details

isym() is evaluated by asking whether, for some appropriate rotation, the step-interval series of the
given set is equal to the step-interval series of the set’s inversion. This is designed to work for sets
in continuous pc-space, not just integers mod k. Note also that this calculates abstract pitch-class
symmetry, not potential symmetry in pitch space. (See the second example.)

38

Value

ivec

isym() returns the Boolean value from testing for symmetry, unless return_index=TRUE, in which
case isym() and isym_index () return a numeric value for one index of inversion at which the set is
symmetrical. If the set is not inversionally symmetrical, they will return NA. isym_degree() gives

the degree of inversional symmetry.

Examples

#i#H#H# Mod 12
isym(c(0, 1, 5, 8))
isym(c(0, 2, 4, 8))

Continuous Values

gecm_fifth <- meantone_fifth()

gcm_dia <- sort(((0:6)*qcm_fifth)%%12)
just_dia <- j(dia)

isym(gcm_dia)

isym(just_dia)

Rounding matters:
isym(qcm_dia, rounder=15)

Index and Degree

hexatonic_scale <- c(0, 1, 4, 5, 8, 9)
isym_index(hexatonic_scale) # Only returns one suitable index
isym_degree(hexatonic_scale)

ivec Interval-class vector

Description

The classic summary of a set’s dyadic subset content from pitch-class set theory. The name ivec is

short for interval-class vector.

Usage

ivec(set, edo = 12)

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.
Value

Numeric vector of length floor (edo/2)

j 39

Examples

ivec(c(0, 1, 4, 6))
ivec(c(o, 1, 3, 7))

Z-related sextuple in 24edo:
sextuple <- matrix(
c(o, 1, 2, 6, 8, 10, 13, 16,

o, 1, 3, 7,9, 11, 12, 17,
o, 1, 6, 8, 10, 13, 14, 16,
0, 1, 7, 9, 11, 12, 15, 17,
o, 1, 2, 4, 8, 10, 13, 18,
o, 2, 3, 4, 8, 10, 15, 18), nrow=6, byrow=TRUE)
apply(sextuple, 1, ivec, edo=24) # The ic-vectors are the 6 identical columns of the output matrix
j Convenient just-intonation intervals and scales
Description

It’s not hard to define a just interval from a frequency ratio: it only requires an input like 12x1og2(freq_ratio).
That gets pretty tiresome if you’re doing this a lot, though, so for convenience musicMCT includes a

j O function (not related to Clough and Douthett’s J function but it wishes it was). j () is designed

to behave a lot like base R’s c() in the way that you’d use it to define a scale (see the examples

below). The inputs that this can take are limited and hard-coded, since there’s no systematic way to

define short hands for every potential just interval. In general, the logic is that individual digits refer

to major intervals up from the tonic in the 5-limit just diatonic scale. The prefix "m" to a number

(e.g. "m3") gives the equivalent minor version of the interval. If you just want the entire 5-limit

diatonic, you can enter dia.

Usage
j(..., edo = 12)

Arguments

One or more names that will be matched to just intervals. You can enter these as
strings, but for convenience sake you needn’t. Here are the currently accepted
inputs, their meaning, and their return value:

 1: perfect 1th (0 semitones)

 u: unison (0 semitones)

e synt: syntonic comma (~.215 semitones)

e pyth: Pythagorean comma (~.235 semitones)

* 1: Pythagorean limma (256:243 or ~.9 semitones)

* s: 5-limit just semitone (16:15 or ~1.12 semitones)

e st: 5-limit just semitone (16:15 or ~1.12 semitones)

e m2: 5-limit minor second (16:15 or ~1.12 semitones)

https://www.jstor.org/stable/843811

40

* h: half step (16:15 or ~1.12 semitones)

* a: Pythagorean apotome (2187:2048 or ~1.14 semitones)

e mt: 5-limit minor tone (10:9 or ~1.82 semitones)

* 2: 3-limit major second (9:8 or ~2.04 semitones)

e t: 3-limit whole tone (9:8 or ~2.04 semitones)

e w: whole tone (9:8 or ~2.04 semitones)

¢ wt: whole tone (9:8 or ~2.04 semitones)

* sept: 7-limit (septimal) whole tone (8:7 or ~2.31 semitones)
e sdt: 3-limit semiditone (32/27 or ~2.94 semitones)

* pm3: Pythagorean minor third (32/27 or ~2.94 semitones)

e m3: 5-limit minor third (6:5 or ~3.16 semitones)

* 3: 5-limit major third (5:4 or ~3.86 semitones)

* M3: 5-limit major third (5:4 or ~3.86 semitones)

e dt: 3-limit ditone (81/64 or ~4.08 semitones)

* 4: 3-limit perfect fourth (4:3 or ~4.98 semitones)

e utt: 11-limit tritone (11:8 or ~5.51 semitones)

e stt: 7-limit tritone (7:5 or ~5.83 semitones)

e jtt: 5-limit tritone (45:32 or ~5.90 semitones)

e ptt: 3-limit tritone (729:512 or ~6.12 semitones)

e pd5: 3-limit diminished fifth (1024/729 or ~5.88 semitones)
* 5: 3-limit perfect fifth (3:2 or ~7.02 semitones)

e m6: 5-limit minor sixth (8:5 or ~8.14 semitones)

* 6: 5-limit major sixth (5:3 or ~8.84 semitones)

* pm7: Pythagorean minor seventh (16:9 or ~9.96 semitones)
e m7: 5-limit minor seventh (9:5 or ~10.18 semitones)

e 7: 5-limit major seventh (15:8 or ~10.88 semitones)

* 8: 2-limit perfect octave (2:1 or 12 semitones)

* dia: the complete 5-limit diatonic scale

edo Number of unit steps in an octave. Defaults to 12.

Value

Numeric vector representing the input just intervals converted to edo unit steps per octave

See Also

z() as a shortcut for 12*log2(x) when a just interval you need isn’t defined for j ().

Examples

major_triad <- j(1,3,5)
isTRUE(all.equal(major_triad, j(u, M3, "5")))

isTRUE(all.equal(j(dia), j(1,2,3,4,5,6,7)))

makeineqmat 41

How far is the twelve-equal major scale from the 5-limit just diatonic?
dist(rbind(c(9,2,4,5,7,9,11), j(dia)))

Is 53-equal temperament a good approximation of the 5-limit just diatonic?
j(dia, edo=53)

makeinegmat Define hyperplanes for the Modal Color Theory arrangements

Description

As described in Appendix 1.2 of "Modal Color Theory," information about the defining hyperplane
arrangements is stored as a matrix containing the hyperplanes’ normal vectors as rows. (Because
these are matrices and they correspond ultimately to the intervallic inequalities that define MCT
geometry, this package refers to them as ineqmats, and sometimes to the individual hyperplanes
as inegs.) These have already been computed and are stored as data in this package (inegmats)
for cardinalities up to 53, but they can be recreated from scratch with makeinegmat. This might
be useful if for some reason you need to deal with a huge scale and therefore want to use an
arrangement whose matrix isn’t already saved. Note that a call like makeineqmat(60) may take
a dozen or more seconds to run (and at sizes that large, the arrangement is terribly complex, with
~17K distinct hyperplanes).

getinegmat tests whether the matrix already exists for the desired cardinality. If so, it is retrieved;
if not, it is created using makeineqgmat.

Usage

makeinegmat (card)

getinegmat(card)
Arguments

card The cardinality of the scale(s) to be studied
Value

A matrix with card+1 columns and roughly card* (3)/8 rows

Examples

makeinegmat(2) # Simple: is step 1 > step 2?

makeinegmat(3) # Simple: step 1 > step 2? step 1 > step 3? step 2 > step 3?
makeinegmat(7) # Okay...

inegmat20 <- makeinegmat(20)

dim(inegmat20) # Yikes!

42 make_anaglyph_ineqmat

make_anaglyph_inegmat Define hyperplanes for cross-type voice leadings

Description

Voice leadings between members of a single set class are well characterized by the Modal Color
Theory arrangements of makeinegmat (). Those arrangements do not tell the whole story for rela-
tionships between inequivalent sets. (For instance, under what circumstances are two brightnessgraph()
structures equivalent when set and goal belong to different set classes?) Such relationships are de-
scribed by the "anaglyph" arrangements produced by this function. (The name for the arrangements
alludes to those 20th-century 3D movie glasses which produce a stereoscopic effect by using lenses

of different colors for each eye. Like those glasses, the anaglyph arrangements "see" two scalar
colors at once.)

Usage

make_anaglyph_inegmat(card)

Arguments

card Integer: the cardinality of the two sets to be compared.

Details

Note that, unlike for most other hyperplane arrangements, for anaglyph arrangements card is only
half the size of the data you’re working with, since anaglyph arrangements compare two sets of size
card. In general, when useing anaglyph ineqmats with other functions, such as signvector() or
howfree(), you should enter the two sets to be compared as a single vector, i.e. c(set, goal). See
the use of howfree() in the example.

Value

A matrix with 2*xcard+1 columns and k rows, where k is either 4 times an entry of A050509 in the
OEIS if card is even, or an entry of A033594 if card is odd.

Examples

min7 <- c(0, 3, 7, 10)

maj7 <- c(o, 4, 7, 11)
just_min7 <- j(1, m3, 5, m7)
just_maj7 <- j(1, 3, 5, 7)

The 12tet and just pairs have the same anaglyph signvector:
anaglyph_tetrachords <- make_anaglyph_inegmat(4)
signvector(c(min7, maj7), inegmat=anaglyph_tetrachords)
signvector(c(just_min7, just_maj7), inegmat=anaglyph_tetrachords)

They therefore have equivalent brightness graphs:

https://oeis.org/A050509
https://oeis.org/A033594

make_black_ineqmat 43

brightnessgraph(min7, maj7)
brightnessgraph(just_min7, just_maj7)

The pair is able to vary along two dimensions in anaglyph space:

_n

howfree(c(min7, maj7), inegmat="anaglyph")

make_black_inegmat Define hyperplanes for transposition-sensitive arrangements

Description

The "black" hyperplane arrangement compares a set’s scale degrees individually to the pitches of
edoo(card) (where card is the number of notes in set). This primarily has the purpose of attending
to the overall transposition level of a set. Most applications of Modal Color Theory assume transpo-
sitional equivalence, but occasionally it is useful to relax that assumption. Sum class (Straus 2018,
doi:10.1215/002229097127694) is a natural way to track this information, but the "black" arrange-
ments do so qualitatively in the spirit of modal color theory. make_black_inegmat () returns only
the inequality matrix for the "black" arrangement, while make_gray_inegmat() for convenience
combines the results of make_white_inegmat () and make_black_inegmat().

Usage

make_black_inegmat(card)

make_gray_inegmat (card)

Arguments

card The cardinality of the scale(s) to be studied

Value
A card by card+1 inequality matrix (for make_black_inegmat()) or the result of combining white
and black inequality matrices (in that order) for make_gray_ineqmat().

See Also

make_white_inegmat ()

Examples

The set (1, 4, 7)'s elements are respectively below, equal to, and
above the pitches of edoo(3).

test_set <- c(1, 4, 7)

signvector(test_set, inegmat=make_black_inegmat(3))

The result changes if you transpose test_set down a semitone:
signvector(test_set - 1, inegmat=make_black_inegmat(3))

https://doi.org/10.1215/00222909-7127694

44 make_infrared_ineqmat

The results from signvector(..., inegmat=make_black_inegmat) can
also be calculated with coord_to_edo():
sign(coord_to_edo(test_set))

sign(coord_to_edo(test_set - 1))

make_infrared_inegmat Define hyperplanes for infrared arrangements

Description

The "infrared" hyperplane arrangements are in some sense an extension of the "pastel”" arrange-
ments to be more like the Rothenberg arrangements. (This is the sense of the color-conceit name
for the arrangments: they contain red-like colors that we don’t see in ordinary use of modal color
theory.) That is, the infrared arrangment for a given color contains all the pastel hyperplanes (ex-
cept those filtered out when include_wraparound=FALSE), plus additional ones that make compar-
isons between generic intervals of different sizes (as the Rothenberg arrangements do). Unlike the
Rothenberg arrangements, however, the infrared arrangments are central: every hyperplane passes
through the "origin" generated by edoo (). It should be the case that every infrared hyperplane either
belongs to the pastel arrangement or is parallel to one in a Rothenberg arrangement. This family of
arrangements is conceieved primarily for the study of voice leadings rather than scales themselves.

Usage

make_infrared_inegmat(card, include_wraparound = FALSE)

Arguments
card The cardinality of the scale(s) to be studied
include_wraparound
Boolean: should hyperplanes that involve intervals that wrap around the octave
be included? Defaults to FALSE.
Details
These arrangements are still somewhat experimental and may change. In particular, the ordering of
hyperplanes currently is inconsistent between settings for include_wraparound.
Value
A matrix with card+1 columns and k rows (where k is the number of hyperplanes in the arrange-
ment). When include_wraparound=TRUE, k is the cardth doubly triangular number.
See Also

make_pastel_inegmat () and make_roth_inegmat()

https://oeis.org/A002817

make_offset_ineqmat 45

Examples

To see the effect of "include_wraparound” param, compare to
pastel arrangments:

make_pastel_inegmat(3)

make_infrared_inegmat(3)

make_infrared_inegmat(3, include_wraparound=TRUE)

In general, infrared arrangments are more complicated than pastel:
make_pastel_inegmat (4)
make_infrared_inegmat (4, include_wraparound=TRUE)

make_offset_inegmat Translate a hyperplane arrangement to a new center

Description

By default, the various hyperplane arrangements of musicMCT treat the "white" perfectly even scale
as their center. (It is the point where all the hyperplanes of the MCT, white, and black arrangements
intersect, and although the Rothenberg arrangements do not pass through the scale by definition,
it is still a center of symmetry for them.) This function let you construct hyperplane arrangements
that have been shifted to treat any other set as their center. (Details on why you might want this to
come.)

Usage

make_offset_inegmat(set, inegmat = NULL, edo = 12)

Arguments
set Numeric vector of pitch-classes in the set intended to be the center of the new
arrangement
inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_ineqgmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat (), or make_anaglyph_inegmat (). For other arrange-
ments, this parameter accepts explicit matrices.
edo Number of unit steps in an octave. Defaults to 12.
Value

A matrix with the same shape as the ones that define the standard arrangement of type inegmat

46 make_roth_ineqmat

See Also

makeinegmat () for modal color theory arrangements; make_white_inegmat (), make_black_inegmat(),
and make_roth_inegmat () for other relevant arrangements.

Examples

When used for the sign vector with any central arrangement, the

input “set” will have a sign vector of all 0s:

viennese_trichord <- c(@, 1, 6)

signvector(viennese_trichord, inegmat=make_offset_inegmat(viennese_trichord))

Where does melodic minor lie in relation to major?

major <- c(0, 2, 4, 5, 7, 9, 11)

melmin <- c(0, 2, 3, 5, 7, 9, 11)

signvector(melmin, inegmat=make_offset_inegmat(major, inegmat="white"))

make_roth_inegmat Define hyperplanes for Rothenberg arrangements

Description

Although the Rothenberg propriety of a single scale can be computed directly with isproper(),
propriety is a scalar feature (like modal "color") which is defined by a scale’s position in the ge-
ometry of continuous pc-set space. That is, propriety, contradictions, and ambiguities are all de-
termined by a scale’s relationship to a hyperplane arrangement, but the arrangements which define
these properties are different from the ones of Modal Color Theory. make_roth_inegmat () creates
the inegmats needed to study those arrangements, similar to what makeinegmat () does for MCT
arrangements. make_rosy_inegmat() creates the combination of Rothenberg and MCT arrange-
ments. (The name puns on the "Roth" of Rothenberg meaning "red," lending a reddish or rosy tint
to the "colors" of the MCT arrangement.)

Each row of a Rothenberg inegmat represents a hyperplane, just like the rows produced by makeinegmat ().
The rows are normalized so that their first non-zero entry is either 1 or -1, and their orientations are
assigned so that a strictly proper set will return only -1s for its sign vector relative to the Rothenberg
arrangement. A 0 in a Rothenberg sign vector represents an ambiguity. Note that the Rothenberg ar-
rangements are never "central,” which means that the hyperplanes do not all intersect at the perfectly
even scale. (It is clear that they must not, because perfectly even scales have no ambiguities.) These
arrangements also grow in complexity much faster than the MCT arrangements do: for tetrachords,
MCT arrangements have 8 hyperplanes while Rothenberg arrangements have 22. For heptachords,
those numbers increase to 42 and 259, respectively. Thus, this function runs slowly when called on
cardinalities of only modest size (e.g. 12-24). Matrices for cardinalities up through 24 have been
precomputed and are stored in roth_inegmats; get_roth_inegmat() attempts to access them
from that file rather than generating them from scratch.

make_white_ineqmat 47

Usage

make_roth_inegmat(card)
get_roth_inegmat(card)

make_rosy_inegmat(card)

Arguments

card The cardinality of the scale(s) to be studied

Value

A matrix with card+1 columns and k rows, where k is the number of hyperplanes in the arrange-
ment.

Examples

c_major <- c(@, 2, 4, 5, 7, 9, 11)

hepta_roth_inegmat <- make_roth_inegmat(7)

isproper(c_major)

cmaj_roth_sv <- signvector(c_major, inegmat=hepta_roth_inegmat)
table(cmaj_roth_sv)

hepta_roth_inegmat[which(cmaj_roth_sv==0),]

This reveals that c_major has one ambiguity, which results from
the interval from 4 to 7 being exactly half an octave.

make_white_inegmat Define hyperplanes for white arrangements

Description

Although the hyperplane arrangements of Modal Color Theory determine most scalar properties,
there are some potentially interesting questions which require different arrangements. This function
makes "white" arrangements which consider how many of a scale’s intervals correspond exactly to
the "white" or perfectly even color for their generic size. That is, for an interval x belonging to
generic size g in an n note scale, does z = ¢ - e,%"? This may be relevant, for instance, because two
modes have identical sum brightnesses when the interval that separates their tonics is "white" in this
way. Mostly you will want to use these matrices as inputs to functions with an inegmat parameter.

In many cases, it is desirable to use a combination of the MCT inegmat from makeinegmat () and
the quasi-white inegmat from make_white_inegmat(). Generally these are distinct, but they do
have some shared hyperplanes in even cardinalities related to formal tritones (intervals that divide
the scale exactly in half). Therefore, the function make_pastel_inegmat () exists to give the result
of combining them with duplicates removed. (The moniker "pastel” is meant to suggest combining
the colors of MCT arrangements with a white pigment from white arrangements.)

48 maxeven

Just as the MCT arrangements are concretized by the files "representative_scales" and "repre-
sentative_signvectors," the white and pastel arrangements are represented by offwhite_scales, of-
fwhite_signvectors, pastel_scales, and pastel_signvectors. This data has not been as thoroughly
vetted as the files for the MCT arrangements, and currently white and pastel arrangements are only
represented up through cardinality 6. The files are hosted at the modalcolortheory repo like repre-
sentative_scales because they are too large to include in musicMCT.

Usage

make_white_inegmat(card)

make_pastel_inegmat(card)

Arguments

card The cardinality of the scale(s) to be studied

Value

A matrix with card+1 columns and k rows, where k is the nth triangular number

Examples

major_triad <- c(0, 4, 7)

howfree(major_triad)

howfree(major_triad, inegmat=make_white_ineqgmat(3))

Because it's now constrained to preserve its step of exactly 1/3 the octave.

just_major_triad <- j(1, 3, 5)

howfree(just_major_triad)

howfree(just_major_triad, inegmat=make_white_inegmat(3))

Because this triad's major third isn't identical to 400 cents which equally
divide the octave.

aitl <- c(o, 1, 4, 6)

quantize_color(aitl1, reconvert=TRUE)

quantize_color() doesn't match (0146) exactly because it's only looking for
any set in the same 3-dimensional color as 0146.

quantize_color(aitl, inegmat=make_white_inegmat(4), reconvert=TRUE)
Now that it's constrained to respect aitl's minor third from 1 to 4, the set 0146
is now the first satisfactory result that quantize_color() finds.

maxeven Maximally even scales

https://github.com/satbq/modalcolortheory/blob/main/offwhite_scales.rds
https://github.com/satbq/modalcolortheory/blob/main/offwhite_signvectors.rds
https://github.com/satbq/modalcolortheory/blob/main/offwhite_signvectors.rds
https://github.com/satbq/modalcolortheory/blob/main/pastel_scales.rds
https://github.com/satbq/modalcolortheory/blob/main/pastel_signvectors.rds
https://github.com/satbq/modalcolortheory

meantone_fifth 49

Description

Scales which are "maximally even" divisions of some equal-tempered universe have several mu-
sically interesting properties. When a maximally even scale has a number of notes (card) that
is coprime to the size of the equal-tempered universe, the maximally even scale is called a "non-
degenerate well-formed" or "moment of symmetry" scale. When its size divides the equal temper-
ament, it is a perfectly even scale. When it is neither coprime nor a divisor, it produces a scale with
a structure like the octatonic (i.e. a union of perfectly even scales, or a well-formed scale with a
period smaller than the octave). The scale is generated by quantizing a perfectly even scale to the
chosen chromatic cardinality. Two quantization options are offered (rounding down and rounding
to the nearest value).

Usage

maxeven(card, edo = 12, floor = TRUE)

Arguments
card Number of notes in the scale. Numeric.
edo Number of unit steps in an octave. Defaults to 12.
floor Boolean determining how to quantize. Defaults to TRUE causing the quantization
to round down. If FALSE rounds to the nearest value.
Value

Numeric vector of length card representing a scale of card notes.

Examples

maxeven(7, 12)
maxeven(6, 15)
maxeven(6, 15, floor=FALSE)

diatonic_in_19 <- maxeven(7, 19)
tresillo <- maxeven(3,38)

meantone_fifth Define a tempered fifth for various meantone scales

Description

Creates an interval that approximates a pure 3:2 fifth which has been tempered smaller by some
fraction of a syntonic comma, making it easy to construct diatonic meantone scales. The default is
to create a quarter-comma meantone fifth (i.e. about 697 cents).

Usage

meantone_fifth(frac = 1/4)

50

Arguments

frac

Value

minimize_vl

The fraction of a syntonic comma that the fifth should be tempered by. Defaults
to 1/4. Numeric.

Single numeric value of the tempered fifth measured in 12edo semitones.

Examples

zarlino_fifth <- meantone_fifth(2/7)
zarlino_diatonic <- sort((0:6 * zarlino_fifth) %% 12)
print(zarlino_diatonic)

fifth_in_19edo <- convert(11, 19, 12)
meantone_fifth(1/3) - fifth_in_19edo

minimize_vl

Smallest voice leading between two sets

Description

Given a source set and a goal to move to, find the voice leading from source to goal with smallest

size.
Usage
minimize_v1(
source,
goal,
method = c("taxicab”, "euclidean”, "chebyshev”, "hamming"),
no_ties = FALSE,
edo =
rounder
)
Arguments
source Numeric vector, the pitch-class set at the start of your voice leading
goal Numeric vector, the pitch-class set at the end of your voice leading
method What distance metric should be used? Defaults to "taxicab” but can be "euclidean”,
"chebyshev"”, or "hamming".
no_ties If multiple VLs are equally small, should only one be returned? Defaults to
FALSE, which is generally what an interactive user should want.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

normal_form 51

Details

Unless method="hamming", it is assumed that the minimal voice leading should be strongly crossing-
free, so you might get strange results if your source and goal are not both in ascending order.

Using method="hamming" in principle should only care about preserving common tones, with no
other restrictions on how voices move. This gives a profusion of tied voice leadings, which is not
generally useful. This function therefore eliminates many of the options by requiring that the voices
which aren’t common tones make a minimal voice leading by the taxicab metric. Nevertheless, for
multisets, method="hamming" can still return many tied possibilities.

Value

Numeric array. In most cases, a vector the same length as source; or a vector of NA the same
length as source if goal and source have different lengths. If no_ties=FALSE and multiple voice
leadings are equivalent, the array can be a matrix with m rows where m is the number of equally
small voice leadings.

Examples

c_major <- c(o, 4, 7)
ab_minor <- c(8, 11, 3)
minimize_vl(c_major, ab_minor)

diatonic_scale <- c(@, 2, 4, 5, 7, 9, 11)
minimize_vl(diatonic_scale, tn(diatonic_scale, 7))

d_major <- c(2, 6, 9)

minimize_vl(c_major, d_major)

minimize_vl(c_major, d_major, no_ties=TRUE)
minimize_vl(c_major, d_major, method="euclidean”, no_ties=FALSE)

minimize_vl(c(0, 4, 7, 10), c(7, 7, 11, 2), method="euclidean")
minimize_vl(c(0@, 4, 7, 10), c(7, 7, 11, 2), method="euclidean”, no_ties=TRUE)

natural_hexachord <- c(@, 2, 4, 5, 7, 9)
hard_hexachord <- c(7, 9, 11, o, 2, 4)
minimize_vl(natural_hexachord, hard_hexachord, method="hamming")

normal_form Hook’s OPTIC normal forms

Description
Following Hook (2023, 416-18, ISBN: 9780190246013), calculates a normal form for the input set
using any combination of OPTIC symmetries.

Usage

normal_form(set, optic = "opc”, edo = 12, rounder = 10)

52 optc_test
Arguments

set Numeric vector of pitch-classes in the set

optic String: the OPTIC symmetries to apply. Defaults to "opc".

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

Details

This function is designed for flexibility in the optic parameter, not speed. In situations where you
need to calculate a large number of OPTIC- or OPTC-normal forms, you should use primeform()
or tnprime() respectively, which are considerably faster.

Value

Numeric vector with the desired normal form of set

See Also

primeform(), tnprime(), and startzero() for faster functions dedicated to specific symmetry
combinations

Examples

See Exercise 10.4.8 in Hook (2023, 420):
eroica <- c(-25, -13, -6, -3, 0, 3)
normal_form(eroica, optic="pti")
normal_form(eroica, optic="op")

See Table 10.4.1 in Hook (2023, 417):

alpha <- c(-5, -11, 14, 9, 14, 14, 2)

num_symmetries <- sample(0:5, 1)

random_symmetries <- sample(c(”o", "p", "t", "i", "c"), num_symmetries)
random_symmetries <- paste(random_symmetries, collapse="")
print(random_symmetries)

normal_form(alpha, optic=random_symmetries)

optc_test Does a scale lie in the canonical fundamental domain for OPTC sym-
metries?

optc_test 53

Description

Modal Color Theory is capable of describing "scales" (perhaps "melodies" might be more accurate)
which do all sorts of non-scalar things, like repeating notes, ascending and descending inconsis-
tently, not observing octave equivalence, and so on. This function tests whether an input has a
’well-behaved’ form in that it starts on @, only ascends, doesn’t repeat pitches, and doesn’t go
above the octave. If you find an interesting scale structure represented by a set that doesn’t satisfy
these constraints, you can always desaturate it until it does (i.e. call something like saturate(.1,
my_scale_with_bad_OPTCs)).

Usage

optc_test(set, edo = 12, rounder = 10, single_answer = TRUE)

Arguments
set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

single_answer Should the function return a single value of TRUE or FALSE? Defaults to TRUE. If
set to FALSE, returns a vector of 4 Boolean values that indicate whether the scale
individually passes O, P, T, and C criteria for being in the fundamental domain.

Value

Either a single Boolean value or a vector of 4 Boolean values, depending on the single_answer
argument.

Examples

major_triad_normal_form <- c(@, 4, 7)
major_triad_open_spacing <- c(@, 7, 16)
major_triad_voice_crossing <- c(0, 7, 4)
major_triad_on_des <- c(1, 5, 8)
major_triad_doubled_third_omit_5 <- c(0, 4, 4)
example_triads <- cbind(major_triad_normal_form,
major_triad_open_spacing,
major_triad_voice_crossing,
major_triad_on_des,
major_triad_doubled_third_omit_5)

apply(example_triads, 2, optc_test)
optc_test(major_triad_voice_crossing, single_answer=FALSE)

54 populate_flat

populate_flat Randomly generate scales on a flat

Description

Sometimes it’s useful to explore a flat or a color by testing small differences that result from different
positions within the flat. This function generates random points on the desired flat to test, similar
to surround_set() but constrained to lie on a target flat. Requires a base set that serves as an
"origin" around which the random scales are to be generated (before being projected onto the target
flat).

Usage

populate_flat(
set,
target_scale = NULL,
target_rows = NULL,
start_zero = TRUE,
inegmat = NULL,
edo = 12,
rounder = 10,
magnitude = 2,
distance = 1

Arguments

set Numeric vector of pitch-classes in the set

target_scale A numeric vector which represents a scale on the target flat.

target_rows An integer vector: each integer specifies a row of inegmat which helps to deter-
mine the target flat. The rows must be linearly independent.

start_zero Boolean: should the result be transposed so that its pitch initial is zero? Defaults
to TRUE.

inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-

itly entering "mct") it supplies the standard "Modal Color Theory" arrangements

of getinegmat(), but can be set to strings "white," "black", "gray", "roth",

"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_ineqgmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat (), or make_anaglyph_inegmat (). For other arrange-

ments, this parameter accepts explicit matrices.
edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

magnitude Numeric value specifying how many sets to return. Defaults to 2.

primary_hue 55

distance How far (in units of voice leading work, using the Euclidean metric) should the
sampled scales be from the input set?

Details

The target flat can be specified by naming the target_rows that determine the flat (in the manner
of project_onto()) or by naming a target_scale on the desired flat. Both parameters default to
NULL, in which case the function populates the flat that set itself lies on.

Value

A matrix whose columns represent scales on the desired flat. The matrix has n rows (where n is the
number of notes in set) and n * 10*magnitude columns.

Examples

Let's sample several scales on the same flat as j(dia):
major <- c(0, 2, 4, 5, 7, 9, 11)

jdia_flat_scales <- populate_flat(major, j(dia))
unique(apply(jdia_flat_scales, 2, whichsvzeroes), MARGIN=2)

So all the scales do lie on one flat, but they may be different colors.
Let's plot them using different literal colors to represent the scalar "colors.”
jdia_flat_svs <- apply(apply(jdia_flat_scales, 2, signvector), 2, toString)
unique_svs <- sort(unique(jdia_flat_svs))
match_sv <- function(sv) which(unique_svs == sv)
sv_colors <- grDevices::hcl.colors(length(unique_svs),
palette="Green-Orange")[sapply(jdia_flat_svs, match_sv)]
plot(jdia_flat_scales[2,], jdia_flat_scales[3,], pch=20, col=sv_colors,
xlab = "Height of scale degree 2", ylab = "Height of scale degree 3",
asp=1)
abline(@, 2, lty="dashed”, lwd=2)
points(j(2), j(3), cex=2, pch="x")
points(2, 4, cex=2, pch="0")

Most of our sampled sets belong to two colors separated by the dashed

line on the plot. The dashed line represents the inequality that determines

the size of a scale's second step in relation to its first step. This is
hyperplane #1 in the space, so it corresponds to the first entry in each

scale's sign vector. The point labeled "x" represents the just diatonic scale
itself, which has a larger first step than second step. The point labeled

"0" represents the 12-equal diatonic, whose whole steps are all equal and which
therefore lies directly on hyperplane #1. Finally, note that our sampled scales
also touch on a few other colors at the bottom & left fringes of the scatter plot.

P

primary_hue Primary colors

56 primary_hue

Description

In traditional pitch-class set theory, concepts like normal order and primeform() establish a canon-
ical representative for each equivalence class of pitch-class sets. It’s useful to do something similar
in MCT as well: given a family of scales, such as the collection of modes or a scale_palette(),
we can define the "primary color" of the family as the one that comes first when the scales’ sign
vectors are ordered lexicographically. primary_hue() uses ineqsym() to return a specific repre-
sentative of the primary color which belongs to the same palette of hues as the input. Because
primary_hue() focuses on hues rather than colors, it may not highlight the fact that two scales
have the same primary color. Thus, for information about broader families, primary_colornum()
returns the color number of the primary color, primary_signvector () returns the sign vector, and
primary_color() itself uses quantize_color () to return a consistent representative of each color.

Usage

primary_hue(
set,
type = c("all”, "half_palette”, "modes"),
inegmat = NULL,

edo = 12,
rounder = 10
)
primary_colornum(set, type = "all"”, signvector_list = NULL, ...)
primary_signvector(set, type = "all", ...)
primary_color(set, type = "all”, nmax = 12, reconvert = FALSE, ...)
Arguments
set Numeric vector of pitch-classes in the set
type How broad of an equivalence class should be considered? May be one of three
options:
 "all", the default, uses the full range of scale_palette() relationships
 "half_palette" uses scale_palette() with include_involution=FALSE
* "modes" uses only the n modes of set
inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_inegmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat (), or make_anaglyph_inegmat (). For other arrange-
ments, this parameter accepts explicit matrices.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

primeform 57

signvector_list
A list of signvectors to use as the reference by which colornum assigns a value.
Defaults to NULL and will attempt to use representative_signvectors, which
needs to be downloaded and assigned separately from the package musicMCT.
(If a named inegmat other than "mct" is chosen, the function attempts to re-
place a NULL signvector list with a corresponding object in the global envi-
ronment. For instance, if ineqmat="pastel” then the function tries to use
pastel_signvectors for signvector_list.)
Arguments to be passed to primary_hue()

nmax Integer, essentially a limit to how far the function should search before giving
up. Although every real color should have a rational representation in some mod
k universe, for some colors that k must be very high. Increasing nmax makes the
function run longer but might be necessary if small chromatic universes don’t
produce a result. Defaults to 12.

reconvert Boolean. Should the scale be converted to the input edo? Defaults to FALSE.

Value

A numeric vector representing a scale for primary_hue(); a single integer for primary_colornum();
asignvector() for primary_signvector(); and alist like quantize_color() forprimary_color().

Examples

major_64 <- c(0, 5, 9)
primary_hue(major_64)
primary_hue(major_64, type="modes")

viennese_trichord <- c(@, 6, 11)
Same primary color as major_64:
apply(cbind(major_64, viennese_trichord), 2, primary_signvector)

But a different primary hue:
primary_hue(viennese_trichord)

Only works with representative_signvectors loaded:
primary_colornum(major_64) == primary_colornum(viennese_trichord)

primary_color(major_64)
primary_color(viennese_trichord)

primeform Prime form of a set using Rahn’s algorithm

Description

Takes a set (in any order, inversion, and transposition) and returns the canonical ("prime") form that
represents the T, /T, I-type to which the set belongs. Uses the algorithm from Rahn 1980 rather
than Forte 1973.

58

Usage

primeform(set,

Arguments

set
edo

rounder

Details

project_onto

edo = 12, rounder = 10)

Numeric vector of pitch-classes in the set
Number of unit steps in an octave. Defaults to 12.

Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

In principle this should work for sets in continuous pitch-class space, not just those in a mod k
universe. But watch out for rounding errors: if you can manage to work with integer values, that’s
probably safer. Otherwise, try rounding your set to various decimal places to test for consistency of

result.

Value

Numeric vector of same length as set

Examples

primeform(c(@, 3, 4, 8))
primeform(c(@, 1, 3, 7, 8))
primeform(c(@, 3, 6, 9, 12, 14), edo=16)

project_onto

Closest point on a given flat

Description

Projects a scale onto the nearest point that lies on a target flat of the hyperplane arrangement.
project_onto() determines the target flat from a list of linearly independent rows in inegmat
which define the flat. match_flat() determines the target by extrapolating from a given scale on
that flat. Note that while the projection lies on the desired flat (i.e. it will have all of the necessary @s
in its sign vector), it will not necessarily belong to any particular color. (That is, projection doesn’t
give you control over the 1s and -1s of the sign vector.)

Usage

project_onto(
set,
target_rows,

inegmat = NULL,

start_zero =
edo = 12,

TRUE,

project_onto

rounder =

match_flat(
set,

59

10

target_scale,
start_zero = TRUE,

inegmat =
edo = 12,
rounder =

Arguments

set

target_rows

inegmat

start_zero

edo

rounder

target_scale

Value

NULL,

10

Numeric vector of pitch-classes in the set

An integer vector: each integer specifies a row of inegmat which helps to deter-
mine the target flat. The rows must be linearly independent.

Specifies which hyperplane arrangement to consider. By default (or by explic-

itly entering "mct") it supplies the standard "Modal Color Theory" arrangements

of getinegmat(), but can be set to strings "white," "black", "gray", "roth",

"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_inegmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat(), or make_anaglyph_ineqgmat (). For other arrange-

ments, this parameter accepts explicit matrices.

Boolean: should the result be transposed so that its pitch initial is zero? Defaults
to TRUE.

Number of unit steps in an octave. Defaults to 12.

Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

A numeric vector which represents a scale on the target flat.

A numeric vector of same length as set, representing the projection of set onto the flat determined
by target_rows or target_scale.

Examples

minor_triad <- c(@, 3, 7)

project_onto(minor_triad, 3)

project_onto(minor_triad, 1)

project_onto(minor_triad, c(1, 3))

This last projection results in the perfectly even scale
because that's the only scale on both hyperplanes 1 and 3.

major_scale <- c(0, 2, 4, 5, 7, 9, 11)
projected_just_dia <- match_flat(j(dia), major_scale)

60 quantize_color

print(projected_just_dia)

This is very close to fifth-comma meantone:
fifth_comma_meantone <- sim(sort(((@:6) * meantone_fifth(1/5))%%12))[,5]
vl_dist(projected_just_dia, fifth_comma_meantone)

quantize_color Find a scale mod k that matches a given color

Description

Modal Color Theory is useful for analyzing scales in continuous pitch-class space with irrational
values, but sometimes those irrational values can be inconvenient to work with. Therefore it’s often
quite useful to find a scale that has the same color as the one you’re studying, but which can be
represented by integers in some mod k universe. See "Modal Color Theory," 27.

Usage
quantize_color(
set,
nmax = 12,

reconvert = FALSE,
inegmat = NULL,
target_edo = NULL,

edo = 12,
rounder = 10
)
Arguments

set Numeric vector of pitch-classes in the set

nmax Integer, essentially a limit to how far the function should search before giving
up. Although every real color should have a rational representation in some mod
k universe, for some colors that k must be very high. Increasing nmax makes the
function run longer but might be necessary if small chromatic universes don’t
produce a result. Defaults to 12.

reconvert Boolean. Should the scale be converted to the input edo? Defaults to FALSE.

inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_inegmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat (), or make_anaglyph_inegmat (). For other arrange-
ments, this parameter accepts explicit matrices.

target_edo Numeric (expected integer) determining a specific equal division of the octave

to quantize to. Defaults to NULL, in which any potential edo will be accepted.

quantize_hue 61

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

If reconvert=FALSE, a list of two elements: element 1 is set with a vector of integers representing
the quantized scale; element 2 is edo representing the number k of unit steps in the mod k universe.
If reconvert=TRUE, returns a single numeric vector measured relative to the unit step size input as
edo: these generally will not be integers. Values may be NA if no suitable quantization was found
beneath the limit given by nmax or in target_edo (if specified).

Examples

gem_fifth <- meantone_fifth()
gcm_lydian <- sort(((0:6)*qcm_fifth)%%12)
quantize_color(gcm_lydian)

Let's approximate the Werckmeister III well-temperament

werck_ratios <- c(1, 256/243, 64xsqrt(2)/81, 32/27, (256/243)*2~(1/4), 4/3,
1024/729, (8/9)*2*(3/4), 128/81, (1024/729)*2~(1/4), 16/9, (128/81)%2*(1/4))

werck3 <- z(werck_ratios)

quantize_color(werck3)

quantize_color(werck3, reconvert=TRUE)

quantize_color(j(dia))
quantize_color(j(dia), target_edo=22)

quantize_hue Find a scale mod k that matches a given hue

Description

Given any scale, attempts to find a scale defined as integers mod k which belongs to the same hue as
the input (i.e. would return TRUE when same_hue () is applied). This function thus is similar in spirit
to quantize_color () but seeks a more precise structural match between input and quantization.
Note, though, that while quantize_color () should always be able to find a suitable quantization
(if nmax is set high enough), this is not necessarily true for quantize_hue(). There are lines in
R™ which pass through no rational points but the origin, so some hues (including ones of musical
interest like the 5-limit just diatonic scale) may not have any quantization.

Usage
quantize_hue(
set,
nmax = 12,

reconvert = FALSE,

62

target_edo

edo = 12
rounder

Arguments

set

nmax

reconvert

target_edo

edo

rounder

Value

’

10

quantize_hue

NULL,

Numeric vector of pitch-classes in the set

Integer, essentially a limit to how far the function should search before giving
up. Although every real color should have a rational representation in some mod
k universe, for some colors that k must be very high. Increasing nmax makes the
function run longer but might be necessary if small chromatic universes don’t
produce a result. Defaults to 12.

Boolean. Should the scale be converted to the input edo? Defaults to FALSE.

Numeric (expected integer) determining a specific equal division of the octave
to quantize to. Defaults to NULL, in which any potential edo will be accepted.

Number of unit steps in an octave. Defaults to 12.

Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

If reconvert=FALSE, a list of two elements: element 1 is set with a vector of integers representing
the quantized scale; element 2 is edo representing the number k of unit steps in the mod k universe.
If reconvert=TRUE, returns a single numeric vector measured relative to the unit step size input as
edo: these generally will not be integers. Values may be NA if no suitable quantization was found
beneath the limit given by nmax or in target_edo (if specified).

Examples

meantone_diatonic <- sort(((0:6)*meantone_fifth())%%12)
quantize_hue(meantone_diatonic) # Succeeds
quantize_hue(j(dia), nmax=15) # Fails no matter how high you set nmax.

quasi_guido <- convert(c(o@, 2, 4, 5, 7, 9), 13, 12)
quantize_color(quasi_guido)
quantize_hue(quasi_guido)

quantize_hue(c(@, 1, 4, 6))
quantize_hue(c(@, 1, 4, 6), target_edo=16)

readSCL 63

readSCL Import a Scala (.scl) file as a scale

Description

This function allows you to import scales that have been defined in the Scala tuning format (*.scl)
into R to analyze with the functions of musicMCT. Scales can be defined in .scl files in different
ways, some of which may lack the precision that computations in musicMCT normally assume. If
you import a scale that seems to have less regularity than you expected (i.e. it’s on 0 hyperplanes
even though it seems to be very regular), try increasing your rounding tolerance (i.e. lower the value
of rounder arguments in the functions you apply to the imported scale).

Usage

readSCL(filename, scaleonly = TRUE, edo = 12)

Arguments
filename String with the path to the file to be imported
scaleonly Boolean: should readSCL return only a vector of pitches, not additional infor-
mation from the file? Defaults to TRUE
edo Number of unit steps in an octave. Defaults to 12.
Value

A numeric vector with the scale’s pitches if scaleonly=TRUE; else a list in which the scale’s pitches
are the first entry, the length of the scale is the second, and the size of the period is the third.

Examples

We'll read a sample .scl file that comes with the “musicMCT™ package.
demo_filepath <- system.file("extdata”, "sample_pentachord.scl”, package="musicMCT")
fun_pentachord <- readSCL(demo_filepath)

sim(fun_pentachord)

brightnessgraph(fun_pentachord)

realize_stepword Define scale by entering its relative step sizes

Description

Where asword() takes you from a scale to a ranked list of its step sizes, realize_stepword does
the opposite: given a list of ranked step sizes, it defines a scale with those steps. It does not attempt
to define a scale that exists in 12-tone equal temperament or another mod k universe, though the
result will have integral values in some mod k setting. If you want that information, set reconvert
to FALSE.

64 rotate

Usage

realize_stepword(stepword, edo = 12, reconvert = TRUE)

Arguments
stepword A numeric vector (intended to be nonnegative integers) of ranked step sizes;
should be the same length as desired output set.
edo Number of unit steps in an octave. Defaults to 12.
reconvert Boolean. Should the result be expressed measured in terms of semitones (or a
different mod k step if edo is not set to 12)?
Value

Numeric vector of same length as set, if reconvert is TRUE. If reconvert is FALSE, returns a list
with two elements. The first element (set) expresses the defined set as integer values in some edo.
The second element (edo) tells you which edo (mod k universe) the set is defined in.

Examples

dim7 <- realize_stepword(c(1, 1, 1, 1))

four_on_the_floor <- realize_stepword(c(1, 1, 1, 1), edo=16)

my_luggage <- realize_stepword(c(1, 2, 3, 4, 5))

my_luggage_in_15edo <- realize_stepword(c(1, 2, 3, 4, 5), reconvert=FALSE)
dim7

four_on_the_floor

my_luggage

my_luggage_in_15edo

pwf_scale <- realize_stepword(c(3, 2, 1, 3, 2, 3, 1))
asword(pwf_scale)

rotate Circular rotation of an ordered tuple

Description

Changes which element of a circularly-ordered series is in the first position without otherwise
changing the order. Used primarily to generate the modes of a scale. Single application moves
one element from the beginning of a tuple to the end.

Usage

rotate(x, n = 1, transpose_up = FALSE, edo = 12)

roth_ineqmats 65

Arguments
X Vector to be rotated
n Number of positions the vector should be rotated left. Defaults to 1. May be

negative.

transpose_up Boolean, defaults to FALSE which leaves entries unchanged. If set to TRUE, el-
ements moved from the head to the tail of the vector are increased in value by
edo.

edo Number of unit steps in an octave. Defaults to 12.

Value

(Rotated) vector of same length as x

Examples

rotate(c(o, 2, 4, 5, 7, 9, 11), n=2)

rotate(c(@, 2, 4, 5, 7, 9, 11), n=-2)

rotate(c(o, 2, 4, 5, 7, 9, 11), n=2, transpose_up=TRUE)

rotate(c(@, 2, 4, 5, 7, 9, 11), n=2, transpose_up=TRUE, edo=15)

rotate(c("father”, "charles”, "goes”, "down", "and”, "ends”, "battle"),

n=4)
roth_inegmats Hyperplane arrangements for Rothenberg arrangements

Description

The data file roth_inegmats represents the Rothenberg hyperplane arrangements that make_roth_inegmat ()
generates. Just like the file inegmats, for large computations it’s faster simply to call on precal-

culated data rather than to run make_roth_inegmat () many thousands of times. Thus the object
roth_inegmats saves the inequality matrices for scales of cardinality 1-24, to be called upon by
get_roth_inegmat().

Usage

roth_inegmats

Format

roth_inegmats A list with 24 entries. The nth entry of the list gives the inequality matrix for n-note
scales. Each inequality matrix itself is an m by (n+1) matrix, where m is the number of hyperplanes
in the relevant Rothenberg arrangement. (The values m are currently only empirical: so far, no
principled enumeration exists.) The last column of the matrix contains constants that translate the
hyperplane away from the origin.

Source

The data in roth_inegmats can be recreated with the command sapply(1:24, make_roth_inegmat).

66 same_hue

same_hue Do two scales lie on the same ray?

Description

Two scales which lie on the same ray from edoo() (the perfectly even scale) differ only in their
saturation and are said to belong to the same "hue." They are not only members of a large "color"
but also a much more specific structure which preserves properties such as ratio() and the precise
shape of brightnessgraph(). same_hue() tests whether two scales have this close relationship.

Usage

same_hue(set_1, set_2, edo = 12, rounder = 10)

Arguments
set_1, set_2 Numeric vectors of pitch-classes in the sets. Must be of same length.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Boolean: are the sets of the same hue? NB: TRUE for identical sets (even perfectly even scales);
FALSE for scales which are related by "involution."

Examples

set39 <- c(@, 5, 9, 10, 14, 16, 21)

set53 <- c(o, 7, 13, 16, 22, 26, 33)

set39 <- convert(set39, 39, 12)

set53 <- convert(set53, 53, 12)

same_hue(set39, set53)

Since they have the same hue, we can resaturate one to become the other:
relative_evenness <- evenness(set53)/evenness(set39)

set53

saturate(relative_evenness, set39)

These two hexachords belong to the same quasi-pairwise well formed
color (see "Modal Color Theory,"” p. 37), but not to the same hue:
guidonian_1 <- c(@, 2, 4, 5, 7, 9)

guidonian_2 <- convert(guidonian_1, 13, 12)
isTRUE(all.equal(signvector(guidonian_1), signvector(guidonian_2)))
same_hue(guidonian_1, guidonian_2)

saturate 67

saturate Modify evenness without changing hue

Description

Saturation parameterizes scale structures along a single degree of freedom which corresponds to
size of the vector from the "white" perfectly even scale to the scale in question. Variation in a
scale’s saturation minimally affects its structural properties. The function saturate() takes in a
scale and a saturation parameter (r) and returns another scale along the same line (i.e. including the
scale’s hue and its scalar involution—see "Modal Color Theory," 32).

Usage

saturate(r, set, edo = 12)

Arguments
r Numeric: the relative proportion to (de)saturate the set by. If r is set to 0, returns
white; if r = 1, returns the input set. If O < r < 1, the saturation is decreased. If r
> 1, the saturation is increased, potentially to the point where the set moves past
some OPTIC boundary. If r < 0, the result is an "involution" of the set.
set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.
Value

Numeric vector of same length as set (another scale on the same hue)

Examples

lydian <- c(@, 2, 4, 6, 7, 9, 11)

gem_fifth <- meantone_fifth()

gcm_dia <- sort(((0:6)*gcm_fifth)%%12)

evenness_ratio <- evenness(qcm_dia) / evenness(lydian)
desaturated_lydian <- saturate(evenness_ratio, lydian)
desaturated_lydian

gcm_dia

ionian <- c(0, 2, 4, 5, 7, 9, 11)
involution_of_ionian <- saturate(-2, ionian)
convert(involution_of_ionian, 12, 42)
asword(ionian)

asword(involution_of_ionian)

68 scale_palette

sc Set class from Forte’s list

Description

Given a cardinality and ordinal position, returns the (Rahn) prime form of the set class from Allen
Forte’s list in The Structure of Atonal Music (1973). Draws the information from hard-coded values
in the package’s data.

Usage

sc(card, num)

Arguments
card Integer value between 1 and 12 (inclusive) that indicates the number of distinct
pitch-classes in the set class.
num Ordinal number of the desired set class in Forte’s list
Value

Numeric vector of length card representing a pc-set of card notes.

Examples

aitl <- sc(4, 15)
ait2 <- sc(4, 29)

NB_rahn_prime_form <- sc(6, 31)
print(NB_rahn_prime_form)

scale_palette Orbit of a scale under symmetries of hyperplane arrangement

Description

Given an input scale, return a "palette" of related scalar colors. All the returned scales are the image
of the input under some ineqsym().

Usage

scale_palette(set, include_involution = TRUE, edo = 12, rounder = 10)

sc_comp 69

Arguments

set Numeric vector of pitch-classes in the set

include_involution

Should involutional symmetry be included in the applied transformation group?
Defaults to TRUE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

A matrix whose columns represent the colors in set’s palette.

Examples

The palette of a minor triad is all inversions of major and minor:
minor_triad <- c(@, 3, 7)
scale_palette(minor_triad)

But 12edo is a little too convenient. The palette of the just minor triad
involves some less-consonant intervals:

just_minor <- j(1, m3, 5)

scale_palette(just_minor)

The palette of the diatonic scale includes all 42 well-formed heptachord colors:
dia_palette <- scale_palette(sc(7, 35))

dim(dia_palette)

table(apply(dia_palette, 2, iswellformed))

sc_comp Set class complement

Description

Find the complement of a set class in a given mod k universe. Complements have long been rec-
ognized in pitch-class set theory as sharing many properties with each other. This is true to some
extent when considering scales in continuous pc-space, but sometimes it is not! Therefore whenever
you’re exploring an odd property that a scale has, it can be useful to check that scale’s complement
(if you’ve come across the scale in some mod k context, of course).

Usage

sc_comp(set, canon = c("tni", "tn"), edo = 12, rounder = 10)

70 set_from_signvector

Arguments
set Numeric vector of pitch-classes in the set
canon What transformations should be considered equivalent? Defaults to "tni" (using
standard set classes) but can be "tn" (using transposition classes)
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Numeric vector representing a set class of length edo - n where n is the length of the input set

Examples

diatonic19 <- c(@, 3, 6, 9, 11, 14, 17)
chromatic19 <- sc_comp(diatonic19, edo=19)
icvecs_19 <- rbind(ivec(diatonic19, edo=19), ivec(chromatic19, edo=19))

rownames (icvecs_19) <- c("diatonic ivec"”, "chromatic ivec")
icvecs_19
set_from_signvector Create a scale from a sign vector
Description

This function attempts to take in a sign vector (and associated cardinality and inegmat) and create
a scale whose sign vector matches the input. This is not always possible because not all sign vectors
correspond to colors that actually exist (just like there is no Fortean set class with the interval-class
vector <1 1 @ 1 @ ©0>). The function will do its best but may eventually time out, using a similar
process as quantize_color (). You can increase the search time by increasing nmax, but in some
cases you could search forever and still find nothing. I don’t advise trying to use this function on
many sign vectors at the same time.

Usage

set_from_signvector(
signvec,
card,
nmax = 12,
reconvert = FALSE,
inegmat = NULL,
target_edo = NULL,
edo = 12,
rounder = 10

set_from_signvector 71

Arguments

signvec Vector of 9, -1, and 1s: the sign vector that you want to realize.

card Integer: the number of notes in your desired scale.

nmax Integer, essentially a limit to how far the function should search before giving
up. Although every real color should have a rational representation in some mod
k universe, for some colors that k must be very high. Increasing nmax makes the
function run longer but might be necessary if small chromatic universes don’t
produce a result. Defaults to 12.

reconvert Boolean. Should the scale be converted to the input edo? Defaults to FALSE.

inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_inegmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat(), make_rosy_inegmat(),
make_infrared_inegmat (), or make_anaglyph_inegmat (). For other arrange-
ments, this parameter accepts explicit matrices.

target_edo Numeric (expected integer) determining a specific equal division of the octave
to quantize to. Defaults to NULL, in which any potential edo will be accepted.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

If reconvert=FALSE, a list of two elements: element 1 is set with a vector of integers representing
the realized scale; element 2 is edo representing the number k of unit steps in the mod k universe.
If reconvert=TRUE, returns a single numeric vector converted to measurement relative to 12-tone
equal tempered semitones. Values may be NA if no suitable quantization was found beneath the limit
given by nmax or in target_edo (if specified).

Examples

This first command produces a real tetrachord:
set_from_signvector(c(-1, 1, 1, -1, -1, -1, 0, -1), 4)

But this one, which changes only the last entry of the previous sign vector
has no solution so will return only “NA"s.
set_from_signvector(c(-1, 1, 1, -1, -1, -1, 0, 1), 4)

72

set_to_distribution

set_to_distribution Convert between pitch-class sets and distributions

Description

For applications of the Discrete Fourier Transform to pitch-class set theory, it’s typically conve-
nient to represent musical sets in terms of distributions rather than lists of their elements. (See
Chapter 1 of Amiot 2016, doi:10.1007/9783319455815.) These functions convert back and forth
between those representations. s2d() and d2s() are shorthands for set_to_distribution() and distri-
bution_to_set(), respectively.

Usage

set_to_distribution(set, edo = 12, rounder = 10)

distribution_to_set(

distro,

multiset = TRUE,
reconvert = TRUE,

edo = 12,
rounder

s2d(...)

d2s(...)

Arguments

set
edo
rounder

distro
multiset

reconvert

Value

Numeric vector of pitch-classes in the set. May be a multiset, in which case the
result is different from the corresponding set with repetitions removed. Entries
must be integers.

Number of unit steps in an octave. Defaults to 12.

Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Numeric vector representing a pitch-class distribution.

Boolean. Should distribution_to_set() return a multiset if element weights are
greater than 1? Defaults to TRUE.

Boolean. Should the scale be converted to the input edo? Defaults to TRUE.
Arguments to be passed from s2d() or d2s() to unabbreviated functions.

set_to_distribution() returns a numeric vector with length edo, whose ith entry represents the
weight assigned to pitch-class i in the distribution. distribution_to_set() returns a (multi)set repre-
sented by listing its elements in a vector. (Non-integer weights are rounded up to the next highest
integer if multiset is TRUE.)

https://doi.org/10.1007/978-3-319-45581-5

signed_interval_class 73

Examples

set_to_distribution(c(@, 4, 7))
s2d(c(@, 4, 7)) # Same result but quicker to type
s2d(c(0Q, 4, 4, 7)) # The doubled third is reflected by the value 2 in the result

minor_triad_distro <- c(2, 0, o0, 1, 0, 0, @0, 1, 0, 0, 0, Q)
distribution_to_set(minor_triad_distro)
d2s(minor_triad_distro, multiset=FALSE)

distribution_to_set automatically converts to 12edo, which
can sometimes be undesirable, as in this case:
tresillo_distro <- c(1, o, o, 1, 0, 0, 1, @)
d2s(tresillo_distro)

d2s(tresillo_distro, reconvert=FALSE)

signed_interval_class Orwdered pitch-class interval represented as interval class with sign

Description

Represents an ordered interval between two pitch-classes as a value between -edo/2 and edo/2,
i.e. with an absolute value that matches its interval class as well as a sign (plus or minus) that
disambiguates between the two OPClIs included in the interval-class. That is, C->D is 2 whereas
C->B-flat is -2. Exactly half the octave is represented as a positive value.

Usage

signed_interval_class(x, edo = 12)

Arguments
X Single numeric value, representing an ordered pitch-class interval
edo Number of unit steps in an octave. Defaults to 12.

Value

Single numeric value

Examples

signed_interval_class(8)
signed_interval_class(6)
signed_interval_class(-6)
signed_interval_class(3#*pi)

74 signvector

signvector Detect a scale’s location relative to a hyperplane arrangement

Description

As "Modal Color Theory" describes (pp. 25-26), each distinct scalar "color" is determined by its
relationships to the hyperplanes that define the space. For any scale, this function calculates a sign
vector that compares the scale to each hyperplane and returns a vector summarizing the results. If
the scale lies on hyperplane 1, then the first entry of its sign vector is @. If it lies below hyperplane
2, then the second entry of its sign vector is -1. If it lies above hyperplane 3, then the third entry of
its sign vector is 1. Two scales with identical sign vectors belong to the same "color".

Usage

signvector(set, inegmat = NULL, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_ineqgmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat (), or make_anaglyph_inegmat (). For other arrange-
ments, this parameter accepts explicit matrices.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

A vector whose entries are @, -1, or 1. Length of vector equals the number of hyperplanes in
inegmat.

Examples

037 and 016 have identical sign vectors because they belong to the same trichordal color
signvector(c(@, 3, 7))
signvector(c(@, 1, 6))

Just and equal-tempered diatonic scales have different sign vectors because they have
different internal structures (e.g. 12edo dia is generated but just dia is not).
dia_12edo <- c(@, 2, 4, 5, 7, 9, 11)

just_dia <- j(dia)

isTRUE(all.equal(signvector(dia_12edo), signvector(just_dia)))

sim 75

sim Scalar (and interscalar) interval matrix

Description

As defined by Tymoczko 2008 ("Scale Theory, Serial Theory and Voice Leading") doi:10.1111/
j-14682249.2008.00257 .x, the scalar interval matrix represents the "rotations" of a set, transposed
to begin on 0, in its columns. Its nth row represents the specific intervals which represent its generic
interval of size n. If changed from its default (NULL), the parameter goal calculates Tymoczko’s
interscalar interval matrix from set to goal.

Usage
sim(set, goal = NULL, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
goal Numeric vector of same length as set. Defaults to NULL.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Numeric n by n matrix where n is the number of notes in set

Examples

diatonic_modes <- sim(c(@, 2, 4, 5, 7, 9, 11))
print(diatonic_modes)

miyakobushi_modes <- sim(c(@, 1, 5, 7, 8)) # rows show trivalence
print(miyakobushi_modes)

Interscalar Interval Matrix:
sim(c(@, 3, 6, 10), c(o, 4, 7, 10))

Note that the interscalar matrices factor out transposition:
minor <- c(@, 3, 7)

major <- c(@, 4, 7)

sim(minor, major)

sim(minor-1, major)

sim(minor, major+2)

But not permutation:
major_64 <- c(@, 5, 9)
major_open <- c(@, 7, 4)

https://doi.org/10.1111/j.1468-2249.2008.00257.x
https://doi.org/10.1111/j.1468-2249.2008.00257.x

76 simplity_scale

sim(minor, major_64)
sim(minor, major_open)

simplify_scale Best ways to regularize a scale

Description

Given an input scale, identify which adjacent colors represent good approximations of it, in a sense
consistent with "Modal Color Theory," pp. 31-32.

Usage

simplify_scale(
set,
start_zero = TRUE,
inegmat = NULL,
scales = NULL,
signvector_list = NULL,
adjlist = NULL,

method = c("euclidean”, "taxicab”, "chebyshev”, "hamming”),
display_digits = 2,
edo = 12,
rounder = 10
)
best_simplification(set, ...)
Arguments
set Numeric vector of pitch-classes in the set
start_zero Boolean: should the result be transposed so that its pitch initial is zero? Defaults
to TRUE.
inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat(), make_black_inegmat(), make_gray_inegmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat (), or make_anaglyph_inegmat (). For other arrange-
ments, this parameter accepts explicit matrices.
scales List of scales representing the faces of your hyperplane arrangement. Defaults

to NULL in which case the function looks for representative_scales in the
global environment.

simplify_scale 77

signvector_list

A list of signvectors to use as the reference by which colornum assigns a value.
Defaults to NULL and will attempt to use representative_signvectors, which
needs to be downloaded and assigned separately from the package musicMCT.
(If a named inegmat other than "mct" is chosen, the function attempts to re-
place a NULL signvector list with a corresponding object in the global envi-
ronment. For instance, if ineqmat="pastel” then the function tries to use
pastel_signvectors for signvector_list.)

adjlist Adjacency list structured in the same way as color_adjacencies. Defaults to
NULL in which case the function looks for color_adjacencies in the global
environment.

method What distance metric should be used? Defaults to "euclidean” (unlike most
functions with a method parameter in musicMCT) but can be "taxicab”, "chebyshev”,
or "hamming”.

display_digits Integer: how many digits to display when naming any non-integral interval sizes.
Defaults to 2.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Other arguments to be passed from best_simplification() to simplify_scale().

Details

Suppose that you’ve gathered data on how a particular instrument is tuned. Two intervals in its
scale differ by about 12 cents: does it make sense to consider those intervals to be essentially the
same, up to some combination of measurement error and the permissiveness of cognitive categories?
simplify_scale() helps to answer such a question by considering whether eliding a precisely
measured difference results in a significant simplification of the overall scale structure.

It accomplishes this by starting from two premises:

* Any simplification should move to an adjacent color with fewer degrees of freedom.

* There’s a tradeoff between moving farther (i.e. requiring more measurement fuzziness) and
achieving greater regularity. Therefore it starts by projecting the input scale onto all neigh-
boring flats with fewer degrees of freedom. Some projections can be rejected immediately
because the closest point on the flat isn’t actually an adjacent color. The non-rejected projec-
tions can therefore be ranked by calculating the "cost" of each additional regularity: for every
1 or -1 in the sign vector that is converted to a @, how far does one have to move in voice
leading space?

To answer this question, simplify_signvector needs access to data about the hyperplane ar-
rangement in question. For the basic "Modal Color Theory" arrangements, this is the data in
representative_scales.rds, representative_signvectors.rds, and color_adjacencies.rds.
The function assumes that, if you don’t specify other data, you have those three files loaded into
your workspace. It can’t function without them.

78 step_signvector

Value

A matrix with n+6 rows, where n is the number of notes in the scale. Each column represents a
scale which is a potential simplification of the input set, together with details about that simplified
scale. The first n entries of the column represent the pitches of the scale itself:

* The n+1th row indicates the color number of the simplification.

* The n+2th row shows how many degrees of freedom the simplification has (always between @
and d-1 where d is set’s degree of freedom).

» The n+3th row calculates the voice-leading distance from set to the simplified scale (accord-
ing to the chosen method, for which Euclidean distance is the default because it corresponds
to the assumption that orthogonal projection finds the closest point on a neighboring flat).

* The n+4th row counts how many more hyperplanes the simplified scale lies on compared to
set.

* The n+5th row is a quotient of the previous two rows (distance divided by number of new
regularities).

e The n+6th row calculates a final "score" which is used to order the columns from best (first) to
worst (last) simplifications. This score is the inverse of the previous row divided by the total
number of hyperplanes in the arrangement. (Without this normalization, scores for higher
cardinalities quickly become much larger than scores for low cardinalities.)

If display_digits is a value other than NULL, the function prints to console a suitably rounded
representation of the data, while invisibly returning the unrounded information.

best_simplification() returns simply a numeric vector with the scale judged optimal by simplify_scale()
(i.e. the first n entries of its first column, without all the other information).

Examples

For this example to run, you need the necessary data files loaded.
Let's see what happens if we try to simplify the 5-1limit just diatonic:

simplify_scale(j(dia))

So the best option is color number 942659, which is the "well-formed”
structure of the familiar diatonic scale. The particular saturation of
that meantone structure is very close to 1/5-comma meantone:

simplified_jdia <- best_simplification(j(dia))
fifth_comma_dia <- sim(sort((meantone_fifth(1/5)*(0:6))%%12))[,5]
vl_dist(simplified_jdia, fifth_comma_dia)

step_signvector Specify a scale’s step pattern with a sign vector

subsetspectrum 79

Description

Rather than calculate the full sign vector from the "modal color" hyperplane arrangement, some-
times it’s advantageous to use a sign vector that reflects only the pairwise comparisons on a scale’s
steps. This function does that.

Usage

step_signvector(set, inegmat = NULL, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel", "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_inegmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat(), or make_anaglyph_ineqgmat (). For other arrange-
ments, this parameter accepts explicit matrices.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

A vectors of signs, -1, @, and 1, corresponding to the step-related hyperplanes in the defined
inegmat.

Examples

step_signvector(sc(7, 35)) # Half the length of a full sign vector for heptachords:
signvector(sc(7, 35))

subsetspectrum Subset varieties for all subsets of a fixed size

Description

Applies subset_varieties() not just to a particular subset shape but to all possible subset shapes
given a fixed cardinality. For example, finds the specific varieties of all trichordal subsets of the
major scale, not than just the varieties of the tonal triad. Comparable to intervalspectrum() but
for subsets larger than dyads.

80 subsetspectrum
Usage
subsetspectrum(
set,
subsetcard,
simplify = TRUE,
mode = "tn",
edo = 12,
rounder
)
Arguments
set The scale to find subsets of, as a numeric vector
subsetcard Single integer defining the cardinality of subsets to consider
simplify Should "inversions" of a subset be ignored? Boolean, defaults to TRUE
mode String "tn” or "tni". When defining subset shapes, use transposition or trans-
position & inversion to reduce the number of shapes to consider? Defaults to
n tn n .
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Details

The parameter simplify lets you control whether to consider different "inversions" of a subset
shape independently. For instance, with simplify=TRUE, only root position triads (0, 2, 4) would
be considered; but with simplify=FALSE, the first inversion (0, 2, 5) and second inversion (0, 3, 5)
subset shapes would also be displayed.

Value

A list whose length matches the number of distinct subset shapes (given the chosen options). Each
entry of the list is a matrix displaying the varieties of some particular subset type.

Examples

c_major_scale <- c(0, 2, 4, 5, 7, 9, 11)

subsetspectrum(c_major_scale, 3)

subsetspectrum(c_major_scale, 3, simplify=FALSE)

subsetspectrum(c_major_scale, 3, mode="tni") # Note the absence of a "0, 2, 3" matrix

subset_multiplicities 81

subset_multiplicities Count the multiplicities of a subset-type’s varieties

Description

Given the varieties of a subset type returned by subset_varieties(), subset_multiplicities()
counts how many times each one occurs in the scale. These are the multiplicities of the subsets in
the sense of Clough and Myerson (1985)’s result "structure yields multiplicity" for well-formed
scales.

Usage

subset_multiplicities(
subsetdegrees,
set,
edo = 12,
rounder = 10,
display_digits = 2

Arguments

subsetdegrees Vector of integers indicating the generic shape to use, e.g. c(@, 2, 4) for tertian
triads in a heptachord. Expected to begin with @ and must have length > 1.

set The scale to find subsets of, as a numeric vector
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

display_digits Integer: how many digits to display when naming any non-integral interval sizes.
Defaults to 2.

Value

Numeric vector whose names indicate the k varieties of the subset type and whose entries count
how often each variety occurs.

Examples

subset_multiplicities(c(@, 2, 4), sc(7, 35))
subset_multiplicities(c(@, 1, 4), sc(7, 35))

subset_multiplicities(c(@, 2, 4), j(dia))

https://www.jstor.org/stable/843615

82 subset_varieties

subset_varieties Specific varieties of scalar subsets given a generic shape

Description

Considered mod 7, the traditional triads of a diatonic scale are all instances of the generic shape (0,
2, 4). They come in three varieties: major, minor, and diminished. This function lists the distinct
varieties of any similarly defined generic shape which occur as subsets in some specified scale (or
larger set).

Usage

subset_varieties(subsetdegrees, set, unique = TRUE, edo = 12, rounder = 10)

Arguments

subsetdegrees Vector of integers indicating the generic shape to use, e.g. c(@, 2, 4) for tertian
triads in a heptachord. Expected to begin with @ and must have length > 1.

set The scale to find subsets of, as a numeric vector

unique Should each variety be listed only once? Defaults to TRUE. If FALSE, each spe-
cific variety will be listed corresponding to how many times it occurs as a subset.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

Value

A numeric matrix whose columns represent the specific varieties of the subset

Examples

c_major_scale <- c(0, 2, 4, 5, 7, 9, 11)
double_harmonic_scale <- c(0, 1, 4, 5, 7, 8, 11)

subset_varieties(c(@, 2, 4), c_major_scale)
subset_varieties(c(@, 2, 4), c_major_scale, unique=FALSE)
subset_varieties(c(@, 2, 4), double_harmonic_scale)

surround_set 83

surround_set Random scales uniformly distributed on a hypersphere around an in-
put

Description

Sometimes you want to explore what other scale structures a given scale is close to. This can be
done by studying the network of color adjacencies in suitably low cardinalities (see "Modal Color
Theory," 31-37), but it can also be rewarding simply to randomly sample scales that are suitably
close to the one you started with.

The larger your starting scale, the more complicated is the geometry of the color space it lives
in. Therefore this function generates a larger number of random scales for larger cardinalities: by
default, if the length of the input set is card, surround_set gives card * 100 output scales. The
parameter magnitude controls the order of magnitude of your sample (i.e. if you want ~1000 scales
rather than ~100, set magnitude=3).

The size of the hypersphere which the function samples is, by default, 1. When we’re working with
a unit of 12 semitones per octave, 1 semitone of voice leading work can get you pretty far away
from the original set, especially in higher cardinalities. (For instance, C major to C melodic minor
is just 1 semitone of motion, but there are 3 other colors that intervene between these two scales
along a direct path.) Depending on your goals, you might want to try a couple different orders of
magnitude for distance.

Usage

surround_set(set, magnitude = 2, distance = 1)

Arguments
set Numeric vector of pitch-classes in the set
magnitude Numeric value specifying how many sets to return. Defaults to 2.
distance How far (in units of voice leading work, using the Euclidean metric) should the
sampled scales be from the input set?
Value

a Matrix with length(set) rows and 10*magnitude columns, representing 10*magnitude differ-
ent scales

Examples

First we sample 30 trichords surrounding the minor triad 037.
chords_near_minor <- surround_set(c(@,3,7), magnitude=1, distance=.5)
chords_near_minor

The next two commands will plot the sampled trichords on an x-y plane as
circles; the minor triad that they surround is marked with a "+" sign.
plot(chords_near_minor[2,], chords_near_minor[3,],

84 svzero_fingerprint

xlab="Third", ylab="Fifth", asp=1)
points(3, 7, pch="+")

The following two commands will plot the two lines (i.e. hyperplanes) that
demarcate the boundaries of the minor triad's color. Most but not all

of our randomly generated points should fall in the space between the

two lines, in the same region as the "+" representing 037.

abline(0, 2)

abline(6, 1/2)

svzero_fingerprint Distinguish different types of interval equalities

Description

Not all hyperplanes are made equal. Those which represent "formal tritone" comparisons and those
which are "exceptional” because they check a scale degree twice ("Modal Color Theory," 40-41)
play a different role in the structure of the hyperplane arrangement than the rest. This function
returns a "fingerprint” of a scale which is like countsvzeroes() but which counts the different
types of hyperplane separately.

Usage

svzero_fingerprint(set, inegmat = NULL, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_inegmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat(), or make_anaglyph_ineqgmat (). For other arrange-
ments, this parameter accepts explicit matrices.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Numeric vector with 3 entries: the number of 'normal’ hyperplanes the set lies on, the number of
’exceptional’ hyperplanes, and the number of hyperplanes which compare a formal tritone to itself.

tc 85

Examples

Two hexachords on the same number of hyperplanes but with different fingerprints
hex1 <- c(o0, 1, 3, 5, 8, 9)

hex2 <- c(0, 1, 3, 5, 6, 9)

countsvzeroes(hex1) == countsvzeroes(hex2)

svzero_fingerprint(hex1)

svzero_fingerprint(hex2)

Their brightness graphs make their difference more apparent:
brightnessgraph(hex1)
brightnessgraph(hex2)

tc Transpositional combination & pitch multiplication

Description

Cohn (1988, doi:10.2307/745790) defines transpositional combination as a procedure that generates
a pc-set as the union of two (or more) transpositions of some smaller set. tc() takes the small set
and a vector of transposition levels, returning the larger pc-set that results. (Pierre Boulez referred to
this procedure as pitch "multiplication", which Amiot (2016, doi:10.1007/9783319455815) shows
to be not at all fanciful, as a convolution of two pitch-class sets.)

Usage

tc(set, multiplier = NULL, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
multiplier Numeric vector of transposition levels to apply to set. If not specified, defaults
to set.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Numeric vector of length < length(set) - length(multiplier)

https://doi.org/10.2307/745790
https://doi.org/10.1007/978-3-319-45581-5

86 tn

Examples

tc(c(e, 4), c(o, 7))
tc(c(o, 7), c(o, 4))

pyth_tetrachord <- j(1, t, dt, 4)
pyth_dia <- tc(pyth_tetrachord, j(1, 5))
same_hue(pyth_dia, c(0, 2, 4, 5, 7, 9, 11))

tn Transposition and Inversion

Description

Calculate the classic operations on pitch-class sets 7}, and T}, I. That is, tn adds a constant to all
elements in a set modulo the octave, and tni essentially multiplies a set by -1 (modulo the octave)
and then adds a constant (modulo the octave). If sorted is TRUE (as is default), the resulting set is
listed in ascending order, but sometimes it can be useful to track transformational voice leadings, in
which case you should set sorted to FALSE.

startzero transposes a set so that its first element is @. (Note that this is different from tnprime()
because it doesn’t attempt to find the most compact form of the set. See examples for the contrast.)

Sometimes you just want to invert a set and you don’t care what the index is. charmis a quick way
to do this, giving a name to the transposition-class of T I of the set. (The name charmis a reference
to "strange" and "charm" quarks in particle physics: I like these as names for the "a" and "b" forms
of a set class, i.e. the strange common triad is 3-11a = (0, 3, 7) and the charm common triad is
3-11b = (0, 4, 7). The name of the function charm means that if you input a strange set, you get out
a charm set, but NB also vice versa.)

Usage

tn(
set,
n,
sorted = TRUE,
octave_equivalence = TRUE,
optic = NULL,
edo = 12,
rounder = 10

tni(
set,
n = NULL,
sorted = TRUE,
octave_equivalence = TRUE,
optic = NULL,

tn

edo = 12,
rounder = 10

startzero(
set,

87

sorted = TRUE,
octave_equivalence = TRUE,

optic = NULL,
edo = 12,
rounder = 10

charm(set, edo = 12, rounder = 10)

Arguments

set

n

sorted

Numeric vector of pitch-classes in the set

Numeric value (not necessarily an integer) representing the index of transposi-
tion or inversion. For tni() only, defaults to NULL, in which case n is chosen
automatically to fix the first and last entries of set as common tones.

Do you want the result to be in ascending order? Boolean, defaults to TRUE.

octave_equivalence

optic

edo

rounder

Value

Do you want to normalize the result so that all values are between 0 and edo?
Boolean, defaults to TRUE.

String: the OPTIC symmetries to apply. Defaults to NULL, applying symme-
tries most appropriate to the given function. If specified, overrides parameters
sorted and octave_equivalence.

Number of unit steps in an octave. Defaults to 12.

Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Numeric vector of same length as set

Examples

c_major <- c(o, 4, 7)

tn(c_major, 2)
tn(c_major, -10)

n.n

tn(c_major, -10, optic="p") # Equivalent to tn(c_major, -10, octave_equivalence=FALSE)

tni(c_major, 4)

tni(c_major, 4, sorted=FALSE)
If no index is supplied for tni, n is chosen to fix the first and last entries of the set:

tni(c_major)

tn(c(o, 1, 6, 7),

6)

88

tndists

tn(c(@, 1, 6, 7), 6, sorted=FALSE)

#i##H# Difference between startzero and tnprime

e_maj7 <- c(4, 8, 11, 3)

startzero(e_maj7)

tnprime(e_maj7)

isTRUE(all.equal(tnprime(e_maj7), charm(e_maj7))) # True because inversionally symmetrical

#i##H# Derive minimal voice leading from ionian to lydian
ionian <- c(0, 2, 4, 5, 7, 9, 11)

lydian <- rotate(tn(ionian, 7, sorted=FALSE), 3)

lydian - ionian

#i##H# Easy to create a 12-tone matrix

row <- c(9, 10, 6, 8, 5, 7, 1, 2, 3, 11, 0, 4)
matrix_from_0 <- sapply(row, tni, set=row, optic="0")
matrix_from_9 <- tn(matrix_from_0, 9, optic="o0")
print(matrix_from_0)

print(matrix_from_9)

tndists Distances between continuous transpositions of a set

Description

One way to think about the voice-leading potential of a set is to consider the minimal voice-leadings
by which it can move to transpositions of itself (or another set). For instance, the major triad’s clos-
est transpositions are 7y and Tg while its most distant transposition is T, and potentially also 7% o
depending on the distance metric you use. For the major triad restricted to 12-tone equal tempera-
ment, this set of relationships is well modeled by Richard Cohn’s discussion of Douthett & Stein-
bach’s "Cube Dance" in Audacious Euphony (102-106). The behavior of other sets is not always
what you might expect extrapolating from the case of tertian sonorities. For instance, the trichord
(027) has different minimal neighbors depending on the metric chosen: its nearest neighbors are
T4 under the Euclidean metric but 7% 5 under the taxicab metric.

This function allows us to visualize such relationships by plotting the minimal voice leading dis-
tance from a set to transpositions of its goal in continuous pc-space. (In spirit, it is like a continuous
version of v1_rolodex () except that it visualizes a voice-leading distance rather than reporting the
specific motions of the set’s individual voices.) The main intended use of the function is the plot
that it produces, which represents many discrete 7},s of the set (for a sampling of each edo step
divided into subdivide amounts) on the x axis and voice-leading distance on the y axis. Secon-
darily, tndists() invisibly returns the distance values that it plots, named according to the 7, they
correspond to.

Usage

tndists(
set,

https://www.jstor.org/stable/843877
https://www.jstor.org/stable/843877

tnprime

89

goal = NULL,
method = c("taxicab”, "euclidean”, "chebyshev”, "hamming”),
subdivide = 100,
edo = 12,
rounder =
)
Arguments
set Numeric vector of pitch-classes in the set
goal Numeric vector like set: what is the tn-type of the voice leading’s destination?
Defaults to NULL, in which case the function uses set as the tn-type.
method What distance metric should be used? Defaults to "taxicab” but can be "euclidean”,
"chebyshev”, or "hamming”.
subdivide Numeric: how many small amounts should each edo step be divided into? De-
faults to 100.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Numeric vector of length edo * subdivide representing distances of the transpositions. Names
indicate the transposition index that corresponds to each distance.

Examples

major_triad <- c(@, 4, 7)

taxicab_dists <- tndists(major_triad)

euclidean_dists <- tndists(major_triad, method="euclidean")
tns_to_display <- c("1.9", "1.92", "1.95", "2" 6 "2.05", "2.08", "2.1")
taxicab_dists[tns_to_display]

euclidean_dists[tns_to_display]

tnprime

Transposition class of a given pc-set

Description

Uses Rahn’s algorithm to calculate the best normal order for the transposition class represented by
a given set. Reflects transpositional but not inversional equivalence, i.e. all major triads return (0,
4, 7) and all minor triads return (0, 3, 7).

Usage

tnprime(set, edo = 12, rounder = 10)

90 tsym

Arguments
set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Numeric vector of same length as set representing the set’s Tn-prime form

Examples

tnprime(c(2, 6, 9))
tnprime(c(@, 3, 6, 9, 14), edo=16)

tsym Test for transpositional symmetry

Description

Does the set map onto itself at some transposition other than 73? That is, does it map onto itself
under T}, for some appropriate n? tsym() can return either TRUE/FALSE or an index of symmetry
but defaults to the former. tsym_index() is a simple wrapper for tsym() that returns the latter.
tsym_degree() counts the total number of transpositional symmetries.

Usage

tsym(set, return_index = FALSE, edo = 12, rounder = 10)

tsym_index(set, ...)
tsym_degree(set, ...)
Arguments
set Numeric vector of pitch-classes in the set

return_index Should the function return a specific index at which the set is symmetrical?
Defaults to FALSE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Arguments to be passed to tsym()

visig 91

Value

By default, tsym() returns TRUE if the set has non-trivial transpositional symmetry, FALSE other-
wise. If return_index is TRUE, returns a vector of transposition levels at which the set is sym-
metric, including 0. tsym_index() is a wrapper for tsym() which sets return_index to TRUE.
tsym_degree() gives the degree of symmetry, which is simply the length of tsym_index()’s value.

Examples

tsym(sc(6, 34))
tsym(sc(6, 35))
tsym(edoo(5))

Works for continuous values:
tsym(tc(j(dia), edoo(3)))

Index and Degree:
tsym_index(c(@, 1, 3, 6, 7, 9))
tsym_degree(edoo(7))

vlsig Elementary voice leadings

Description

Calculate elementary voice leadings which represent motion by a single arrow on abrightnessgraph().
vlsig() finds "voice-leading signature” of a set moving to transpositions of itself, as determined by
vl_generators(). inter_vlsig() finds the elementary voice leadings from a set to some other

set, i.e. where the goal parameter of brightnessgraph() is not NULL. By default, inter_vlsig()
finds voice leadings for contextual inversions of a set.

Usage

vlsig(set, index = NULL, display_digits = 2, edo = 12, rounder = 10)

inter_vlsig(

set,

goal = NULL,

index = NULL,

type = c("ascending"”, "commontone”, "obverse"),
display_digits = 2,

edo = 12,

rounder = 10

92 visig
Arguments
set Numeric vector of pitch-classes in the set
index Integer: which voice-leading generator should be displayed? Defaults to NULL,
displaying all voice leadings.
display_digits Integer: how many digits to display when naming any non-integral interval sizes.
Defaults to 2.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
goal For inter_vlsig() only, vector of the transposition type to voice lead to. De-
faults to NULL, producing voice leadings to the inversion of set.
type For inter_vlsig() only. String: "ascending", "commontone", or "obverse".
Defaults to "ascending", which makes the result prefer ascending voice leadings
(as for vlsig()). The second makes the result prefer common tones (as might
be expected for contextual inversions). The third option, "obverse", gives the ob-
verse of a voice-leading in a sense that generalizes Morris (1998, doi:10.2307/
746047)’s concept for Neo-Riemannian PLR transformations. This option re-
turns voice leadings that lead fo set rather than away from it.
Details

Note that the voice leadings determined by vlsig() can be different from the corresponding ones
at the same T, level in vl_rolodex(). The latter function prioritizes minimal voice leadings,
whereas v1sig() prioritizes elementary voice leadings derived from a set’s brightnessgraph().
In particular, this means that visig() voice leadings will always be ascending, involve at least
one common tone, and involve no contrary motion. See the odd_pentachord voice leadings in the
Examples.

For vlsig() the value "rotation" in the result is non-arbitrary: if the rotation value is n, the voice
leading takes set to the nth mode of set. For inter_vlsig(), there is no canonical correspondence
between modes of set and goal, except to assume that the input modes are the 1st mode of each
scale. If goal is NULL, finding contextual inversions of set, the first mode of the inversion is taken
to be the one that holds the first and last pitches of set in common. These "rotation" values do not
have a transparent relationship to the values of inter_vlsig()’s index parameter.

For inter_vlsig() results are not as symmetric between set and goal as you might expect. Since
these voice-leading functions study ascending arrows on a brightness graph the possibilities for as-
cending from X to Y are in principle somewhat different from the possibilities for ascending from Y
to X. See the examples for the "Tristan genus." Note that this is still true when type="commontone”,
which might lead to counterintuitive results.

Value

List with three elements:

* "vI" which shows the distance (in edo steps) that each voice moves,
* "tn" which indicates the (chromatic) transposition achieved by the voice leading,
* "rotation" which indicates the scalar transposition caused by the voice leading.

If index=NULL, returns instead a matrix whose rows are all the elementary voice leadings.

https://doi.org/10.2307/746047
https://doi.org/10.2307/746047

vl _dist 93

See Also

vl_generators() and brightnessgraph()

Examples

Hook's elementary signature transformation
major_scale <- c(0, 2, 4, 5, 7, 9, 11)
vlsig(major_scale, index=1)

pure_major_triad <- j(1, 3, 5)
vlsig(pure_major_triad, index=1)
vlsig(pure_major_triad, index=2)

odd_pentachord <- c(@, 1, 4, 9, 11) # in 15-edo
vlsig(odd_pentachord, index=2, edo=15)
vl_rolodex(odd_pentachord, edo=15)$"8"

Contextual inversions for Tristan genus:
dom7 <- c(0, 4, 7, 10)

halfdim7 <- c(@, 3, 6, 10)
inter_vlsig(dom7, halfdim7)
inter_vlsig(halfdim7, dom7)

Elementary voice leadings between unrelated sets:
maj7 <- c(o, 4, 7, 11)

min7 <- c(o, 3, 7, 10)

inter_vlsig(min7, maj7)

brightnessgraph(min7, maj7)

Elementary inversional VL for just diatonic which is NOT a Q-relation:
inter_vlsig(j(dia), index=3)

Obverse voice leadings:

First we see the Parallel transformation which leads from minor to major:
minor <- c(0, 3, 7)

P <- inter_vlsig(minor, index=1)

print(P)

Compare to its obverse, Slide, leading *tox minor from major:

S <- inter_vlsig(minor, index=1, type="obverse")

print(S)
A voice-leading plus its obverse is a chromatic transposition:
P$vl + S$vl
vl_dist How far apart are two scales?
Description

Using the chosen method to measure distance, determines how far apart two scales are in voice-
leading space.

94

vl_generators

Usage
vl_dist(
set_1,
set_2,
method = c("taxicab”, "euclidean”, "chebyshev”, "hamming"),
rounder = 10
)
Arguments
set_1,set_2 Numeric vectors of pitch-classes in the sets. Must be of same length.
method What distance metric should be used? Defaults to "taxicab” but can be "euclidean”,
"chebyshev"”, or "hamming"”.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Numeric: distance between set_1 and set_2

Examples

c_major <- c(o, 4, 7)

a_minor_63 <- c(0, 4, 9)

f_minor_64 <- c(@, 5, 8)

vl_dist(c_major, a_minor_63)

vl_dist(c_major, f_minor_64)

vl_dist(c_major, a_minor_63, method="euclidean")
vl_dist(c_major, f_minor_64, method="euclidean”)

vl_generators Which transpositions give elementary voice leadings?

Description

Just as the transpositions of the diatonic scale can be generated by Hook’s (2008, doi:10.1515/
9781580467476008) elementary "signature transformation,” the transpositional voice leadings of
any set can generally be decomposed into a small number of basic motions. These motions corre-
spond to the arrows in a set’s brightnessgraph(). (The qualifier "generally" is needed because of
certain problematic edge cases, such as the perfectly even scales of edoo() whose minimal voice
leadings always involve entirely parallel motion, which cannot be derived from "mode shift" voice
leadings represented on a brightness graph.) vl_generators() identifies these basic voice-leading
motions.

Usage

vl_generators(set, edo = 12, rounder = 10)

https://doi.org/10.1515/9781580467476-008
https://doi.org/10.1515/9781580467476-008

vl _rolodex

95

Arguments
set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

2-by-m matrix whose m columns represent the m distinct voice-leading generators. The top row
indicates the generic size of each interval; the bottom row indicates the specific size. Results are
sorted so that the first row (generic intervals) is strictly increasing.

Examples

diatonic_scale <- c(@, 2, 4, 5, 7, 9, 11)
melodic_minor <- c(@, 2, 3, 5, 7, 9, 11)
vl_generators(diatonic_scale)
vl_generators(melodic_minor)
vl_generators(j(dia))

maj7 <- c(o, 4, 7, 11)
vl_generators(maj7)

vl_rolodex Minimal voice leadings to all transpositions of some Tn-type mod k

Description

Given a starting set (source) and some tn-type as a voice leading goal (goal_type), find the min-
imal voice leading to every transposition (in some mod k universe) of the goal. If a goal is not
specified, the goal is assumed to be the tn-type of the source set. This lets you see, for example,
the minimal voice leading from C7 to other dominant seventh chords mod 12. I couldn’t think of a
suitably serious and clear name for this information, so the metaphor behind "rolodex" is that these
voice leadings are the contact information that source has for all its acquaintances in goal_type.

Usage

vl_rolodex(
source,
goal _type = NULL,
reorder = TRUE,

method = c("taxicab”, "euclidean”, "chebyshev”, "hamming”),

edo = 12,
rounder = 10,
no_ties = FALSE

96 whichmodebest

Arguments
source Numeric vector, the pitch-class set at the start of your voice leading
goal_type Numeric vector, any pitch-class set representing the tn-type of your voice lead-
ing goal
reorder Should the results be listed from smallest to largest voice leading size? Defaults
to TRUE. If FALSE results are listed in transposition order (i.e. 11, T, ..., Tedo—1,
Tv).
method What distance metric should be used? Defaults to "taxicab” but can be "euclidean”,
"chebyshev”, or "hamming”.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
no_ties If multiple VLs are equally small, should only one be returned? Defaults to
FALSE, which is generally what an interactive user should want.
Value

A list of length edo, each entry of which represents a voice leading (or group of tied voice leadings).
List entries are named by their transposition level.

Examples
vl_rolodex(c(0, 4, 7))
vl_rolodex(c(@, 4, 7), reorder=FALSE)

#Multisets sort of work! Best resolutions from dom7 to triads with doubled root:
vl_rolodex(c(@, 4, 7, 10), c(0, o, 4, 7))

whichmodebest Smallest crossing-free voice leading between two pitch-class sets

Description

Given source and goal pitch-class sets, which mode of the goal is closest to the source (assuming
crossing-free voice leadings and the given method for determining distance).

Usage
whichmodebest (
source,
goal,
method = c("taxicab”, "euclidean”, "chebyshev”, "hamming"),
no_ties = FALSE,
edo = 12,

rounder = 10

whichsvzeroes 97

Arguments
source Numeric vector, the pitch-class set at the start of your voice leading
goal Numeric vector, the pitch-class set at the end of your voice leading
method ‘What distance metric should be used? Defaults to "taxicab” but can be "euclidean”,
"chebyshev”, or "hamming”.
no_ties If multiple VLs are equally small, should only one be returned? Defaults to
FALSE, which is generally what an interactive user should want.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Numeric value(s) identifying the modes of goal. Single value if no_ties is TRUE, otherwise n
values for an n-way tie.

Examples
c_53 <-c(0, 4, 7)
c_64 <- c(7, 0, 4
d_53 <- ¢(2, 6, 9)
e_53 <- c(4, 8, 11)

whichmodebest(c_53, c_64)
whichmodebest(c_64, c_53)
whichmodebest(c_53, e_53)
whichmodebest(c_53, d_53)
whichmodebest(c_53, d_53, method="euclidean")

See "Modal Color Theory,” p. 12, note 21
pyth_dia_modes <- sim(sort((j(5) * 0:6)%%12))
pyth_lydian <- pyth_dia_modes[,1]
pyth_locrian <- pyth_dia_modes[,4]
whichmodebest (pyth_locrian, pyth_lydian)

whichsvzeroes Which interval-comparison equalities does a scale satisfy?

Description

As "Modal Color Theory" (p. 26) describes, one useful measure of a scale’s regularity is the
number of zeroes in its sign vector. This indicates how many hyperplanes a scale lies on, a geomet-
rical fact whose musical interpretation is, roughly speaking, how many times two generic intervals
equal each other in specific size. (I say only "roughly speaking" because one hyperplane usually
represents multiple comparisons: see Appendix 1.1.) Scales with a great degree of symmetry or
other forms of regularity such as well-formedness tend to be on a very high number of hyperplanes
compared to all sets of a given cardinality.

98 whichsvzeroes

musicMCT offers two convenience functions that return pertinent information from signvector().
countsvzeroes returns this count of the number of sign-vector zeroes, while whichsvzeroes
gives a list of the specific hyperplanes the scale lines on (numbered according to their position on the
given inegmat). The specific information in whichsvzeroes can be useful because it determines
the "flat" of the hyperplane arrangement that the scale lies on, which is a more general kind of scalar
structure than color (as determined by the entire sign vector).

Usage

whichsvzeroes(set, inegmat = NULL, edo = 12, rounder = 10)

countsvzeroes(set, inegmat = NULL, edo = 12, rounder = 10)

Arguments
set Numeric vector of pitch-classes in the set
inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_ineqgmat(), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat (), or make_anaglyph_inegmat (). For other arrange-
ments, this parameter accepts explicit matrices.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.
Value

Single numeric value for countsvzeroes and a numeric vector for whichsvzeroes

Examples

Sort 12edo heptachords by how many sign vector zeroes they have (from high to low)
heptas12 <- unique(apply(utils::combn(12, 7), 2, primeform), MARGIN=2)
heptas12_svzeroes <- apply(heptasl12, 2, countsvzeroes)

colnames(heptas12) <- apply(heptas12, 2, fortenum)

heptas12[, order(heptas12_svzeroes, decreasing=TRUE)]

Multiple hexachords on the same flat but of different colors
hex1 <- c(o, 2, 4, 5, 7, 9)

hex2 <- convert(c(o, 1, 2, 4, 5, 6), 9, 12)

hex3 <- convert(c(o, 3, 6, 8, 11, 14), 15, 12)

hex_words <- rbind(asword(hex1), asword(hex2), asword(hex3))
rownames (hex_words) <- c("hex1"”, "hex2", "hex3")
c(colornum(hex1), colornum(hex2), colornum(hex3))
whichsvzeroes(hex1)

whichsvzeroes(hex2)

whichsvzeroes(hex3)

writeSCL 99

hex_words

writeSCL Create a Scala tuning file from a given scale

Description

You mean you don’t want to play around in R forever? This function lets you export any scale
you’ve defined in R as a .scl tuning file for use in Scala or by any synth that can read .scl files. Will
write to your working directory.

In addition to saving the necessary tuning data, the function will attempt to add as comments extra
information that can be derived from MCT functions, like the color number, degrees of freedom,
number of sign-vector zeroes, etc.

Usage

writeSCL(x, path, filename, period = 2, inegmat = NULL, edo = 12, rounder = 10)

Arguments

X Numeric vector: the scale to export

path String specifying path where Scala file should be saved. No default and cannot
be missing.

filename String (in quotation marks): what to name your Scala file. Defaults to using the
name of x as the file name if you enter nothing.

period The frequency ratio at which your scale repeats; defaults to 2 which indicates an
octave-repeating scale.

inegmat Specifies which hyperplane arrangement to consider. By default (or by explic-
itly entering "mct") it supplies the standard "Modal Color Theory" arrangements
of getinegmat(), but can be set to strings "white," "black", "gray", "roth",
"infrared", "pastel”, "rosy", "infrared", or "anaglyph", giving the inegmats of
make_white_inegmat (), make_black_inegmat (), make_gray_inegmat (), make_roth_inegmat(),
make_infrared_inegmat (), make_pastel_inegmat (), make_rosy_inegmat(),
make_infrared_inegmat (), or make_anaglyph_ineqgmat (). For other arrange-
ments, this parameter accepts explicit matrices.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Invisible NULL

100 z

Examples

neat_pentachord <- convert(c(o, 1, 4, 9, 11), 15, 12)

writeSCL(neat_pentachord, path=tempdir(), "neat_pentachord.scl")

z Frequency ratios to logarithmic pitch intervals (e.g. semitones)

Description

Simple convenience function for converting frequency ratios to semitones. Useful to have in ad-
dition to j() because j() is only defined for specific common values. Defaults to 12-tone equal
temperament but edo parameter allows other units.

Usage
z(..., edo = 12)
Arguments
One or more numerics values which represent frequency ratios.
edo Number of unit steps in an octave. Defaults to 12.
Details

The name z() doesn’t make a lot of sense but has the virtue of being a letter that isn’t otherwise
very common. r (for ratio) and q (for the rationals) were both avoided because they’re already used
for other functions.

Value

Numeric vector representing the input ratios converted to edo unit steps per octave

See Also

j () is a more convenient input method for the most common frequency ratios.
Examples
2(81/80) == j(synt)

mod_jdia <- z(1, 10/9, 5/4, 4/3, 3/2, 5/3, 15/8)
minimize_v1(j(dia), mod_jdia)

z(1, 5/4, 3/2, edo=53)

zmate 101

zmate Twin set in the Z-relation (Z mate)

Description

For the standard 12edo sets of Fortean pitch-class set theory, given one pitch-class set, finds a set
class whose interval-class vector is the same as the input set but which does not include the input
set. Not all set classes participate in the Z-relation, in which case the function returns NA.

Usage

zmate(set)

Arguments

set Numeric vector of pitch-classes in the set

Details

These values are hard-coded from Forte’s list for non-hexachords and only work for subsets of the
standard chromatic scale. zmate() doesn’t even give you an option to work in a different edo. If it
were to do so, I can’t see a better solution than calculating all the set classes of a given cardinality
on the spot, which can be slow for higher edos.

Value

NA or numeric vector of same length as set

Examples

zmate(c(@, 4, 7))
zmate(c(@, 1, 4, 6))

Index

+ datasets
fortenums, 24
inegmats, 30
roth_inegmats, 65

anazero_fingerprint, 4
asword, 5
asword(), 63

base: :unique(), 25

best_simplification (simplify_scale), 76
brightness_comparisons, 7
brightnessgraph, 6
brightnessgraph(), 8, 32, 42, 66, 91-94

c(), 39

carlos_step, 9

charm (tn), 86

clampitt_qg, 10

clockface, 11

colornum, 12

comparesignvecs, 13

convert, 14

coord_from_edo (coord_to_edo), 15
coord_to_edo, 15

countsvzeroes (whichsvzeroes), 97
countsvzeroes(), 32, 84

cov(), 18

cover (emb), 18

d2s (set_to_distribution), 72

delta (eps), 19

delta(), 32

dft, 16

distribution_to_set
(set_to_distribution), 72

edoo, 17
edoo(), 44, 66, 94
emb, 18
eps, 19

102

eps(), 32
evenness, 20
evenness(), 32

flex_points, 22
fortenum, 23
fortenum(), 24
fortenums, 24
fpmod, 24
fpunique, 25

get_relevant_rows, 26

get_roth_inegmat (make_roth_inegmat), 46

get_roth_inegmat(), 65

getinegmat (makeinegmat), 41

getinegmat(), 12, 27, 30, 45, 54, 56, 59, 60,
71,74,76,79, 84, 98, 99

has_contradiction (isproper), 34
howfree, 27
howfree(), 32,42

ianring, 28

ifunc, 29

inegmats, 30
ineqgsym, 31
ineqgsym(), 56, 68
inter_vlsig(vlsig), 91
intervalspectrum, 32
intervalspectrum(), 36, 79
isgwf, 33
isgwf (), 10, 11, 32
isproper, 34
isproper(), 46
iswellformed, 35
iswellformed(), 31, 32
isym, 37

isym_degree (isym), 37
isym_index (isym), 37
ivec, 38

INDEX

3,39
30,100

make_anaglyph_inegmat, 42
make_anaglyph_inegmat(), 4, 12, 27, 45, 54,
56, 59, 60,71,74,76,79, 84, 98, 99
make_black_inegmat, 43
make_black_inegmat (), 12, 27, 45, 46, 54,
56,59, 60,71,74,76,79, 84, 98, 99
make_gray_inegmat (make_black_inegmat),
43
make_gray_inegmat (), 12, 27, 45, 54, 56, 59,
60,71,74,76,79, 84, 98, 99
make_infrared_inegmat, 44
make_infrared_inegmat(), 12, 27, 45, 54,
56,59, 60,71,74,76,79, 84, 98, 99
make_offset_inegmat, 45
make_pastel_inegmat
(make_white_inegmat), 47
make_pastel_inegmat(), 12, 27, 44, 45, 54,
56,59, 60,71,74,76,79, 84, 98, 99
make_rosy_inegmat (make_roth_ineqgmat),
46
make_rosy_inegmat (), 12, 27, 45, 54, 56, 59,
60,71,74,76,79, 84, 98, 99
make_roth_inegmat, 46
make_roth_inegmat (), 12, 27, 35, 44—46, 54,
56, 59, 60, 65,71,74,76,79, 84, 98,
99
make_white_inegmat, 47
make_white_inegmat(), 12, 27, 43, 45, 46,
54, 56, 59, 60, 71,74,76,79, 84, 98,
99
makeinegmat, 41
makeinegmat (), 30, 42, 46, 47
match_flat (project_onto), 58
maxeven, 48
meantone_fifth, 49
minimize_vl, 50
minimize_v1(), 11

names(), 30
normal_form, 51
normal_form(), 11

optc_test, 52

populate_flat, 54
primary_color (primary_hue), 55

primary_colornum (primary_hue), 55
primary_hue, 55

primary_signvector (primary_hue), 55
primeform, 57

primeform(), 24, 52, 56
project_onto, 58

project_onto(), 55

quantize_color, 60
quantize_color(), 56, 57,61, 70
quantize_hue, 61

ratio (eps), 19
ratio(), 32, 66
readScCL, 63
realize_stepword, 63
rotate, 64
roth_inegmats, 65

s2d (set_to_distribution), 72
same_hue, 66

same_hue(), 61

saturate, 67

sc, 68

sc(), 24

sc_comp, 69

scale_palette, 68
scale_palette(), 56
set_from_signvector, 70
set_to_distribution, 72
signed_interval_class, 73
signvector, 74
signvector(), 42, 57, 98

sim, 75

simplify_scale, 76
spectrumcount (intervalspectrum), 32
spectrumcount(), 32
startzero (tn), 86
startzero(), 52
step_signvector, 78
step_signvector(), 26
strictly_proper (isproper), 34
subset_multiplicities, 81
subset_varieties, 82
subset_varieties(), 79, 81
subsetspectrum, 79
surround_set, 83
surround_set(), 54
svzero_fingerprint, 84

103

104 INDEX

svzero_fingerprint(), 4, 32

tc, 85

tn, 86

tn(), 10

tndists, 88
tndists(), 22

tni (tn), 86

tni(), 10
tnprime, 89
tnprime(), 52, 86
tsym, 90

tsym_degree (tsym), 90
tsym_index (tsym), 90

vl_dist, 93
vl_dist(), 10
vl_generators, 94
vl_generators(), 91, 93
vl_rolodex, 95
vl_rolodex(), 22, 88, 92
vlsig, 91

whichmodebest, 96
whichsvzeroes, 97
writeSCL, 99

z, 100
z(), 40
zmate, 101

	anazero_fingerprint
	asword
	brightnessgraph
	brightness_comparisons
	carlos_step
	clampitt_q
	clockface
	colornum
	comparesignvecs
	convert
	coord_to_edo
	dft
	edoo
	emb
	eps
	evenness
	flex_points
	fortenum
	fortenums
	fpmod
	fpunique
	get_relevant_rows
	howfree
	ianring
	ifunc
	ineqmats
	ineqsym
	intervalspectrum
	isgwf
	isproper
	iswellformed
	isym
	ivec
	j
	makeineqmat
	make_anaglyph_ineqmat
	make_black_ineqmat
	make_infrared_ineqmat
	make_offset_ineqmat
	make_roth_ineqmat
	make_white_ineqmat
	maxeven
	meantone_fifth
	minimize_vl
	normal_form
	optc_test
	populate_flat
	primary_hue
	primeform
	project_onto
	quantize_color
	quantize_hue
	readSCL
	realize_stepword
	rotate
	roth_ineqmats
	same_hue
	saturate
	sc
	scale_palette
	sc_comp
	set_from_signvector
	set_to_distribution
	signed_interval_class
	signvector
	sim
	simplify_scale
	step_signvector
	subsetspectrum
	subset_multiplicities
	subset_varieties
	surround_set
	svzero_fingerprint
	tc
	tn
	tndists
	tnprime
	tsym
	vlsig
	vl_dist
	vl_generators
	vl_rolodex
	whichmodebest
	whichsvzeroes
	writeSCL
	z
	zmate
	Index

