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2 alg.ABC

Index 20

alg.A1 PB test for main effect of one-way ANOVA

Description

Using Parametric Bootstrap to simulate a distribution for the main effect of one-way ANOVA

Usage

alg.A1(ns, ybars, s2, a,L)

Arguments

ns sample size for each group

ybars sample mean for each group

s2 sample variance for each group

a level of the factor

L Number of simulated values for the distribution

Value

the simulated p-value

Examples

#see Q.Amc_oneway

alg.ABC test three factor interaction

Description

Using Parametric Bootstrap to simulate a distribution and find a p-value for the test

Usage

alg.ABC(ns, ybars, s2, a, b, c, L)
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Arguments

ns sample size for each group

ybars sample mean for each group

s2 sample variance for each group

a Number of levels for factor A

b Number of levels for factor B

c Number of levels for factor C

L Number of simulated values for the distribution

Value

Q: p_value for the three factor interaction test

Examples

#See Q.ABmc

alg.BC test two factor interaction

Description

Using Parametric Bootstrap to simulate a distribution and find a p-value for the test.

Usage

alg.BC(ns, ybars, s2, a, b, c, L)

Arguments

ns sample size for each group

ybars sample mean for each group

s2 sample variance for each group

a Number of levels for factor A

b Number of levels for factor B

c Number of levels for factor C

L Number of simulated values for the distribution

Value

Q: p_value for the two factor interaction test
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Examples

#See Q.ABmc
# note that the ns, ybars and s2 vectors need to be in the order reflecting subscripts

# 111, 112, 113...., 121, 122, 123, ... , ... abc. The summarySE function from the package

# Rmisc is handy for doing this. The order the user specifies the "groupvars" argument will

# put the factors in order A, B, C. This order will matter when testing different two-way

# interaction terms and different main effects. See comments in the potato example.

alg.C for three-way ANOVA that has no significant interaction terms to test
main effects

Description

Using Parametric Bootstrap to simulate a distribution and find a p-value for the test

Usage

alg.C(ns, ybars, s2, a, b, c, L)

Arguments

ns sample size for each group

ybars sample mean for each group

s2 sample variance for each group

a Number of levels for factor A

b Number of levels for factor B

c Number of levels for factor C

L Number of simulated values for the distribution

Value

a simulated p-value for testing a main effect

Examples

#See Q.Amc
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alg.C.AB tests factor C when only AB interaction is present.

Description

Using Parametric Bootstrap to simulate a distribution and find a p-value for the test

Usage

alg.C.AB(ns, ybars, s2, a, b, c, L)

Arguments

ns sample size for each group

ybars sample mean for each group

s2 sample variance for each group

a Number of levels for factor A

b Number of levels for factor B

c Number of levels for factor C

L Number of simulated values for the distribution

Value

Q: p_value for the test for factor C main effect when only AB interaction is present.

Examples

#See Q.ABmc

barleyh20 barleyh20 data

Description

Water uptake in barley for 2 genotypes, 2 sites, 2 years for various periods of steeping time. 2 reps
per treatment combination.

Usage

data(barleyh20)



6 dunnett.PB

Format

This data frame contains the following columns:

genotype: 1 = Troubadour, 2 = mutant from Troubadour

site: 1 = Bell-lloc, Spain, 2 = Dundee, Scotland

year: 91 = 1991, 92 = 1992

replicate: Replicate

time: Steeping Time (Hours)

wt Weight of sample (grams)

References

J.L. Molina-Cano, T. Ramo, et al. (1995). "Effect of Grain Composition Water Uptake by Malting
Barley: A Genetic and Environmental Study," Journal of the Institute of Brewing, Vol. 101, #2, pp.
79-83.

dunnett.PB PB multiple comparisons of the levels of factor A aginst the control
group

Description

Using Parametric Bootstrap to simulate a distribution for the multiple comparisons of treatment
groups against a control

Usage

dunnett.PB(L, ns, means, s2, alpha)

Arguments

L Number of simulated values for the distribution

ns sample size for each group

means sample mean for each group

s2 sample variance for each group

alpha significant level

Value

D.crit: The (1 - alpha) percentile of the simulated distribution

result: The differences, confidence intervals for the difference, and p-values for comparisons of
each factor level vs. the control.
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Examples

#This one gets a different result between the PB method and the traditional Dunnett's test.
#Constant variance assumption appears violated on residual plots.
#The breusch pagan test shows close to violating (p=0.0596) while levene's test (using #median)
#does not show a violation. Data is mildly unbalanced.

#Traditional Dunnett's test says group 4-6 are different from "control", while the PB method
# only identifies group 5 and 6.
#Group 4 has a larger variance than the others. The pooled variance/MSE could be too small for
#this group and lead to arificially large test statistic.
#MSE is 0.0004274 and the sample variance of group 4 is 0.00169.

#The authors of the paper do not claim significance, they report the means and state
#that there is a delineation between 30 and 40 feet. This seems true when looking at the
#means, but the measurements at 40 feet do have a larger variance than those at other depths.

#Practical interpretation:
#If your goal was to get the most iron rich water from as shallow depth as possible,
#knowing that the surface (control?) was not rich enough, and you decided to go 40 feet
# deep, you may still get water that didn't have enough iron content for your purpose.
#Suppose you wanted at least 0.1 content; based on the means you might use 40 feet, but
# from their data, the measurements were:
#0.098, 0.074, 0.154
#So 2/3 of these samples wouldn't contain enough iron for your purpose.

library(DescTools) ##Dunnett's test
library(lmtest) #BP test for constant variance
library(dplyr) #data manipulation
library(MASS)

fedata$depth <- factor(fedata$depth)

femod <- lm(Y~depth, data=fedata)
plot(femod$fit, rstandard(femod),

main="Fitted-Residual Plot, One-Way ANOVA Model", sub="Iron Data")
#appears to violate equal variance assumption

bptest(femod) #close to violation

#what about normality?
qqnorm(rstandard(femod), main="Normal QQ-Plot, Standardized Residuals",
sub="One-Way ANOVA Model, Iron Data")
shapiro.test(rstandard(femod)) #does not violate

fe.sums <-fedata %>% group_by(depth) %>% summarise(means=mean(Y),
vars = var(Y), sd=sd(Y), ns=length(depth))
fe.sums
#summarySE(fedata, "Y", "depth") from Rmisc pkg does same thing as fe.sums above

pbd.fe <- dunnett.PB(L=5000, ns=fe.sums$ns, means=fe.sums$means,
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s2=fe.sums$vars, alpha=0.05)

pbd.fe$result
pbd.fe$D.crit

##grp 5 and 6 sig diff from group 1
DunnettTest(Y~depth, data=fedata)

##Dunnett's test also says group 4 is different.
##group 4 has a larger variance than the others.
##pooled variance/MSE could be too small for this group
##and lead to arificially large test statistic.

anova(femod)
#MSE is 0.0004274
#sample variance of group 4 is 0.00169

#Use traditional Dunnett's test on transformed data for comparisons

#attempt log transformation
fedata$logY <-log(fedata$Y)
felogmod <- lm(logY~depth, data=fedata)
bptest(felogmod) #still violates
#LeveneTest(logY~depth, data=fedata)
plot(felogmod$fit, rstandard(felogmod))
shapiro.test(rstandard(felogmod)) #still for normality

#square root transformation?
fedata$srY <- sqrt(fedata$Y)
fesrmod <- lm(srY~depth, data=fedata)
bptest(fesrmod) #still violates, worse
plot(fesrmod$fit, rstandard(fesrmod))

boxcox(femod)
#lambda=-0.2

fedata$bcY <- with(fedata, (Y^(-0.2) - 1)/-0.2)
febcmod <- lm(bcY~depth, data=fedata)
#gives same F-statistic as lm(Y^(-0.2) ~ depth, data=fedata),

bptest(febcmod) #still violates
plot(febcmod$fit, rstandard(febcmod))

##mg/L is a proportion, try arcsin
fedata$asY <- asin(sqrt(fedata$Y))
feasmod <-lm(asY~depth, data=fedata)
bptest(feasmod) #still close to violating

plot(felogmod$fit, rstandard(felogmod), main="Log Transform.",
xlab="Fitted Values", ylab="Standardized Residuals")

plot(febcmod$fit, rstandard(febcmod), main="Box-Cox Transform.",
xlab="Fitted Values", ylab="Standardized Residuals")
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plot(feasmod$fit, rstandard(feasmod), main="Arcsin(Sq. Root) Transform.",
xlab="Fitted Values", ylab="Standardized Residuals")

#P-values of BP test are similar for log and box-cox, plots look a little better
##log transform may be considered simpler, so try that

anova(felogmod)
DunnettTest(logY~depth, data=fedata) #still identifies 40 feet and above

DunnettTest(bcY~depth, data=fedata) #still identifies 40 feet and above
shapiro.test(rstandard(febcmod)) # normality still ok
#W = 0.95535, p-value = 0.4556

fedata fedata data

Description

Iron content of water at various water depths.

Usage

data(fedata)

Format

This data frame contains the following columns:

depth: depth of the water

Y: Iron content of water

References

paper: https://www.jstor.org/stable/1351176
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potato potato data

Description

This dataset potato is from an experiment on how plants adapt to cold climates. The investigators
decided to study this problem after observing that plants that have been conditioned to cold previ-
ously appear to suffer less damage from the cold. Two species of potato were studied (species 1
and 2). Each plant was exposed to one of two acclimatization regimes (1= plant was kept in cold
room; 0= plant was kept at room temperature) for several days. Later, plants were subjected to one
of two cold temperatures (-4 degrees C is coded as 1; -8 degrees C is coded as 2). Two responses
were measured: damage score for photosynthesis (photo), and damage score for ion leakage (leak).

Usage

data(potato)

Format

This data frame contains the following columns:

variety: Two species of potato were studied (species 1 and 2)

regime: Each plant was exposed to one of two acclimatization regimes (1= plant was kept in cold
room; 0= plant was kept at room temperature) for several days.

temp: plants were subjected to one of two cold temperatures (-4 degrees C is coded as 1; -8 degrees
C is coded as 2)

photo: damage score for photosynthesis

leak: damage score for ion leakage

Details

Use ion leakage to be the response variable. Some of the 80 plants originally assigned to the
treatment combinations were lost during the experiment. Analyze the data from the plants that made
it through, and assess the effects of the three experimental factors species, regime, and temperature
on the response leakage.

References

Alver and Zhang (2022), Parametric Bootstrap Procedures for Three-Factor ANOVA and Multiple
Comparison Procedures with Unequal Group Variances

Alver and Zhang (2022), Multiple Comparisons of Treatment vs Control Under Unequal Variances
Using Parametric Bootstrap

https://math.unm.edu/~gzhang12/paper/multiANOVA_PBcondensed_Feb2022.pdf
https://math.unm.edu/~gzhang12/paper/multiANOVA_PBcondensed_Feb2022.pdf
https://math.unm.edu/~gzhang12/paper/PB_Dunnett.pdf
https://math.unm.edu/~gzhang12/paper/PB_Dunnett.pdf
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Q.ABmc multiple comparisons of the levels of AB interactions

Description

Using Parametric Bootstrap to simulate a distribution and find a p-value for the test

Usage

Q.ABmc(L=5000, ns, means, s2, alpha=0.05, a, b, c)

Arguments

L Number of simulated values for the distribution

ns sample size for each group

means sample mean for each group

s2 sample variance for each group

alpha significant level

a Number of levels for factor A

b Number of levels for factor B

c Number of levels for factor C

Value

Q.crit: The (1- alpha) percentile of the simulated distribution.

res.df: A dataframe containing the differences between each pair of factor levels, standard errors,
confidence interval for the differences, test statistic for each pair, p-value, and indicator of whether
the difference was statistically significant for each pair.

ybarij: estimated group mean for level i, j

var.YAB: estimated variance for each group mean

Q.test: largest test statistic from all pairs

Examples

#'# We need elapsed time less than 5 seconds to publish
# the package with this example. Hence, there are # before
#a couple of PB algrithms. Remove # before you run the code.

#Note that when running the example, the user should get similar p-values to the ones commented
# in the example, but they will not be identical.
attach(potato)
regime<-factor(regime)
variety<-factor(variety)
temp<-factor(temp)
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#there are two levels for each factor, so a=b=c=2
library(Rmisc)
summarySE(potato, measurevar="leak", groupvars=c("variety","regime","temp"))

#need to extract group sizes (ns), group var's (s2), means (ybars) for function
pot.ns <- summarySE(potato, measurevar="leak", groupvars=c("variety","regime","temp"))$N
pot.means <- summarySE(potato, measurevar="leak", groupvars=c("variety","regime","temp"))$leak
pot.s2 <- summarySE(potato, measurevar="leak", groupvars=c("variety","regime","temp"))$sd^2
#alg.ABC(ns=pot.ns, ybars=pot.means,s2=pot.s2, a=2, b=2, c=2, L=5000)
#0.1626, pvalue, so we do not reject, so we should drop the three way term.

#alg.BC(ns=pot.ns, ybars=pot.means,s2=pot.s2, a=2, b=2, c=2, L=5000)
#0.202, not significant, so the regime:temp interaction is not significant
#to check the other two-way interactions we need to reorder the data so that
#the 'BC' term is either regime:variety or temp:variety

pot.ns.TRV <- summarySE(potato, measurevar="leak", groupvars=c("temp","regime","variety"))$N
pot.means.TRV <- summarySE(potato, measurevar="leak", groupvars=c("temp","regime","variety"))$leak
pot.s2.TRV <- summarySE(potato, measurevar="leak", groupvars=c("temp", "regime", "variety"))$sd^2
#alg.BC(ns=pot.ns.TRV, ybars=pot.means.TRV,s2=pot.s2.TRV, a=2, b=2, c=2, L=5000)
#p=0, reject H_0. the regime:variety interaction is significant

pot.ns.RTV <- summarySE(potato, measurevar="leak", groupvars=c("regime", "temp","variety"))$N
pot.means.RTV <- summarySE(potato, measurevar="leak", groupvars=c("regime","temp","variety"))$leak
pot.s2.RTV <- summarySE(potato, measurevar="leak", groupvars=c("regime", "temp", "variety"))$sd^2
#alg.BC(ns=pot.ns.RTV, ybars=pot.means.RTV,s2=pot.s2.RTV, a=2, b=2, c=2, L=5000)
#p=0.0.3652, do not reject, the temp:variety interaction is not significant

##next we can see if we are able to drop the main effect 'temp',
##not involved with the regime:variety int.
##temp is factor 'A' in the TRV model above.

##algorithm 4 tests factor C when only AB interaction is present.
## so we need the order that makes 'temp' factor C
#the way we originally ordered it, to test the ABC interaction

#alg.C.AB(ns=pot.ns, ybars=pot.means,s2=pot.s2, a=2, b=2, c=2, L=5000)
#p-value is 0.002, so we cannot drop the temp term. the final model is

#y = variety + regime + temp + variety:regime

Q.ABmc(ns=pot.ns, means=pot.means,s2=pot.s2, a=2, b=2, c=2, L=5000)
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# 95%
#2.832115

#$res.df
# groups differences std.errs ci.lo ci.hi test.stat p sig
# 1 1 - 1 2 -1.803638 1.821063 -6.961098 3.353822 0.9904314 0.7676 -
# 1 1 - 2 1 -22.501936 2.895282 -30.701708 -14.302164 7.7719316 0.0000 *
# 1 1 - 2 2 -1.248118 1.615681 -5.823913 3.327677 0.7725027 0.8696 -
# 1 2 - 2 1 -20.698298 2.781589 -28.576079 -12.820517 7.4411765 0.0000 *
# 1 2 - 2 2 0.555520 1.401787 -3.414501 4.525541 0.3962943 0.9766 -
# 2 1 - 2 2 21.253818 2.651678 13.743962 28.763674 8.0152341 0.0000 *

#$ybarij
# [,1] [,2]
#[1,] 4.91472 6.718358
#[2,] 27.41666 6.162838

#$var.YAB
# [,1] [,2]
#[1,] 1.980845 1.3354254
#[2,] 6.401815 0.6295805

#$Q.test
#[1] 8.015234

Q.Amc PB multiple comparisons of the levels of factor A (output like
TukeyHSD)

Description

Using Parametric Bootstrap to simulate a distribution for the multiple comparisons and calculate a
test stat

Usage

Q.Amc(L=5000, ns, means, s2, alpha=0.05, a, b, c)

Arguments

L Number of simulated values for the distribution

ns sample size for each group

means sample mean for each group

s2 sample variance for each group

alpha significant level

a Number of levels for factor A
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b Number of levels for factor B

c Number of levels for factor C

Value

Q.crit: The (1-alpha) percentile of the simulated distribution.

Q.test: largest test statistic from all pairs

res.df: A dataframe containing the differences between each pair of factor levels, standard errors,
confidence interval for the differences, test statistic for each pair, p-value, and indicator of whether
the difference was statistically significant for each pair.

Examples

# We need elapsed time less than 5 seconds to publish
# the package with this example. Hence, there are # before
#a couple of PB algrithms. Remove # before you run the code.

#function to make everything but the response a factor

make.factor <- function(dataset, fact.cols){
for( i in fact.cols){
dataset[,i] <- factor(dataset[,i])

}
return(dataset)
}

barley_ex <- make.factor(barleyh20, 1:5)
##this dataset has 4 factors, ignore year

library(Rmisc)

library(MASS)

#library(lmtest)

summarySE(barley_ex, "wt", c("genotype", "site", "time"))
#ignore year, note that the data are balanced

summary(barley_ex$wt)
mod1 <- lm(wt~genotype*site*time, data=barley_ex)
anova(mod1)
plot(mod1$fit, mod1$resid)
qqnorm(mod1$resid)
shapiro.test(mod1$resid)

boxcox(mod1, lambda=seq(-4, -2, by=0.1)) #lambda approx -3.5
mod2 <- lm(wt^(-3.5)~genotype*site*time, data=barley_ex)
plot(mod2$fit, mod2$resid) #worse?

#go with untransformed data? drop 3way term
mod3 <- lm(wt~genotype + site + time + genotype:site + genotype:time + site:time, data=barley_ex)
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anova(mod3) #site:time ns

anova(lm(wt~genotype + site + time + genotype:site + genotype:time, data=barley_ex))
anova(lm(wt~genotype + site + time + genotype:site, data=barley_ex))

anova(lm(wt~genotype + site + time, data=barley_ex))
anova(lm(wt~site + time, data=barley_ex))
anova(lm(wt~time, data=barley_ex))
TukeyHSD(aov(wt ~ time, data=barley_ex)) #all sig except 35-30 and 20-15 (0.0569)

###use PB methods
summarySE(barley_ex, "wt", c("genotype", "site", "time"))
#note that the data are balanced

#need to extract group sizes (ns), group var's (s2), means (ybars) for function
barley.ns <- summarySE(barley_ex, "wt", c("genotype", "site", "time"))$N
barley.means <- summarySE(barley_ex, "wt", c("genotype", "site", "time"))$wt
barley.s2 <- summarySE(barley_ex, "wt", c("genotype", "site", "time"))$sd^2

#alg.ABC(ns=barley.ns, ybars=barley.means,s2=barley.s2, a=2, b=2, c=7, L=5000)
#p=0.9996, can drop 3way term

#can we drop the site:time int term?
#alg.BC(ns=barley.ns, ybars=barley.means,s2=barley.s2, a=2, b=2, c=7, L=5000)
#p=0.9998, drop

#reorder data to make the different two-way terms
barleyTSG.ns <- summarySE(barley_ex, "wt", c("time", "site", "genotype"))$N
barleyTSG.means <- summarySE(barley_ex, "wt", c("time", "site", "genotype"))$wt
barleyTSG.s2 <- summarySE(barley_ex, "wt", c("time", "site", "genotype"))$sd^2

#alg.BC(ns=barleyTSG.ns, ybars=barleyTSG.means, s2=barleyTSG.s2, a=7, b=2, c=2, L=5000)
#p=0.9988, drop site:genotype

#reorder to SGT, can we drop genotype:time?
barleySGT.ns <- summarySE(barley_ex, "wt", c("site", "genotype", "time"))$N
barleySGT.means <- summarySE(barley_ex, "wt", c("site", "genotype", "time"))$wt
barleySGT.s2 <- summarySE(barley_ex, "wt", c("site", "genotype", "time"))$sd^2

#alg.BC(ns=barleySGT.ns, ybars=barleySGT.means,s2=barleySGT.s2, a=2, b=2, c=7, L=5000)
#p=0.9976, drop
#alg.C(ns=barley.ns, ybars=barley.means,s2=barley.s2, a=2, b=2, c=7, L=5000) #GST
#p=0, time has signif efffect, same conclusion as F-test

#alg.C(ns=barleyTSG.ns, ybars=barleyTSG.means, s2=barleyTSG.s2, a=7, b=2, c=2, L=5000)
#p=0.9996 no signif effect of genotype

##site?
barleyGTS.ns <- summarySE(barley_ex, "wt", c("genotype", "time", "site"))$N
barleyGTS.means <- summarySE(barley_ex, "wt", c("genotype", "time", "site"))$wt
barleyGTS.s2 <- summarySE(barley_ex, "wt", c("genotype", "time", "site"))$sd^2
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#alg.C(ns=barleyGTS.ns, ybars=barleyGTS.means, s2=barleyGTS.s2, a=2, b=7, c=2, L=5000)
#p=0.9998, site is NS

#multiple comparisons
#this function tests all pairwise comparisons of the levels of factor A,
# so we use the TSG order
Q.Amc(L=5000, ns=barleyTSG.ns, means=barleyTSG.means, s2=barleyTSG.s2,
alpha=0.05, a=7, b=2, c=2)

#Demonstrate the method on unbalanced data by collapsing time into L, M, H
#barley_ex$time2 <- "M"
#barley_ex$time2 <- ifelse(as.numeric(barley_ex$time) <=2, "L", barley_ex$time2)
#barley_ex$time2 <- ifelse(as.numeric(barley_ex$time) >=6, "H", barley_ex$time2)
#barley_ex$time2 <- as.factor(barley_ex$time2)

#still pretty balanced, separate the lowest level
#barley_ex$time2 <- ifelse(as.numeric(barley_ex$time) <2, "LL", barley_ex$time2)
#barley_ex$time2 <- as.factor(barley_ex$time2)

#summarySE(barley_ex, "wt", c("genotype", "time2", "site"))
#two of the bigger groups N=12 have larger var
#anova(lm(wt ~genotype*time2*site, data=barley_ex))
#still looks like time2 the only sig factor

#library(lmtest)
#bptest(lm(wt ~genotype*time2*site, data=barley_ex)) #violates

#mod.un <- lm(wt ~genotype*time2*site, data=barley_ex)
#plot(mod.un$fit, mod.un$resid)
#qqnorm(mod.un$resid)

#boxcox(lm(wt ~genotype*time2*site, data=barley_ex), lambda=seq(-6, -4, by=0.1))
#lambda = -4.5

#the above transformations didn't work so just try the untransformed data
#the three way interaction term was not significant
#anova(lm(wt ~genotype+ time2 + site + genotype:time2 + genotype:site + time2:site, data=barley_ex))
#anova(lm(wt ~genotype+ time2 + site + genotype:time2 + genotype:site, data=barley_ex))
#anova(lm(wt ~genotype+ time2 + site + genotype:time2, data=barley_ex))
#anova(lm(wt ~genotype+ time2 + site, data=barley_ex))
#anova(lm(wt ~genotype+ time2, data=barley_ex))
#anova(lm(wt ~time2, data=barley_ex))

#TukeyHSD(aov(wt ~time2, data=barley_ex)) #all pairs significantly different

#PB methods
#barleyGST2.ns <- summarySE(barley_ex, "wt", c("genotype", "site", "time2"))$N
#barleyGST2.means <- summarySE(barley_ex, "wt", c("genotype", "site", "time2"))$wt
#barleyGST2.s2 <- summarySE(barley_ex, "wt", c("genotype", "site", "time2"))$sd^2
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#alg.ABC(ns=barleyGST2.ns, ybars=barleyGST2.means,s2=barleyGST2.s2, a=2, b=2, c=4, L=5000)
#p=0.9734, can drop 3way term

#alg.BC(ns=barleyGST2.ns, ybars=barleyGST2.means,s2=barleyGST2.s2, a=2, b=2, c=4, L=5000)
#p=0.94, can drop site:time2

#barleySGT2.ns <- summarySE(barley_ex, "wt", c("site","genotype", "time2"))$N
#barleySGT2.means <- summarySE(barley_ex, "wt", c("site", "genotype", "time2"))$wt
#barleySGT2.s2 <- summarySE(barley_ex, "wt", c("site","genotype", "time2"))$sd^2

#alg.BC(ns=barleySGT2.ns, ybars=barleySGT2.means,s2=barleySGT2.s2, a=2, b=2, c=4, L=5000)
#p=0.9952, can drop genotype:time2

#barleyTSG2.ns <- summarySE(barley_ex, "wt", c("time2", "site","genotype"))$N
#barleyTSG2.means <- summarySE(barley_ex, "wt", c("time2","site", "genotype"))$wt
#barleyTSG2.s2 <- summarySE(barley_ex, "wt", c("time2","site","genotype"))$sd^2

#alg.BC(ns=barleyTSG2.ns, ybars=barleyTSG2.means,s2=barleyTSG2.s2, a=4, b=2, c=2, L=5000)
#p=0.9556, can drop site:genotype

#alg.C(ns=barleyGST2.ns, ybars=barleyGST2.means,s2=barleyGST2.s2, a=2, b=2, c=4, L=5000)
#p=0, time still has significant effect

#alg.C(ns=barleyTSG2.ns, ybars=barleyTSG2.means,s2=barleyTSG2.s2, a=4, b=2, c=2, L=5000)
#p=0.9716, genotype is not significant

#barleyTGS2.ns <- summarySE(barley_ex, "wt", c("time2","genotype", "site"))$N
#barleyTGS2.means <- summarySE(barley_ex, "wt", c("time2","genotype", "site"))$wt
#barleyTGS2.s2 <- summarySE(barley_ex, "wt", c("time2","genotype", "site"))$sd^2

#alg.C(ns=barleyTGS2.ns, ybars=barleyTGS2.means,s2=barleyTGS2.s2, a=4, b=2, c=2, L=5000)
#p=0.9904, site is not significant

##mult comparisons of factor A so we put time first
#Q.Amc(L=5000, ns=barleyTSG2.ns, means=barleyTSG2.means, s2=barleyTSG2.s2,
# alpha=0.05, a=4, b=2, c=2)
#all sig, agrees with Tukey's test

#TukeyHSD(aov(wt ~time2, data=barley_ex))

Q.Amc_oneway PB multiple comparisons of factor A in one-way ANOVA
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Description

Using Parametric Bootstrap to simulate a distribution for multiple comparison in one-way ANOVA

Usage

Q.Amc_oneway(L,ns, means, s2, alpha)

Arguments

L Number of simulated values for the distribution

ns sample size for each group

means sample mean for each group

s2 sample variance for each group

alpha significant level

Value

the simulated p-value

D.crit: The (1 - alpha) percentile of the simulated distribution

res.df: The differences, confidence intervals for the difference, and p-values for comparisons of
each two factor levels.

Examples

library(pbANOVA)

data(fedata)

fedata$depth <- factor(fedata$depth)

library(Rmisc)
summarySE(fedata, "Y", "depth")

feNs <- summarySE(fedata, "Y", "depth")$N
feYs <- summarySE(fedata, "Y", "depth")$Y
fes2 <- (summarySE(fedata, "Y", "depth")$sd)^2

anova(lm(Y~depth, data=fedata)) #F-test significant
#we saw in the dunnett's example that the equal variance assumption is violated

library(MASS) #need MASS for ginv function for all the interaction and main effects algorithms
alg.A1(ns=feNs, ybars=feYs, s2=fes2, a=6, L=5000)
#p=0.0038

#multiple comparisons
Q.Amc_oneway(L = 5000, ns=feNs, means=feYs, s2=fes2, alpha = 0.05)

#compare to Tukey's test
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TukeyHSD(aov(Y~depth, data=fedata))

#results agree only for some levels.
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