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rootSolve-package Roots and steady-states

Description

Functions that:

(1) generate gradient and Jacobian matrices (full and banded),

(2) find roots of non-linear equations by the Newton-Raphson method,

(3) estimate steady-state conditions of a system of (differential) equations in full, banded or sparse
form, using the Newton-Raphson method or by a dynamic run,

(4) solve the steady-state conditions for uni-and multicomponent 1-D, 2-D and 3-D partial differen-
tial equations, that have been converted to ODEs by numerical differencing (using the method-of-
lines approach).

Details

rootSolve was created to solve the examples from chapter 7 (stability and steady-state) from the
book of Soetaert and Herman, 2009.

Please cite this work when using rootSolve.

Author(s)

Karline Soetaert

References

Soetaert, K and Herman, PMJ, 2009. A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer, 372pp, ISBN 978-1-4020-8623-6.

Soetaert K., 2009. rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of
ordinary differential equations. R-package version 1.6
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See Also

uniroot.all, to solve for all roots of one (nonlinear) equation

multiroot, to solve n roots of n (nonlinear) equations

steady, for a general interface to most of the steady-state solvers

steady.band, to find the steady-state of ODE models with a banded Jacobian

steady.1D, steady.2D, steady.3D, steady-state solvers for 1-D, 2-D and 3-D partial differential
equations.

stode, iterative steady-state solver for ODEs with full or banded Jacobian.

stodes, iterative steady-state solver for ODEs with arbitrary sparse Jacobian.

runsteady, steady-state solver by dynamically running to steady-state

jacobian.full, jacobian.band, estimates the Jacobian matrix assuming a full or banded struc-
ture.

gradient, hessian, estimates the gradient matrix or the Hessian.

plot.steady1D, ... for plotting steady-state solutions.

package vignette rootSolve

Examples

## Not run:

## run demos
demo("Jacobandroots")
demo("Steadystate")

## open the directory with documents
browseURL(paste(system.file(package="rootSolve"), "/doc", sep=""))

## main package vignette
vignette("rootSolve")

## End(Not run)

gradient Estimates the gradient matrix for a simple function

Description

Given a vector of variables (x), and a function (f) that estimates one function value or a set of
function values (f(x)), estimates the gradient matrix, containing, on rows i and columns j

d(f(x)i)/d(xj)

The gradient matrix is not necessarily square.
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Usage

gradient(f, x, centered = FALSE, pert = 1e-8, ...)

Arguments

f function returning one function value, or a vector of function values.

x either one value or a vector containing the x-value(s) at which the gradient ma-
trix should be estimated.

centered if TRUE, uses a centered difference approximation, else a forward difference ap-
proximation.

pert numerical perturbation factor; increase depending on precision of model solu-
tion.

... other arguments passed to function f.

Details

the function f that estimates the function values will be called as f(x, ...). If x is a vector, then the
first argument passed to f should also be a vector.

The gradient is estimated numerically, by perturbing the x-values.

Value

The gradient matrix where the number of rows equals the length of f and the number of columns
equals the length of x.

the elements on i-th row and j-th column contain: d((f(x))i)/d(xj)

Note

gradient can be used to calculate so-called sensitivity functions, that estimate the effect of
parameters on output variables.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

Soetaert, K. and P.M.J. Herman (2008). A practical guide to ecological modelling - using R as a
simulation platform. Springer.

See Also

jacobian.full, for generating a full and square gradient (jacobian) matrix and where the function
call is more complex

hessian, for generating the Hessian matrix
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Examples

## =======================================================================
## 1. Sensitivity analysis of the logistic differential equation
## dN/dt = r*(1-N/K)*N , N(t0)=N0.
## =======================================================================

# analytical solution of the logistic equation:
logistic <- function (x, times) {

with (as.list(x),
{
N <- K / (1+(K-N0)/N0*exp(-r*times))
return(c(N = N))
})

}

# parameters for the US population from 1900
x <- c(N0 = 76.1, r = 0.02, K = 500)

# Sensitivity function: SF: dfi/dxj at
# output intervals from 1900 to 1950
SF <- gradient(f = logistic, x, times = 0:50)

# sensitivity, scaled for the value of the parameter:
# [dfi/(dxj/xj)]= SF*x (columnise multiplication)
sSF <- (t(t(SF)*x))
matplot(sSF, xlab = "time", ylab = "relative sensitivity ",

main = "logistic equation", pch = 1:3)
legend("topleft", names(x), pch = 1:3, col = 1:3)

# mean scaled sensitivity
colMeans(sSF)

## =======================================================================
## 2. Stability of the budworm model, as a function of its
## rate of increase.
##
## Example from the book of Soetaert and Herman(2009)
## A practical guide to ecological modelling,
## using R as a simulation platform. Springer
## code and theory are explained in this book
## =======================================================================

r <- 0.05
K <- 10
bet <- 0.1
alf <- 1

# density-dependent growth and sigmoid-type mortality rate
rate <- function(x, r = 0.05) r*x*(1-x/K) - bet*x^2/(x^2+alf^2)

# Stability of a root ~ sign of eigenvalue of Jacobian
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stability <- function (r) {
Eq <- uniroot.all(rate, c(0, 10), r = r)
eig <- vector()
for (i in 1:length(Eq))

eig[i] <- sign (gradient(rate, Eq[i], r = r))
return(list(Eq = Eq, Eigen = eig))

}

# bifurcation diagram
rseq <- seq(0.01, 0.07, by = 0.0001)

plot(0, xlim = range(rseq), ylim = c(0, 10), type = "n",
xlab = "r", ylab = "B*", main = "Budworm model, bifurcation",
sub = "Example from Soetaert and Herman, 2009")

for (r in rseq) {
st <- stability(r)
points(rep(r, length(st$Eq)), st$Eq, pch = 22,

col = c("darkblue", "black", "lightblue")[st$Eigen+2],
bg = c("darkblue", "black", "lightblue")[st$Eigen+2])

}

legend("topleft", pch = 22, pt.cex = 2, c("stable", "unstable"),
col = c("darkblue","lightblue"),
pt.bg = c("darkblue", "lightblue"))

hessian Estimates the hessian matrix

Description

Given a vector of variables (x), and a function (f) that estimates one function value, estimates the
hessian matrix by numerical differencing. The hessian matrix is a square matrix of second-order
partial derivatives of the function f with respect to x. It contains, on rows i and columns j

d2(f(x))/d(xi)/d(xj)

Usage

hessian(f, x, centered = FALSE, pert = 1e-8, ...)

Arguments

f function returning one function value, or a vector of function values.
x either one value or a vector containing the x-value(s) at which the hessian matrix

should be estimated.
centered if TRUE, uses a centered difference approximation, else a forward difference

approximation.
pert numerical perturbation factor; increase depending on precision of model solu-

tion.
... other arguments passed to function f.
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Details

Function hessian(f,x) returns a forward or centered difference approximation of the gradient,
which itself is also estimated by differencing. Because of that, it is not very precise.

Value

The gradient matrix where the number of rows equals the length of f and the number of columns
equals the length of x.

the elements on i-th row and j-th column contain: d((f(x))i)/d(xj)

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

gradient, for a full (not necessarily square) gradient matrix

Examples

## =======================================================================
## the banana function
## =======================================================================

fun <- function(x) 100*(x[2] - x[1]^2)^2 + (1 - x[1])^2
mm <- nlm(fun, p = c(0, 0))$estimate
(Hes <- hessian(fun, mm))
# can also be estimated by nlm(fun, p=c(0,0), hessian=TRUE)
solve(Hes) # estimate of parameter uncertainty

jacobian.band Banded jacobian matrix for a system of ODEs (ordinary differential
equations)

Description

Given a vector of (state) variables y, and a function that estimates a function value for each (state)
variable (e.g. the rate of change), estimates the Jacobian matrix (d(f(y))/d(y)).

Assumes a banded structure of the Jacobian matrix, i.e. where the non-zero elements are restricted
to a number of bands above and below the diagonal.

Usage

jacobian.band(y, func, bandup = 1, banddown = 1,
dy = NULL, time = 0, parms = NULL, pert = 1e-8, ...)
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Arguments

y (state) variables, a vector; if y has a name attribute, the names will be used to
label the jacobian matrix columns.

func function that calculates one function value for each element of y; if an ODE
system, func calculates the rate of change (see details).

bandup number of nonzero bands above the diagonal of the Jacobian matrix.

banddown number of nonzero bands below the diagonal of the Jacobian matrix.

dy reference function value; if not specified, it will be estimated by calling func.

time time, passed to function func.

parms parameter values, passed to function func.

pert numerical perturbation factor; increase depending on precision of model solu-
tion.

... other arguments passed to function func.

Details

The function func that estimates the rate of change of the state variables has to be consistent with
functions called from R-package deSolve, which contains integration routines.

This function call is as: function(time,y,parms,...) where

• y : (state) variable values at which the Jacobian is estimated.

• parms: parameter vector - need not be used.

• time: time at which the Jacobian is estimated - in general, time will not be used.

• ...: (optional) any other arguments

The Jacobian is estimated numerically, by perturbing the x-values.

Value

Jacobian matrix, in banded format, i.e. only the nonzero bands near the diagonal form the rows of
the Jacobian.

this matrix has bandup+banddown+1 rows, while the number of columns equal the length of y.

Thus, if the full Jacobian is given by:

[,1], [,2], [,3], [,4]
[,1] 1 2 0 0
[,2] 3 4 5 0
[,3] 0 6 7 8
[,4] 0 0 9 10

the banded jacobian will be:

[,1], [,2], [,3], [,4]
[,1] 0 2 5 8
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[,2] 1 4 7 10
[,3] 3 6 9 0

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

jacobian.full, estimates the Jacobian matrix assuming a full matrix.

hessian, estimates the Hessian matrix.

gradient, for a full (not necessarily square) gradient matrix and where the function call is simpler.

uniroot.all, to solve for all roots of one (nonlinear) equation

multiroot, to solve n roots of n (nonlinear) equations

Examples

## =======================================================================

mod <- function (t = 0, y, parms = NULL,...) {
dy1 <- y[1] + 2*y[2]
dy2 <-3*y[1] + 4*y[2] + 5*y[3]
dy3 <- 6*y[2] + 7*y[3] + 8*y[4]
dy4 <- 9*y[3] +10*y[4]
return(as.list(c(dy1, dy2, dy3, dy4)))

}

jacobian.band(y = c(1, 2, 3, 4), func = mod)

jacobian.full Full square jacobian matrix for a system of ODEs (ordinary differen-
tial equations)

Description

Given a vector of (state) variables, and a function that estimates one function value for each (state)
variable (e.g. the rate of change), estimates the Jacobian matrix (d(f(x))/d(x))

Assumes a full and square Jacobian matrix

Usage

jacobian.full(y, func, dy = NULL, time = 0, parms = NULL,
pert = 1e-8, ...)
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Arguments

y (state) variables, a vector; if y has a name attribute, the names will be used to
label the Jacobian matrix columns.

func function that calculates one function value for each element of y; if an ODE
system, func calculates the rate of change (see details).

dy reference function value; if not specified, it will be estimated by calling func.

time time, passed to function func.

parms parameter values, passed to function func.

pert numerical perturbation factor; increase depending on precision of model solu-
tion.

... other arguments passed to function func.

Details

The function func that estimates the rate of change of the state variables has to be consistent with
functions called from R-package deSolve, which contains integration routines.

This function call is as: function(time,y,parms,...) where

• y : (state) variable values at which the Jacobian is estimated.

• parms: parameter vector - need not be used.

• time: time at which the Jacobian is estimated - in general, time will not be used.

• ...: (optional) any other arguments.

The Jacobian is estimated numerically, by perturbing the x-values.

Value

The square jacobian matrix; the elements on i-th row and j-th column are given by: d(f(x)i)/d(xj)

Note

This function is useful for stability analysis of ODEs, which start by estimating the Jacobian at
equilibrium points. The type of equilibrium then depends on the eigenvalue of the Jacobian.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

jacobian.band, estimates the Jacobian matrix assuming a banded structure.

hessian, estimates the Hessian matrix.

gradient, for a full (not necessarily square) gradient matrix and where the function call is simpler.

uniroot.all, to solve for all roots of one (nonlinear) equation

multiroot, to solve n roots of n (nonlinear) equations
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Examples

## =======================================================================
## 1. Structure of the Jacobian
## =======================================================================
mod <- function (t = 0, y, parms = NULL,...)
{
dy1<- y[1] + 2*y[2]
dy2<-3*y[1] + 4*y[2] + 5*y[3]
dy3<- 6*y[2] + 7*y[3] + 8*y[4]
dy4<- 9*y[3] +10*y[4]
return(as.list(c(dy1, dy2, dy3, dy4)))

}

jacobian.full(y = c(1, 2, 3, 4), func = mod)

## =======================================================================
## 2. Stability properties of a physical model
## =======================================================================
coriolis <- function (t, velocity, pars, f)
{

dvelx <- f*velocity[2]
dvely <- -f*velocity[1]
list(c(dvelx, dvely))

}

# neutral stability; f is coriolis parameter
Jac <- jacobian.full(y = c(velx = 0, vely = 0), func = coriolis,

parms = NULL, f = 1e-4)
print(Jac)
eigen(Jac)$values

## =======================================================================
## 3. Type of equilibrium
## =======================================================================
## From Soetaert and Herman (2009). A practical guide to ecological
## modelling. Using R as a simulation platform. Springer

eqn <- function (t, state, pars)
{
with (as.list(c(state, pars)), {
dx <- a*x + cc*y
dy <- b*y + dd*x
list(c(dx, dy))
})
}

# stable equilibrium
A <- eigen(jacobian.full(y = c(x = 0, y = 0), func = eqn,

parms = c(a = -0.1, b = -0.3, cc = 0, dd = 0)))$values
# unstable equilibrium
B <- eigen(jacobian.full(y = c(x = 0, y = 0), func = eqn,

parms = c(a = 0.2, b = 0.2, cc = 0.0, dd = 0.2)))$values
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# saddle point
C <- eigen(jacobian.full(y = c(x = 0, y = 0), func = eqn,

parms = c(a = -0.1, b = 0.1, cc = 0, dd = 0)))$values
# neutral stability
D <- eigen(jacobian.full(y = c(x = 0, y = 0), func = eqn,

parms = c(a = 0, b = 0, cc = -0.1, dd = 0.1)))$values
# stable focal point
E <- eigen(jacobian.full(y = c(x = 0, y = 0), func = eqn,

parms = c(a = 0, b = -0.1, cc = -0.1, dd = 0.1)))$values
# unstable focal point
F <- eigen(jacobian.full(y = c(x = 0, y = 0), func=eqn,

parms = c(a = 0., b = 0.1, cc = 0.1, dd = -0.1)))$values

data.frame(type = c("stable", "unstable", "saddle", "neutral",
"stable focus", "unstable focus"),
eigenvalue_1 = c(A[1], B[1], C[1], D[1], E[1], F[1]),
eigenvalue_2 = c(A[2], B[2], C[2], D[2], E[2], F[2]))

## =======================================================================
## 4. Limit cycles
## =======================================================================
## From Soetaert and Herman (2009). A practical guide to ecological
## modelling. Using R as a simulation platform. Springer

eqn2 <- function (t, state, pars)
{
with (as.list(c(state, pars)),
{
dx<- a*y + e*x*(x^2+y^2-1)
dy<- b*x + f*y*(x^2+y^2-1)
list(c(dx, dy))
})
}

# stable limit cycle with unstable focus
eigen(jacobian.full(c(x = 0, y = 0), eqn2,

parms = c(a = -1, b = 1, e = -1, f = -1)))$values
# unstable limit cycle with stable focus
eigen(jacobian.full(c(x = 0, y = 0), eqn2,

parms = c(a = -1, b = 1, e = 1, f = 1)))$values

multiroot Solves for n roots of n (nonlinear) equations.

Description

Given a vector of n variables, and a set of n (nonlinear) equations in these variables,

estimates the root of the equations, i.e. the variable values where all function values = 0.

Assumes a full Jacobian matrix, uses the Newton-Raphson method.
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Usage

multiroot(f, start, maxiter = 100,
rtol = 1e-6, atol = 1e-8, ctol = 1e-8,
useFortran = TRUE, positive = FALSE,
jacfunc = NULL, jactype = "fullint",
verbose = FALSE, bandup = 1, banddown = 1,
parms = NULL, ...)

Arguments

f function for which the root is sought; it must return a vector with as many values
as the length of start. It is called either as f(x, ...) if parms = NULL or as
f(x, parms, ...) if parms is not NULL.

start vector containing initial guesses for the unknown x; if start has a name at-
tribute, the names will be used to label the output vector.

maxiter maximal number of iterations allowed.

rtol relative error tolerance, either a scalar or a vector, one value for each element in
the unknown x.

atol absolute error tolerance, either a scalar or a vector, one value for each element
in x.

ctol a scalar. If between two iterations, the maximal change in the variable values is
less than this amount, then it is assumed that the root is found.

useFortran logical, if FALSE, then an R -implementation of the Newton-Raphson method is
used - see details.

positive if TRUE, the unknowns y are forced to be non-negative numbers.

jacfunc if not NULL, a user-supplied R function that estimates the Jacobian of the sys-
tem of differential equations dydot(i)/dy(j). In some circumstances, supplying
jacfunc can speed up the computations. The R calling sequence for jacfunc
is identical to that of f.
If the Jacobian is a full matrix, jacfunc should return a matrix dydot/dy, where
the ith row contains the derivative of dyi/dt with respect to yj , or a vector con-
taining the matrix elements by columns.
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the jacobian, (dydot/dy), rotated row-wise.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr", "bandint",
or "sparse" - either full or banded and estimated internally or by the user, or
arbitrary sparse. If the latter, then the solver will call, stodes, else stode

If the Jacobian is arbitrarily "sparse", then it will be calculated by the solver (i.e.
it is not possible to also specify jacfunc).

verbose if TRUE: full output to the screen, e.g. will output the steady-state settings.

bandup number of non-zero bands above the diagonal, in case the Jacobian is banded.

banddown number of non-zero bands below the diagonal, in case the jacobian is banded.

parms vector or list of parameters used in f or jacfunc.

... additional arguments passed to function f.
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Details

start gives the initial guess for each variable; different initial guesses may return different roots.

The input parameters rtol, and atol determine the error control performed by the solver.

The solver will control the vector e of estimated local errors in f, according to an inequality of the
form max-norm of ( e/ewt ) ≤ 1, where ewt is a vector of positive error weights. The values of
rtol and atol should all be non-negative.

The form of ewt is:
rtol× abs(f) + atol

where multiplication of two vectors is element-by-element.

In addition, the solver will stop if between two iterations, the maximal change in the values of x is
less than ctol.

There is no checking whether the requested precision exceeds the capabilities of the machine.

Value

a list containing:

root the location (x-values) of the root.

f.root the value of the function evaluated at the root.

iter the number of iterations used.

estim.precis the estimated precision for root. It is defined as the mean of the absolute func-
tion values (mean(abs(f.root))).

Note

The Fortran implementation of the Newton-Raphson method function (the default) is generally
faster than the R implementation. The R implementation has been included for didactic purposes.

multiroot makes use of function stode. Technically, it is just a wrapper around function stode.
If the sparsity structure of the Jacobian is known, it may be more efficiently to call stode, stodes,
steady, steady.1D, steady.2D, steady.3D.

It is NOT guaranteed that the method will converge to the root.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

stode, which uses a different function call.

uniroot.all, to solve for all roots of one (nonlinear) equation

steady, steady.band, steady.1D, steady.2D, steady.3D, steady-state solvers, which find the
roots of ODEs or PDEs. The function call differs from multiroot.

jacobian.full, jacobian.band, estimates the Jacobian matrix assuming a full or banded struc-
ture.

gradient, hessian, estimates the gradient matrix or the Hessian.
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Examples

## =======================================================================
## example 1
## 2 simultaneous equations
## =======================================================================

model <- function(x) c(F1 = x[1]^2+ x[2]^2 -1,
F2 = x[1]^2- x[2]^2 +0.5)

(ss <- multiroot(f = model, start = c(1, 1)))

## =======================================================================
## example 2
## 3 equations, two solutions
## =======================================================================

model <- function(x) c(F1 = x[1] + x[2] + x[3]^2 - 12,
F2 = x[1]^2 - x[2] + x[3] - 2,
F3 = 2 * x[1] - x[2]^2 + x[3] - 1 )

# first solution
(ss <- multiroot(model, c(1, 1, 1), useFortran = FALSE))
(ss <- multiroot(f = model, start = c(1, 1, 1)))

# second solution; use different start values
(ss <- multiroot(model, c(0, 0, 0)))
model(ss$root)

## =======================================================================
## example 2b: same, but with parameters
## 3 equations, two solutions
## =======================================================================

model2 <- function(x, parms)
c(F1 = x[1] + x[2] + x[3]^2 - parms[1],

F2 = x[1]^2 - x[2] + x[3] - parms[2],
F3 = 2 * x[1] - x[2]^2 + x[3] - parms[3])

# first solution
parms <- c(12, 2, 1)
multiroot(model2, c(1, 1, 1), parms = parms)
multiroot(model2, c(0, 0, 0), parms = parms*2)

## =======================================================================
## example 3: find a matrix
## =======================================================================

f2<-function(x) {
X <- matrix(nrow = 5, x)
X %*% X %*% X -matrix(nrow = 5, data = 1:25, byrow = TRUE)

}
x <- multiroot(f2, start = 1:25 )$root
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X <- matrix(nrow = 5, x)

X%*%X%*%X

multiroot.1D Solves for n roots of n (nonlinear) equations, created by discretizing
ordinary differential equations.

Description

multiroot.1D finds the solution to boundary value problems of ordinary differential equations, which
are approximated using the method-of-lines approach.

Assumes a banded Jacobian matrix, uses the Newton-Raphson method.

Usage

multiroot.1D(f, start, maxiter = 100,
rtol = 1e-6, atol = 1e-8, ctol = 1e-8,
nspec = NULL, dimens = NULL, verbose = FALSE,
positive = FALSE, names = NULL, parms = NULL, ...)

Arguments

f function for which the root is sought; it must return a vector with as many values
as the length of start. It is called either as f(x, ...) if parms = NULL or as
f(x, parms, ...) if parms is not NULL.

start vector containing initial guesses for the unknown x; if start has a name at-
tribute, the names will be used to label the output vector.

maxiter maximal number of iterations allowed.

rtol relative error tolerance, either a scalar or a vector, one value for each element in
the unknown x.

atol absolute error tolerance, either a scalar or a vector, one value for each element
in x.

ctol a scalar. If between two iterations, the maximal change in the variable values is
less than this amount, then it is assumed that the root is found.

nspec the number of *species* (components) in the model. If NULL, then dimens
should be specified.

dimens the number of *boxes* in the model. If NULL, then nspec should be specified.

verbose if TRUE: full output to the screen, e.g. will output the steady-state settings.

positive if TRUE, the unknowns y are forced to be non-negative numbers.

names the names of the components; used to label the output, which will be written as
a matrix.

parms vector or list of parameters used in f.

... additional arguments passed to function f.
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Details

multiroot.1D is similar to steady.1D, except for the function specification which is simpler in
multiroot.1D.

It is to be used to solve (simple) boundary value problems of differential equations.

The following differential equation:

0 = f(x, y,
dy

dx
,
d2y

dx2
)

with boundary conditions

yx=a = ya, at the start and yx=b=yb at the end of the integration interval [a,b] is approximated

as follows:

1. First the integration interval x is discretized, for instance:

dx <- 0.01

x <- seq(a,b,by=dx)

where dx should be small enough to keep numerical errors small.

2. Then the first- and second-order derivatives are differenced on this numerical grid. R’s diff
function is very efficient in taking numerical differences, so it is used to approximate the first-, and
second-order derivates as follows.

A first-order derivative y’ can be approximated either as:

y’=diff(c(ya,y))/dx if only the initial condition ya is prescribed,

y’=diff(c(y,yb))/dx if only the final condition, yb is prescribed,

y’=0.5*(diff(c(ya,y))/dx+diff(c(y,yb))/dx) if initial, ya, and final condition, yb are pre-
scribed.

The latter (centered differences) is to be preferred.

A second-order derivative y” can be approximated by differencing twice.

y”=diff(diff(c(ya,y,yb))/dx)/dx

3. Finally, function multiroot.1D is used to locate the root.

See the examples

Value

a list containing:

root the values of the root.

f.root the value of the function evaluated at the root.

iter the number of iterations used.

estim.precis the estimated precision for root. It is defined as the mean of the absolute func-
tion values (mean(abs(f.root))).
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Note

multiroot.1D makes use of function steady.1D.

It is NOT guaranteed that the method will converge to the root.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

stode, which uses a different function call.

uniroot.all, to solve for all roots of one (nonlinear) equation

steady, steady.band, steady.1D, steady.2D, steady.3D, steady-state solvers, which find the
roots of ODEs or PDEs. The function call differs from multiroot.

jacobian.full, jacobian.band, estimates the Jacobian matrix assuming a full or banded struc-
ture.

gradient, hessian, estimates the gradient matrix or the Hessian.

Examples

## =======================================================================
## Example 1: simple standard problem
## solve the BVP ODE:
## d2y/dt^2=-3py/(p+t^2)^2
## y(t= -0.1)=-0.1/sqrt(p+0.01)
## y(t= 0.1)= 0.1/sqrt(p+0.01)
## where p = 1e-5
##
## analytical solution y(t) = t/sqrt(p + t^2).
##
## =======================================================================

bvp <- function(y) {
dy2 <- diff(diff(c(ya, y, yb))/dx)/dx
return(dy2 + 3*p*y/(p+x^2)^2)

}

dx <- 0.0001
x <- seq(-0.1, 0.1, by = dx)

p <- 1e-5
ya <- -0.1/sqrt(p+0.01)
yb <- 0.1/sqrt(p+0.01)

print(system.time(
y <- multiroot.1D(start = runif(length(x)), f = bvp, nspec = 1)

))

plot(x, y$root, ylab = "y", main = "BVP test problem")
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# add analytical solution
curve(x/sqrt(p+x*x), add = TRUE, type = "l", col = "red")

## =======================================================================
## Example 2: bvp test problem 28
## solve:
## xi*y'' + y*y' - y=0
## with boundary conditions:
## y0=1
## y1=3/2
## =======================================================================

prob28 <-function(y, xi) {
dy2 <- diff(diff(c(ya, y, yb))/dx)/dx # y''
dy <- 0.5*(diff(c(ya, y)) +diff(c(y, yb)))/dx # y' - centered differences

xi*dy2 +dy*y-y
}

ya <- 1
yb <- 3/2
dx <- 0.001
x <- seq(0, 1, by = dx)
N <- length(x)
print(system.time(

Y1 <- multiroot.1D(f = prob28, start = runif(N),
nspec = 1, xi = 0.1)

))
Y2<- multiroot.1D(f = prob28, start = runif(N), nspec = 1, xi = 0.01)
Y3<- multiroot.1D(f = prob28, start = runif(N), nspec = 1, xi = 0.001)

plot(x, Y3$root, type = "l", col = "green", main = "bvp test problem 28")
lines(x, Y2$root, col = "red")
lines(x, Y1$root, col = "blue")

plot.steady1D Plot and Summary Method for steady1D, steady2D and steady3D Ob-
jects

Description

Plot the output of steady-state solver routines.

Usage

## S3 method for class 'steady1D'
plot(x, ..., which = NULL, grid = NULL,

xyswap = FALSE, ask = NULL,
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obs = NULL, obspar = list(), vertical = FALSE)
## S3 method for class 'steady2D'
image(x, which = NULL, add.contour = FALSE,

grid = NULL, ask = NULL,
method = "image", legend = FALSE, ...)

## S3 method for class 'steady2D'
subset(x, which = NULL, ...)
## S3 method for class 'steady3D'
image(x, which = NULL, dimselect = NULL,

add.contour = FALSE, grid = NULL, ask = NULL,
method = "image", legend = FALSE, ...)

## S3 method for class 'rootSolve'
summary(object, ...)

Arguments

x an object of class steady1D, or steady2D as returned by the solvers steady.1D
and steady.2D, and to be plotted.
For steady1D objects, it is allowed to pass several objects after x (unnamed) -
see second example.

which the name(s) or the index to the variables that should be plotted. Default = all
variables.

grid For 1-D plots of output generated with steady.1D, a vector of values against
which the 1-D steady-state solution has to be plotted. If NULL, then steady-state
solutions are plotted against the index.
for image plots of output generated with steady.2D or steady.3D: the x- and
y-grid, as a list.

ask logical; if TRUE, the user is asked before each plot, if NULL the user is only asked
if more than one page of plots is necessary and the current graphics device is set
interactive, see par(ask=.) and dev.interactive.

xyswap if TRUE, then x-and y-values are swapped and the y-axis is from top to bottom.
Useful for drawing vertical profiles.

vertical if TRUE, then 1. x-and y-values are swapped, the y-axis is from top to bottom,
the x-axis is on top, margin 3 and the main title gets the value of the x-axis.
Useful for drawing vertical profiles; see example 2.

obs a data.frame or matrix with "observed data" that will be added as points
to the plots. obs can also be a list with multiple data.frames and/or matrices
containing observed data.
The first column of obs should contain the grid-variables as specified in argu-
ment grid. The other columns contain the observed values and they should have
names that are known in x.
If the first column of obs consists of factors, or characters (strings), then it is
assumed that the data are presented in long (database) format, where the first
three columns contain (name, grid, value).
If obs is not NULL and which is NULL, then the variables, common to both obs
and x will be plotted.
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obspar additional graphics arguments passed to points, for plotting the observed data.
If obs is a list containing multiple observed data sets, then the graphics argu-
ments can be a vector or a list (e.g. for xlim, ylim), specifying each data set
separately.

dimselect a list or NULL. The dimension over which the 3-D image loops. If NULL, will
loop over the 3rd (z) dimension. This is similar as setting dimselect = list(z
= 1:Nz) where Nz is the number of grid cells in the 3rd dimension; setting
dimselect = list(z = seq(1, Nz, by =2)) will loop over the 3rd dimension,
but every 2nd cell; dimselect = list(x = ...) or dimselect = list(y = ...)
will loop over the x respectively y-dimension. See steady.3D for some exam-
ples.

add.contour if TRUE, will add contours to the image plot.

method the name of the plotting function to use, one of "image", "filled.contour", "con-
tour" or "persp".

legend if TRUE, a color legend will be drawn next to the "image", or "persp" plot.

object object of class rootSolve whose summary has to be calculated.

... additional arguments passed to the methods.
The graphical arguments are passed to plot.default (for 1D) or image (for
2D, 3D)
For plot.steady1D, the dots may contain other objects of class steady1D, as
returned by steady.1D, and to be plotted on the same graphs as x - see second
example. x and and these other objects should be compatible, i.e. the column
names should be the same.
For plot.steady1D, the arguments after . . . must be matched exactly.

Details

The number of panels per page is automatically determined up to 3 x 3 (par(mfrow=c(3, 3))).
This default can be overwritten by specifying user-defined settings for mfrow or mfcol. Set mfrow
equal to NULL to avoid the plotting function to change user-defined mfrow or mfcol settings

Other graphical parameters can be passed as well. Parameters are vectorized, either according to the
number of plots (xlab, ylab, main, sub, xlim, ylim, log, asp, ann, axes, frame.plot,panel.first,panel.last,
cex.lab,cex.axis,cex.main) or according to the number of lines within one plot (other parame-
ters e.g. col, lty, lwd etc.) so it is possible to assign specific axis labels to individual plots, resp.
different plotting style. Plotting parameter ylim, or xlim can also be a list to assign different axis
limits to individual plots.

Similarly, the graphical parameters for observed data, as passed by obspar can be vectorized, ac-
cording to the number of observed data sets.

For steady3D objects, 2-D images are generated by looping over one of the axies; by default the
third axis. See steady.3D.

See Also

steady.1D, steady.2D, steady.3D
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Examples

## =======================================================================
## EXAMPLE 1: 1D model, BOD + O2
## =======================================================================
## Biochemical Oxygen Demand (BOD) and oxygen (O2) dynamics
## in a river

#==================#
# Model equations #
#==================#
O2BOD <- function(t, state, pars) {

BOD <- state[1:N]
O2 <- state[(N+1):(2*N)]

# BOD dynamics
FluxBOD <- v * c(BOD_0, BOD) # fluxes due to water transport
FluxO2 <- v * c(O2_0, O2)

BODrate <- r*BOD*O2/(O2+10) # 1-st order consumption, Monod in oxygen

#rate of change = flux gradient - consumption + reaeration (O2)
dBOD <- -diff(FluxBOD)/dx - BODrate
dO2 <- -diff(FluxO2)/dx - BODrate + p*(O2sat-O2)

return(list(c(dBOD = dBOD, dO2 = dO2)))
} # END O2BOD

#==================#
# Model application#
#==================#
# parameters
dx <- 100 # grid size, meters
v <- 1e2 # velocity, m/day
x <- seq(dx/2,10000,by=dx) # m, distance from river
N <- length(x)
r <- 0.1 # /day, first-order decay of BOD
p <- 0.1 # /day, air-sea exchange rate
O2sat <- 300 # mmol/m3 saturated oxygen conc
O2_0 <- 50 # mmol/m3 riverine oxygen conc
BOD_0 <- 1500 # mmol/m3 riverine BOD concentration

# initial guess:
state <- c(rep(200,N), rep(200,N))

# running the model
out <- steady.1D (y = state, func = O2BOD, parms = NULL,

nspec = 2, pos = TRUE,
names = c("BOD", "O2"))

summary(out)
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# output
plot(out, grid = x, type = "l", lwd = 2,

ylab = c("mmol/m3", "mmol O2/m3"))

# observations
obs <- matrix (ncol = 2, data = c(seq(0, 10000, 2000),

c(1400, 900,400,100,10,10)))

colnames(obs) <- c("Distance", "BOD")

# plot with observations
plot(out, grid = x, type = "l", lwd = 2, ylab = "mmol/m3", obs = obs,

pch = 16, cex = 1.5)

# similar but data in "long" format
OUT <- data.frame(name = "BOD", obs)
## Not run:
plot(out, grid = x, type = "l", lwd = 2, ylab = "mmol/m3", obs = OBS,

pch = 16, cex = 1.5)

## End(Not run)

## =======================================================================
## EXAMPLE 2: 1D model, BOD + O2 - second run
## =======================================================================
# new runs with different v
v <- 50 # velocity, m/day

# running the model a second time
out2 <- steady.1D (y = state, func = O2BOD, parms = NULL,

nspec = 2, pos = TRUE, names = c("BOD", "O2"))

v <- 200 # velocity, m/day

# running the model a second time
out3 <- steady.1D (y = state, func = O2BOD, parms = NULL,

nspec = 2, pos = TRUE, names = c("BOD", "O2"))

# output of all three scenarios at once
plot(out, out2, out3, type = "l", lwd = 2,

ylab = c("mmol/m3", "mmol O2/m3"), grid = x,
obs = obs, which = c("BOD", "O2"))

# output of all three scenarios at once, and using vertical style
plot(out, out2, out3, type = "l", lwd = 2, vertical = TRUE,

ylab = "Distance [m]",
main = c("BOD [mmol/m3]", "O2 [mmol O2/m3]"), grid = x,
obs = obs, which = c("BOD", "O2"))

# change plot pars
plot(out, out2, out3, type = "l", lwd = 2,

ylab = c("mmol/m3", "mmol O2/m3"),
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grid = x, col = c("blue", "green"), log = "y",
obs = obs, obspar = list(pch = 16, col = "red", cex = 2))

## =======================================================================
## EXAMPLE 3: Diffusion in 2-D; zero-gradient boundary conditions
## =======================================================================

diffusion2D <- function(t,Y,par) {
y <- matrix(nr=n,nc=n,data=Y) # vector to 2-D matrix
dY <- -r*y # consumption
BND <- rep(1,n) # boundary concentration

#diffusion in X-direction; boundaries=imposed concentration
Flux <- -Dx * rbind(y[1,]-BND, (y[2:n,]-y[1:(n-1),]), BND-y[n,])/dx
dY <- dY - (Flux[2:(n+1),]-Flux[1:n,])/dx

#diffusion in Y-direction
Flux <- -Dy * cbind(y[,1]-BND, (y[,2:n]-y[,1:(n-1)]), BND-y[,n])/dy
dY <- dY - (Flux[ ,2:(n+1)]-Flux[ ,1:n])/dy

return(list(as.vector(dY)))
}

# parameters
dy <- dx <- 1 # grid size
Dy <- Dx <- 1 # diffusion coeff, X- and Y-direction
r <- 0.025 # consumption rate

n <- 100
Y <- matrix(nrow = n, ncol = n, 10.)

ST <- steady.2D(Y, func = diffusion2D, parms = NULL, pos = TRUE,
dimens = c(n, n), lrw = 1000000,
atol = 1e-10, rtol = 1e-10, ctol = 1e-10)

grid <- list(x = seq(dx/2, by = dx, length.out = n),
y = seq(dy/2, by = dy, length.out = n))

image(ST, grid = grid)
summary(ST)

runsteady Dynamically runs a system of ordinary differential equations (ODE)
to steady-state

Description

Solves the steady-state condition of ordinary differential equations (ODE) in the form:

dy/dt = f(t, y)

by dynamically running till the summed absolute values of the derivatives become smaller than
some predefined tolerance.
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The R function runsteady makes use of the FORTRAN ODE solver DLSODE, written by Alan C.
Hindmarsh and Andrew H. Sherman

The system of ODE’s is written as an R function or defined in compiled code that has been dynam-
ically loaded. The user has to specify whether or not the problem is stiff and choose the appropriate
solution method (e.g. make choices about the type of the Jacobian).

Usage

runsteady(y, time = c(0, Inf), func, parms,
stol = 1e-8, rtol = 1e-6, atol = 1e-6,
jacfunc = NULL, jactype = "fullint", mf = NULL,
verbose = FALSE, tcrit = NULL, hmin = 0, hmax = NULL,
hini = 0, ynames = TRUE, maxord = NULL, bandup = NULL,
banddown = NULL, maxsteps = 100000, dllname = NULL,
initfunc = dllname, initpar = parms, rpar = NULL,
ipar = NULL, nout = 0, outnames = NULL,
forcings = NULL, initforc = NULL, fcontrol = NULL,
lrw = NULL, liw = NULL, times = time, ...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

time, times The simulation time. This should be a 2-valued vector, consisting of the ini-
tial time and the end time. The last time value should be large enough to make
sure that steady-state is effectively reached in this period. The simulation will
stop either when times[2] has been reached or when maxsteps have been per-
formed. (note: since version 1.7, argument time has been added, for consistency
with other solvers.)

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: yprime = func(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times.
The derivatives should be specified in the same order as the state variables y.

parms vector or list of parameters used in func or jacfunc.

stol steady-state tolerance; it is assumed that steady-state is reached if the average of
absolute values of the derivatives drops below this number.

rtol relative error tolerance of integrator, either a scalar or an array as long as y. See
details.
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atol absolute error tolerance of integrator, either a scalar or an array as long as y. See
details.

jacfunc if not NULL, an R function that computes the jacobian of the system of differen-
tial equations dydot(i)/dy(j), or a string giving the name of a function or subrou-
tine in ‘dllname’ that computes the jacobian (see Details below for more about
this option). In some circumstances, supplying jacfunc can speed up the com-
putations, if the system is stiff. The R calling sequence for jacfunc is identical
to that of func.
If the jacobian is a full matrix, jacfunc should return a matrix dydot/dy, where
the ith row contains the derivative of dyi/dt with respect to yj , or a vector con-
taining the matrix elements by columns (the way R and Fortran store matrices).
If the jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the jacobian, rotated row-wise. See first example of lsode.

jactype the structure of the jacobian, one of "fullint", "fullusr", "bandusr", "bandint",
"sparse" - either full, banded or sparse and estimated internally or by user; over-
ruled if mf is not NULL. If "sparse" then method lsodes is used, else lsode.

mf the "method flag" passed to function lsode - overrules jactype - provides more
options than jactype - see details.

verbose if TRUE: full output to the screen, e.g. will output the settings of vectors *istate*
and *rstate* - see details.

tcrit if not NULL, then lsode cannot integrate past tcrit. The Fortran routine lsode
overshoots its targets (times points in the vector times), and interpolates values
for the desired time points. If there is a time beyond which integration should
not proceed (perhaps because of a singularity), that should be provided in tcrit.

hmin an optional minimum value of the integration stepsize. In special situations this
parameter may speed up computations with the cost of precision. Don’t use
hmin if you don’t know why!

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini initial step size to be attempted; if 0, the initial step size is determined by the
solver.

ynames if FALSE: names of state variables are not passed to function func ; this may
speed up the simulation.

maxord the maximum order to be allowed. NULL uses the default, i.e. order 12 if implicit
Adams method (meth=1), order 5 if BDF method (meth=2) or if jacType ==
’sparse’. Reduce maxord to save storage space.

bandup number of non-zero bands above the diagonal, in case the jacobian is banded.

banddown number of non-zero bands below the diagonal, in case the jacobian is banded.

maxsteps maximal number of steps. The simulation will stop either when maxsteps have
been performed or when times[2] has been reached.

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See package vignette.



runsteady 27

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette.

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(fortran) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculed in the dll - you have to perform this
check in the code - See package vignette of deSolve.

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library.

forcings only used if ‘dllname’ is specified: a vector with the forcing function values, or
a list with the forcing function data sets, each present as a two-columned matrix,
with (time,value); interpolation outside the interval [min(times), max(times)]
is done by taking the value at the closest data extreme.
This feature is here for compatibility with models defined in compiled code from
package deSolve; see deSolve’s package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
deSolve’s package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See deSolve’s package
vignette "compiledCode".

lrw Only if jactype = ’sparse’, the length of the real work array rwork; due to the
sparsicity, this cannot be readily predicted. If NULL, a guess will be made, and if
not sufficient, lsodes will return with a message indicating the size of rwork ac-
tually required. Therefore, some experimentation may be necessary to estimate
the value of lrw.
For instance, if you get the error:

DLSODES- RWORK length is insufficient to proceed.
Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)
In above message, I1 = 27627 I2 = 25932

set lrw equal to 27627 or a higher value

liw Only if jactype = ’sparse’, the length of the integer work array iwork; due to
the sparsicity, this cannot be readily predicted. If NULL, a guess will be made,
and if not sufficient, lsodes will return with a message indicating the size of
iwork actually required. Therefore, some experimentation may be necessary to
estimate the value of liw.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.
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Details

The work is done by the Fortran subroutine dlsode or dlsodes (if sparse), whose documentation
should be consulted for details (it is included as comments in the source file ‘src/lsodes.f’). The
implementation is based on the November, 2003 version of lsode, from Netlib.

Before using runsteady, the user has to decide whether or not the problem is stiff.

If the problem is nonstiff, use method flag mf = 10, which selects a nonstiff (Adams) method, no
Jacobian used..

If the problem is stiff, there are four standard choices which can be specified with jactype or mf.

The options for jactype are

• jactype = "fullint" : a full jacobian, calculated internally by lsode, corresponds to mf=22.

• jactype = "fullusr" : a full jacobian, specified by user function jacfunc, corresponds to mf=21.

• jactype = "bandusr" : a banded jacobian, specified by user function jacfunc; the size of the
bands specified by bandup and banddown, corresponds to mf=24.

• jactype = "bandint" : a banded jacobian, calculated by lsode; the size of the bands specified
by bandup and banddown, corresponds to mf=25.

• jactype = "sparse" : the soler lsodes is used, and the sparse jacobian is calculated by lsodes
- not possible to specify jacfunc.

More options are available when specifying mf directly.

The legal values of mf are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25.

mf is a positive two-digit integer, mf = (10*METH + MITER), where

• METH indicates the basic linear multistep method: METH = 1 means the implicit Adams
method. METH = 2 means the method based on backward differentiation formulas (BDF-s).

• MITER indicates the corrector iteration method: MITER = 0 means functional iteration (no
Jacobian matrix is involved). MITER = 1 means chord iteration with a user-supplied full
(NEQ by NEQ) Jacobian. MITER = 2 means chord iteration with an internally generated
(difference quotient) full Jacobian (using NEQ extra calls to func per df/dy value). MITER =
3 means chord iteration with an internally generated diagonal Jacobian approximation (using
1 extra call to func per df/dy evaluation). MITER = 4 means chord iteration with a user-
supplied banded Jacobian. MITER = 5 means chord iteration with an internally generated
banded Jacobian (using ML+MU+1 extra calls to func per df/dy evaluation).
If MITER = 1 or 4, the user must supply a subroutine jacfunc.

Inspection of the example below shows how to specify both a banded and full jacobian.

The input parameters rtol, and atol determine the error control performed by the solver.

See stode for details.

Models may be defined in compiled C or Fortran code, as well as in an R-function. See function
stode for details.

The output will have the attributes *istate*, and *rstate*, two vectors with several useful ele-
ments.

if verbose = TRUE, the settings of istate and rstate will be written to the screen.

the following elements of istate are meaningful:
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• el 1 : gives the conditions under which the last call to the integrator returned. 2 if lsode
was successful, -1 if excess work done, -2 means excess accuracy requested. (Tolerances too
small), -3 means illegal input detected. (See printed message.), -4 means repeated error test
failures. (Check all input), -5 means repeated convergence failures. (Perhaps bad Jacobian
supplied or wrong choice of MF or tolerances.), -6 means error weight became zero during
problem. (Solution component i vanished, and atol or atol(i) = 0.)

• el 12 : The number of steps taken for the problem so far.

• el 13 : The number of evaluations for the problem so far.,

• el 14 : The number of Jacobian evaluations and LU decompositions so far.,

• el 15 : The method order last used (successfully).,

• el 16 : The order to be attempted on the next step.,

• el 17 : if el 1 =-4,-5: the largest component in the error vector,

rstate contains the following:

• 1: The step size in t last used (successfully).

• 2: The step size to be attempted on the next step.

• 3: The current value of the independent variable which the solver has actually reached, i.e. the
current internal mesh point in t.

• 4: A tolerance scale factor, greater than 1.0, computed when a request for too much accuracy
was detected.

For more information, see the comments in the original code lsode.f

Value

A list containing

y a vector with the state variable values from the last iteration during estimation
of steady-state condition of the system of equations. If y has a names attribute,
it will be used to label the output values.

... the number of "global" values returned.

The output will have the attribute steady, which returns TRUE, if steady-state has been reached, the
attribute precis with the precision attained at the last iteration estimated as the mean absolute rate
of change (sum(abs(dy))/n), the attribute time with the simulation time reached and the attribute
steps with the number of steps performed.

The output will also have the attributes istate, and rstate, two vectors with several useful el-
ements of the dynamic simulation. See details. The first element of istate returns the conditions
under which the last call to the integrator returned. Normal is istate[1] = 2. If verbose = TRUE,
the settings of istate and rstate will be written to the screen.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>
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See Also

steady, for a general interface to most of the steady-state solvers

steady.band, to find the steady-state of ODE models with a banded Jacobian

steady.1D, steady.2D, steady.3D steady-state solvers for 1-D, 2-D and 3-D partial differential
equations.

stode, iterative steady-state solver for ODEs with full or banded Jacobian.

stodes, iterative steady-state solver for ODEs with arbitrary sparse Jacobian.

Examples

## =======================================================================
## A simple sediment biogeochemical model
## =======================================================================

model<-function(t, y, pars) {

with (as.list(c(y, pars)),{

Min = r*OM
oxicmin = Min*(O2/(O2+ks))
anoxicmin = Min*(1-O2/(O2+ks))* SO4/(SO4+ks2)

dOM = Flux - oxicmin - anoxicmin
dO2 = -oxicmin -2*rox*HS*(O2/(O2+ks)) + D*(BO2-O2)
dSO4 = -0.5*anoxicmin +rox*HS*(O2/(O2+ks)) + D*(BSO4-SO4)
dHS = 0.5*anoxicmin -rox*HS*(O2/(O2+ks)) + D*(BHS-HS)

list(c(dOM, dO2, dSO4, dHS), SumS = SO4+HS)
})
}

# parameter values
pars <- c(D = 1, Flux = 100, r = 0.1, rox = 1,

ks = 1, ks2 = 1, BO2 = 100, BSO4 = 10000, BHS = 0)
# initial conditions
y <- c(OM = 1, O2 = 1, SO4 = 1, HS = 1)

# direct iteration
print( system.time(
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ST <- stode(y = y, func = model, parms = pars, pos = TRUE)
))

print( system.time(
ST2 <- runsteady(y = y, func = model, parms = pars, times = c(0, 1000))

))

print( system.time(
ST3 <- runsteady(y = y, func = model, parms = pars, times = c(0, 1000),

jactype = "sparse")
))

rbind("Newton Raphson" = ST$y, "Runsteady" = ST2$y, "Run sparse" = ST3$y)

steady General steady-state solver for a set of ordinary differential equations.

Description

Estimates the steady-state condition for a system of ordinary differential equations.

This is a wrapper around steady-state solvers stode, stodes and runsteady.

Usage

steady(y, time = NULL, func, parms = NULL, method = "stode", times = time, ...)

Arguments

y the initial guess of (state) values for the ODE system, a vector. If y has a name
attribute, the names will be used to label the output matrix.

time, times time for which steady-state is wanted; the default is times=0 (for method =
"stode" or method = "stodes", and times = c(0,Inf) for method = "runsteady".
(note- since version 1.7, ’times’ has been added as an alias to ’time’).

func either an R-function that computes the values of the derivatives in the ode system
(the model defininition) at time time, or a character string giving the name of
a compiled function in a dynamically loaded shared library. If func is an R-
function, it must be defined as: yprime = func(t, y, parms,...). t is the
current time point in the integration, y is the current estimate of the variables in
the ODE system. If the initial values y has a names attribute, the names will be
available inside func. parms is a vector or list of parameters; ... (optional) are
any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values whose steady-state value is also required.
The derivatives should be specified in the same order as the state variables y.

parms parameters passed to func.
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method the solution method to use, one of stode, stodes or runsteady.

... additional arguments passed to function stode, stodes or runsteady. See ex-
amples for the use of argument positive to enforce positive values (positive =
TRUE).

Details

This is simply a wrapper around the various steady-state solvers.

See package vignette for information about specifying the model in compiled code.

See the selected solver for the additional options.

Value

A list containing

y a vector with the state variable values from the last iteration during estimation
of steady-state condition of the system of equations. If y has a names attribute,
it will be used to label the output values.

... the number of "global" values returned.

The output will have the attribute steady, which returns TRUE, if steady-state has been reached and
the attribute precis with the precision attained during each iteration.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

steady.band, to find the steady-state of ODE models with a banded Jacobian

steady.1D, steady.2D, steady.3D, steady-state solvers for 1-D, 2-D and 3-D partial differential
equations.

stode, iterative steady-state solver for ODEs with full or banded Jacobian.

stodes, iterative steady-state solver for ODEs with arbitrary sparse Jacobian.

runsteady, steady-state solver by dynamically running to steady-state

Examples

## =======================================================================
## Bacteria (Bac) growing on a substrate (Sub)
## =======================================================================

model <- function(t, state, pars) {
with (as.list(c(state,pars)), {
# substrate uptake death respiration
dBact = gmax*eff*Sub/(Sub+ks)*Bact - dB*Bact - rB*Bact
dSub =-gmax *Sub/(Sub+ks)*Bact + dB*Bact +input

return(list(c(dBact, dSub)))
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})
}

pars <- list(gmax = 0.5,eff = 0.5,
ks = 0.5, rB = 0.01, dB = 0.01, input = 0.1)

# Newton-Raphson. pos = TRUE ensures only positive values are generated.
steady(y = c(Bact = 0.1, Sub = 0), time = 0,

func = model, parms = pars, pos = TRUE)

# Dynamic run to steady-state
as.data.frame(steady(y = c(Bact = 0.1, Sub = 0), time = c(0, 1e5),

func = model, parms = pars, method = "runsteady"))

steady.1D Steady-state solver for multicomponent 1-D ordinary differential
equations

Description

Estimates the steady-state condition for a system of ordinary differential equations that result from
1-Dimensional partial differential equation models that have been converted to ODEs by numerical
differencing.

It is assumed that exchange occurs only between adjacent layers.

Usage

steady.1D(y, time = NULL, func, parms = NULL,
nspec = NULL, dimens = NULL,
names = NULL, method = "stode", jactype = NULL,
cyclicBnd = NULL, bandwidth = 1, times = time, ...)

Arguments

y the initial guess of (state) values for the ODE system, a vector.

time, times time for which steady-state is wanted; the default is times=0 (for method =
"stode" or method = "stodes", and times = c(0,Inf) for method = "runsteady"
). (note- since version 1.7, ’times’ has been added as an alias to ’time’).

func either an R-function that computes the values of the derivatives in the ode system
(the model defininition) at time time, or a character string giving the name of a
compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: yprime = func(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
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The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values whose steady-state value is also required.
The derivatives should be specified in the same order as the state variables y.

parms parameters passed to func.

nspec the number of *species* (components) in the model. If NULL, then dimens
should be specified.

dimens the number of *boxes* in the model. If NULL, then nspec should be specified.

names the names of the components; used to label the output, which will be written as
a matrix.

method the solution method, one of "stode", "stodes", or "runsteady". When method =
’runsteady’, then solver lsode is used by default, unless argument jactype is
set to "sparse", in which case lsodes is used and the structure of the jacobian
is determined by the solver.

jactype the jacobian type - default is a regular 1-D structure where layers only interact
with adjacent layers. If the structure does not comply with this, the jacobian
can be set equal to 'sparse' if method = stodes. If jactype = 'sparse' and
method = runsteady then lsodes, the sparse integrator, will be used.

cyclicBnd if a cyclic boundary exists, a value of 1 else NULL; see details.

bandwidth the number of adjacent boxes over which transport occurs. Normally equal to 1
(box i only interacts with box i-1, and i+1). Values larger than 1 will not work
with method = "stodes".

... additional arguments passed to the solver function as defined by method. See
example for the use of argument positive to enforce positive values (pos =
TRUE).

Details

This is the method of choice for multi-species 1-dimensional models, that are only subjected to
transport between adjacent layers

More specifically, this method is to be used if the state variables are arranged per species:

A[1],A[2],A[3],....B[1],B[2],B[3],.... (for species A, B))

Two methods are implemented.

• The default method rearranges the state variables as A[1],B[1],...A[2],B[2],...A[3],B[3],....
This reformulation leads to a banded Jacobian with (upper and lower) half bandwidth = num-
ber of species. Then function stode solves the banded problem.

• The second method uses function stodes. Based on the dimension of the problem, the method
first calculates the sparsity pattern of the Jacobian, under the assumption that transport is only
occurring between adjacent layers. Then stodes is called to solve the problem.
As stodes is used to estimate steady-state, it may be necessary to specify the length of the
real work array, lrw.
Although a reasonable guess of lrw is made, it is possible that this will be too low. In this
case, steady.1D will return with an error message telling the size of the work array actually
needed. In the second try then, set lrw equal to this number.
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For single-species 1-D models, use steady.band.

If state variables are arranged as (e.g. A[1],B[1],A[2],B[2],A[3],B[3],... then the model should be
solved with steady.band

In some cases, a cyclic boundary condition exists. This is when the first box interacts with the last
box and vice versa. In this case, there will be extra non-zero fringes in the Jacobian which need
to be taken into account. The occurrence of cyclic boundaries can be toggled on by specifying
argument cyclicBnd=1. If this is the case, then the steady-state will be estimated using stodes.
The default is no cyclic boundaries.

Value

A list containing

y if names is not given: a vector with the state variable values from the last iter-
ation during estimation of steady-state condition of the system of equations. if
names is given, a matrix with one column for every steady-state *component*.

... the number of "global" values returned.

The output will have the attribute steady, which returns TRUE, if steady-state has been reached
and the attribute precis with the precision attained during each iteration.

Note

It is advisable though not mandatory to specify BOTH nspec and dimens. In this case, the solver
can check whether the input makes sense (i.e. if nspec*dimens = length(y))

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

plot.steady1D for plotting the output of steady.1D

steady, for a general interface to most of the steady-state solvers

steady.band, to find the steady-state of ODE models with a banded Jacobian

steady.2D, steady.3D, steady-state solvers for 2-D and 3-D partial differential equations.

stode, iterative steady-state solver for ODEs with full or banded Jacobian.

stodes, iterative steady-state solver for ODEs with arbitrary sparse Jacobian.

runsteady, steady-state solver by dynamically running to steady-state

Examples

## =======================================================================
## EXAMPLE 1: BOD + O2
## =======================================================================
## Biochemical Oxygen Demand (BOD) and oxygen (O2) dynamics
## in a river
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#==================#
# Model equations #
#==================#
O2BOD <- function(t, state, pars) {

BOD <- state[1:N]
O2 <- state[(N+1):(2*N)]

# BOD dynamics
FluxBOD <- v * c(BOD_0, BOD) # fluxes due to water transport
FluxO2 <- v * c(O2_0, O2)

BODrate <- r*BOD*O2/(O2+10) # 1-st order consumption, Monod in oxygen

#rate of change = flux gradient - consumption + reaeration (O2)
dBOD <- -diff(FluxBOD)/dx - BODrate
dO2 <- -diff(FluxO2)/dx - BODrate + p*(O2sat-O2)

return(list(c(dBOD = dBOD, dO2 = dO2), BODrate = BODrate))

} # END O2BOD

#==================#
# Model application#
#==================#
# parameters
dx <- 100 # grid size, meters
v <- 1e2 # velocity, m/day
x <- seq(dx/2, 10000, by = dx) # m, distance from river
N <- length(x)
r <- 0.1 # /day, first-order decay of BOD
p <- 0.1 # /day, air-sea exchange rate
O2sat <- 300 # mmol/m3 saturated oxygen conc
O2_0 <- 50 # mmol/m3 riverine oxygen conc
BOD_0 <- 1500 # mmol/m3 riverine BOD concentration

# initial guess:
state <- c(rep(200, N), rep(200, N))

# solving the model - note: pos=TRUE only allows positive concentrations
print(system.time(
out <- steady.1D (y = state, func = O2BOD, parms = NULL,

nspec = 2, pos = TRUE, names = c("BOD", "O2"))))

#==================#
# Plotting output #
#==================#
mf <- par(mfrow = c(2, 2))
plot(x, out$y[ ,"O2"], xlab = "Distance from river",

ylab = "mmol/m3", main = "Oxygen", type = "l")

plot(x, out$y[ ,"BOD"], xlab = "Distance from river",
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ylab = "mmol/m3", main = "BOD", type = "l")

plot(x, out$BODrate, xlab = "Distance from river",
ylab = "mmol/m3/d", main = "BOD decay rate", type = "l")

par(mfrow=mf)

# same plot in one command
plot(out, which = c("O2","BOD","BODrate"),xlab = "Distance from river",

ylab = c("mmol/m3","mmol/m3","mmol/m3/d"),
main = c("Oxygen","BOD","BOD decay rate"), type = "l")

# same, but now running dynamically to steady-state - no need to set pos = TRUE
print(system.time(
out2 <- steady.1D (y = state, func = O2BOD, parms = NULL, nspec = 2,

time = c(0, 1000), method = "runsteady",
names = c("BOD", "O2"))))

# plot all state variables at once, against "x":
plot(out2, grid=x, xlab = "Distance from river",

ylab = "mmol/m3", type = "l", lwd = 2)

plot(out, out2, grid=x, xlab = "Distance from river", which = "BODrate",
ylab = "mmol/m3", type = "l", lwd = 2)

## =======================================================================
## EXAMPLE 2: Silicate diagenesis
## =======================================================================
## Example from the book:
## Soetaert and Herman (2009).
## a practical guide to ecological modelling -
## using R as a simulation platform.
## Springer

#====================#
# Model equations #
#====================#

SiDIAmodel <- function (time = 0, # time, not used here
Conc, # concentrations: BSi, DSi
parms = NULL) # parameter values; not used

{
BSi<- Conc[1:N]
DSi<- Conc[(N+1):(2*N)]

# transport
# diffusive fluxes at upper interface of each layer

# upper concentration imposed (bwDSi), lower: zero gradient
DSiFlux <- -SedDisp * IntPor *diff(c(bwDSi ,DSi,DSi[N]))/thick
BSiFlux <- -Db *(1-IntPor)*diff(c(BSi[1],BSi,BSi[N]))/thick

BSiFlux[1] <- BSidepo # upper boundary flux is imposed



38 steady.1D

# BSi dissolution
Dissolution <- rDissSi * BSi*(1.- DSi/EquilSi )^pow
Dissolution <- pmax(0,Dissolution)

# Rate of change= Flux gradient, corrected for porosity + dissolution
dDSi <- -diff(DSiFlux)/thick/Porosity + # transport

Dissolution * (1-Porosity)/Porosity # biogeochemistry

dBSi <- -diff(BSiFlux)/thick/(1-Porosity) - Dissolution

return(list(c(dBSi, dDSi), # Rates of changes
Dissolution = Dissolution, # Profile of dissolution rates
DSiSurfFlux = DSiFlux[1], # DSi sediment-water exchange rate
DSIDeepFlux = DSiFlux[N+1], # DSi deep-water (burial) flux
BSiDeepFlux = BSiFlux[N+1])) # BSi deep-water (burial) flux

}

#====================#
# Model run #
#====================#
# sediment parameters
thick <- 0.1 # thickness of sediment layers (cm)
Intdepth <- seq(0, 10, by = thick) # depth at upper interface of layers
Nint <- length(Intdepth) # number of interfaces
Depth <- 0.5*(Intdepth[-Nint] +Intdepth[-1]) # depth at middle of layers
N <- length(Depth) # number of layers

por0 <- 0.9 # surface porosity (-)
pordeep <- 0.7 # deep porosity (-)
porcoef <- 2 # porosity decay coefficient (/cm)
# porosity profile, middle of layers
Porosity <- pordeep + (por0-pordeep)*exp(-Depth*porcoef)
# porosity profile, upper interface
IntPor <- pordeep + (por0-pordeep)*exp(-Intdepth*porcoef)

dB0 <- 1/365 # cm2/day - bioturbation coefficient
dBcoeff <- 2
mixdepth <- 5 # cm
Db <- pmin(dB0, dB0*exp(-(Intdepth-mixdepth)*dBcoeff))

# biogeochemical parameters
SedDisp <- 0.4 # diffusion coefficient, cm2/d
rDissSi <- 0.005 # dissolution rate, /day
EquilSi <- 800 # equilibrium concentration
pow <- 1
BSidepo <- 0.2*100 # nmol/cm2/day
bwDSi <- 150 # mmol/m3

# initial guess of state variables-just random numbers between 0,1
Conc <- runif(2*N)

# three runs with different deposition rates
BSidepo <- 0.2*100 # nmol/cm2/day
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sol <- steady.1D (Conc, func = SiDIAmodel, parms = NULL, nspec = 2,
names = c("DSi", "BSi"))

BSidepo <- 2*100 # nmol/cm2/day
sol2 <- steady.1D (Conc, func = SiDIAmodel, parms = NULL, nspec = 2,

names = c("DSi", "BSi"))

BSidepo <- 3*100 # nmol/cm2/day
sol3 <- steady.1D (Conc, func = SiDIAmodel, parms = NULL, nspec = 2,

names = c("DSi", "BSi"))

#====================#
# plotting output #
#====================#
par(mfrow=c(2,2))

# Plot 3 runs
plot(sol, sol2, sol3, xyswap = TRUE, mfrow = c(2, 2),

xlab = c("mmolSi/m3 liquid", "mmolSi/m3 solid"),
ylab = "Depth", lwd = 2, lty = 1)

legend("bottom", c("0.2", "2", "3"), title = "mmol/m2/d",
lwd = 2, col = 1:3)

plot(Porosity, Depth, ylim = c(10, 0), xlab = "-" ,
main = "Porosity", type = "l", lwd = 2)

plot(Db, Intdepth, ylim = c(10, 0), xlab = "cm2/d",
main = "Bioturbation", type = "l", lwd = 2)

mtext(outer = TRUE, side = 3, line = -2, cex = 1.5, "SiDIAmodel")

# similar, but shorter
plot(sol, sol2, sol3, vertical =TRUE,

lwd = 2, lty = 1,
main = c("DSi [mmol/m3 liq]","BSi [mmol/m3 sol]"),
ylab= "depth [cm]")

legend("bottom", c("0.2", "2", "3"), title = "mmol/m2/d",
lwd = 2, col = 1:3)

steady.2D Steady-state solver for 2-Dimensional ordinary differential equations

Description

Estimates the steady-state condition for a system of ordinary differential equations that result from
2-Dimensional partial differential equation models that have been converted to ODEs by numerical
differencing.

It is assumed that exchange occurs only between adjacent layers.
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Usage

steady.2D(y, time = 0, func, parms = NULL, nspec = NULL,
dimens, names = NULL, method = "stodes",
jactype = NULL, cyclicBnd = NULL, times = time, ...)

Arguments

y the initial guess of (state) values for the ODE system, a vector.

time, times time for which steady-state is wanted; the default is times=0 (for method =
"stodes", and times = c(0,Inf) for method = "runsteady"). (note- since
version 1.7, ’times’ has been added as an alias to ’time’).

func either an R-function that computes the values of the derivatives in the ode system
(the model defininition) at time time, or a character string giving the name of
a compiled function in a dynamically loaded shared library. If func is an R-
function, it must be defined as: yprime = func(t, y, parms,...). t is the
current time point in the integration, y is the current estimate of the variables in
the ODE system. If the initial values y has a names attribute, the names will be
available inside func. parms is a vector or list of parameters; ... (optional) are
any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values whose steady-state value is also required.
The derivatives should be specified in the same order as the state variables y.

parms parameters passed to func.

nspec the number of *species* (components) in the model.

dimens a 2-valued vector with the dimensionality of the model, i.e. the number of
*boxes* in x- and y-direction.

method the solution method, one of "stodes", or "runsteady". When method = ’run-
steady’, then solver lsodes, the sparse solver is used by default, unless argument
jactype is set to "2D", in which case lsode will be used (likely less efficient).
in which case lsodes is used and the structure of the jacobian is determined by
the solver.

jactype the jacobian type - default is a regular 2-D structure where layers only interact
with adjacent layers in both directions. If the structure does not comply with
this, the jacobian can be set equal to 'sparse'.

cyclicBnd if not NULL then a number or a 2-valued vector with the dimensions where a
cyclic boundary is used - 1: x-dimension, 2: y-dimension; see details.

names the names of the components; used to label the output, and for plotting.

... additional arguments passed to function stodes. See example for the use of
argument positive to enforce positive values (pos = TRUE). See details.

Details

This is the method of choice for 2-dimensional models, that are only subjected to transport between
adjacent layers.
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Based on the dimension of the problem, the method first calculates the sparsity pattern of the Jaco-
bian, under the assumption that transport is only occurring between adjacent layers. Then stodes
is called to find the steady-state.

In some cases, a cyclic boundary condition exists. This is when the first boxes in x-or y-direction
interact with the last boxes. In this case, there will be extra non-zero fringes in the Jacobian which
need to be taken into account. The occurrence of cyclic boundaries can be toggled on by specifying
argument cyclicBnd. For innstance, cyclicBnd = 1 indicates that a cyclic boundary is required
only for the x-direction, whereas cyclicBnd = c(1,2) imposes a cyclic boundary for both x- and
y-direction. The default is no cyclic boundaries.

As stodes is used, it will probably be necessary to specify the length of the real work array, lrw.

Although a reasonable guess of lrw is made, it may occur that this will be too low. In this case,
steady.2D will return with an error message telling that there was insufficient storage. In the
second try then, increase lrw. you may need to experiment to find suitable value. The smaller the
better.

An error message that says to increase lrw may look like this:

In stodes(y = y, time = time, func = func, parms = parms, nnz = c(nspec, :
insufficient storage in nnfc

See stodes for the additional options.

Value

A list containing

y a vector with the state variable values from the last iteration during estimation
of steady-state condition of the system of equations.

... the "global" values returned.

The output will have the attribute steady, which returns TRUE, if steady-state has been reached
and the attribute precis with the precision attained during each iteration. Another attribute, called
dims returns a.o. the length of the work array actually required. This can be specified with input
argument lrw. See note and first example

Note

It is advisable though not mandatory to specify BOTH nspec and dimens. In this case, the solver
can check whether the input makes sense (as nspec*dimens[1]*dimens[2] = length(y))

do NOT use this method for problems that are not 2D.

It is likely that the estimated length of the work array (argument lrw), required for the solver stodes
will be too small. If that is the case, the solver will return with an error saying to increase lrw. The
current value of the work array can be found via the attributes of the output. See first example.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>
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See Also

steady, for a general interface to most of the steady-state solvers

steady.band, to find the steady-state of ODE models with a banded Jacobian

steady.1D, steady.3D, steady-state solvers for 1-Dand 3-D partial differential equations.

stode, iterative steady-state solver for ODEs with full or banded Jacobian.

stodes, iterative steady-state solver for ODEs with arbitrary sparse Jacobian.

runsteady, steady-state solver by dynamically running to steady-state

Examples

## =======================================================================
## Diffusion in 2-D; imposed boundary conditions
## =======================================================================
diffusion2D <- function(t, Y, par) {

y <- matrix(nr=n,nc=n,data=Y) # vector to 2-D matrix
dY <- -r*y # consumption
BND <- rep(1,n) # boundary concentration

#diffusion in X-direction; boundaries=imposed concentration
Flux <- -Dx * rbind(y[1,]-BND,(y[2:n,]-y[1:(n-1),]),BND-y[n,])/dx
dY <- dY - (Flux[2:(n+1),]-Flux[1:n,])/dx

#diffusion in Y-direction
Flux <- -Dy * cbind(y[,1]-BND,(y[,2:n]-y[,1:(n-1)]),BND-y[,n])/dy
dY <- dY - (Flux[,2:(n+1)]-Flux[,1:n])/dy

return(list(as.vector(dY)))
}

# parameters
dy <- dx <- 1 # grid size
Dy <- Dx <- 1 # diffusion coeff, X- and Y-direction
r <- 0.025 # consumption rate

n <- 100
y <- matrix(nrow = n, ncol = n, 10.)

# stodes is used, so we should specify the size of the work array (lrw)
# We take a rather large value
# By specifying pos = TRUE, only positive values are allowed.

system.time(
ST2 <- steady.2D(y, func = diffusion2D, parms = NULL, pos = TRUE,

dimens = c(n, n), lrw = 1000000,
atol = 1e-10, rtol = 1e-10, ctol = 1e-10)

)

## Not run: # this takes a long time...
system.time(
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ST3 <- steady.2D(y, func = diffusion2D, parms = NULL,
dimens = c(n, n), lrw = 1000000, method = "runsteady",
time = c(0, 1e6), atol = 1e-10, rtol = 1e-10)

)

## End(Not run)

# the actual size of lrw is in the attributes()$dims vector.
# it is best to set lrw as small as possible
attributes(ST2)

image(ST2, legend = TRUE)

# The hard way of plotting:
#y <- matrix(nr = n, nc = n, data = ST2$y)
# filled.contour(y, color.palette = terrain.colors)

## =======================================================================
## Diffusion in 2-D; extra flux on 2 boundaries, cyclic in y
## =======================================================================

diffusion2Db <- function(t, Y, par) {

y <- matrix(nr=nx,nc=ny,data=Y) # vector to 2-D matrix
dY <- -r*y # consumption

BNDx <- rep(1,nx) # boundary concentration
BNDy <- rep(1,ny) # boundary concentration

#diffusion in X-direction; boundaries=imposed concentration
Flux <- -Dx * rbind(y[1,]-BNDy,(y[2:nx,]-y[1:(nx-1),]),BNDy-y[nx,])/dx
dY <- dY - (Flux[2:(nx+1),]-Flux[1:nx,])/dx

#diffusion in Y-direction
Flux <- -Dy * cbind(y[,1]-BNDx,(y[,2:ny]-y[,1:(ny-1)]),BNDx-y[,ny])/dy
dY <- dY - (Flux[,2:(ny+1)]-Flux[,1:ny])/dy

# extra flux on two sides
dY[,1] <- dY[,1]+ 10
dY[1,] <- dY[1,]+ 10

# and exchange between sides on y-direction
dY[,ny] <- dY[,ny]+ (y[,1]-y[,ny])*10

return(list(as.vector(dY)))
}

# parameters
dy <- dx <- 1 # grid size
Dy <- Dx <- 1 # diffusion coeff, X- and Y-direction
r <- 0.025 # consumption rate

nx <- 50
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ny <- 100
y <- matrix(nrow = nx, ncol = ny, 10.)

print(system.time(
ST2 <- steady.2D(y, func = diffusion2Db, parms = NULL, pos = TRUE,

dimens = c(nx, ny), verbose = TRUE, lrw = 283800,
atol = 1e-10, rtol = 1e-10, ctol = 1e-10,
cyclicBnd = 2) # y-direction: cyclic boundary

))

image(ST2)
#y <- matrix(nrow = nx, ncol = ny, data = ST2$y)
# filled.contour(y,color.palette=terrain.colors)

steady.3D Steady-state solver for 3-Dimensional ordinary differential equations

Description

Estimates the steady-state condition for a system of ordinary differential equations that result from
3-Dimensional partial differential equation models that have been converted to ODEs by numerical
differencing.

It is assumed that exchange occurs only between adjacent layers.

Usage

steady.3D(y, time = 0, func, parms = NULL, nspec = NULL,
dimens, names = NULL, method = "stodes",
jactype = NULL, cyclicBnd = NULL, times = time, ...)

Arguments

y the initial guess of (state) values for the ODE system, a vector.

time, times time for which steady-state is wanted; the default is times=0. (note- since ver-
sion 1.7, ’times’ has been added as an alias to ’time’).

func either an R-function that computes the values of the derivatives in the ode system
(the model defininition) at time time, or a character string giving the name of
a compiled function in a dynamically loaded shared library. If func is an R-
function, it must be defined as: yprime = func(t, y, parms,...). t is the
current time point in the integration, y is the current estimate of the variables in
the ODE system. If the initial values y has a names attribute, the names will be
available inside func. parms is a vector or list of parameters; ... (optional) are
any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values whose steady-state value is also required.
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The derivatives should be specified in the same order as the state variables y.

parms parameters passed to func.

nspec the number of *species* (components) in the model.

dimens a 3-valued vector with the dimensionality of the model, i.e. the number of
*boxes* in x-, y- and z- direction.

method the solution method, one of "stodes", or "runsteady". When method = ’run-
steady’, then solver lsodes, the sparse solver is used by default, unless argument
jactype is set to "2D", in which case lsode will be used (likely less efficient).
in which case lsodes is used and the structure of the jacobian is determined by
the solver.

jactype the jacobian type - default is a regular 2-D structure where layers only interact
with adjacent layers in both directions. If the structure does not comply with
this, the jacobian can be set equal to 'sparse'.

cyclicBnd if not NULL then a number or a 3-valued vector with the dimensions where a
cyclic boundary is used - 1: x-dimension, 2: y-dimension; 3: z-dimension;see
details.

names the names of the components; used to label the output, and for plotting.

... additional arguments passed to function stodes. See note.

Details

This is the method of choice to find the steady-state for 3-dimensional models, that are only sub-
jected to transport between adjacent layers.

Based on the dimension of the problem, the method first calculates the sparsity pattern of the Jaco-
bian, under the assumption that transport is only occurring between adjacent layers. Then stodes
is called to find the steady-state.

In some cases, a cyclic boundary condition exists. This is when the first boxes in x-, y-, or z-
direction interact with the last boxes. In this case, there will be extra non-zero fringes in the Jacobian
which need to be taken into account. The occurrence of cyclic boundaries can be toggled on by
specifying argument cyclicBnd. For innstance, cyclicBnd = 1 indicates that a cyclic boundary is
required only for the x-direction, whereas cyclicBnd = c(1,2) imposes a cyclic boundary for both
x- and y-direction. The default is no cyclic boundaries.

As stodes is used, it will probably be necessary to specify the length of the real work array, lrw.

Although a reasonable guess of lrw is made, it may occur that this will be too low. In this case,
steady.3D will return with an error message telling the size of the work array actually needed. In
the second try then, set lrw equal to this number.

As stodes is used, it will probably be necessary to specify the length of the real work array, lrw.

Although a reasonable guess of lrw is made, it may occur that this will be too low. In this case,
steady.2D will return with an error message telling that there was insufficient storage. In the
second try then, increase lrw. you may need to experiment to find suitable value. The smaller the
better.

The error message that says to increase lrw may look like this:

In stodes(y = y, time = time, func = func, parms = parms, nnz = c(nspec, :
insufficient storage in nnfc
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See stodes for the additional options.

Value

A list containing

y a vector with the state variable values from the last iteration during estimation
of steady-state condition of the system of equations.

... the "global" values returned.

The output will have the attribute steady, which returns TRUE, if steady-state has been reached and
the attribute

precis with the precision attained during each iteration. Another attribute, called dims returns a.o.
the length of the work array actually required. This can be specified with input argument lrw. See
note and first example.

Note

It is advisable though not mandatory to specify BOTH nspec and dimens. In this case, the solver
can check whether the input makes sense (as nspec*dimens[1]*dimens[2]*dimens[3] = length(y))

do NOT use this method for problems that are not 3D.

It is likely that the estimated length of the work array (argument lrw), required for the solver stodes
will be too small. If that is the case, the solver will return with an error saying to increase lrw. The
current value of the work array can be found via the attributes of the output. See first example.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

steady, for a general interface to most of the steady-state solvers

steady.band, to find the steady-state of ODE models with a banded Jacobian

steady.1D, steady.2D, steady-state solvers for 1-D and 2-D partial differential equations.

stode, iterative steady-state solver for ODEs with full or banded Jacobian.

stodes, iterative steady-state solver for ODEs with arbitrary sparse Jacobian.

runsteady, steady-state solver by dynamically running to steady-state

Examples

## =======================================================================
## Diffusion in 3-D; imposed boundary conditions
## =======================================================================
diffusion3D <- function(t, Y, par) {

yy <- array(dim=c(n,n,n),data=Y) # vector to 3-D array
dY <- -r*yy # consumption
BND <- rep(1,n) # boundary concentration
for (i in 1:n) {
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y <- yy[i,,]
#diffusion in X-direction; boundaries=imposed concentration
Flux <- -Dy * rbind(y[1,]-BND,(y[2:n,]-y[1:(n-1),]),BND-y[n,])/dy
dY[i,,] <- dY[i,,] - (Flux[2:(n+1),]-Flux[1:n,])/dy

#diffusion in Y-direction
Flux <- -Dz * cbind(y[,1]-BND,(y[,2:n]-y[,1:(n-1)]),BND-y[,n])/dz
dY[i,,] <- dY[i,,] - (Flux[,2:(n+1)]-Flux[,1:n])/dz

}
for (j in 1:n) {

y <- yy[,j,]
#diffusion in X-direction; boundaries=imposed concentration
Flux <- -Dx * rbind(y[1,]-BND,(y[2:n,]-y[1:(n-1),]),BND-y[n,])/dx
dY[,j,] <- dY[,j,] - (Flux[2:(n+1),]-Flux[1:n,])/dx

#diffusion in Y-direction
Flux <- -Dz * cbind(y[,1]-BND,(y[,2:n]-y[,1:(n-1)]),BND-y[,n])/dz
dY[,j,] <- dY[,j,] - (Flux[,2:(n+1)]-Flux[,1:n])/dz

}
for (k in 1:n) {

y <- yy[,,k]
#diffusion in X-direction; boundaries=imposed concentration
Flux <- -Dx * rbind(y[1,]-BND,(y[2:n,]-y[1:(n-1),]),BND-y[n,])/dx
dY[,,k] <- dY[,,k] - (Flux[2:(n+1),]-Flux[1:n,])/dx

#diffusion in Y-direction
Flux <- -Dy * cbind(y[,1]-BND,(y[,2:n]-y[,1:(n-1)]),BND-y[,n])/dy
dY[,,k] <- dY[,,k] - (Flux[,2:(n+1)]-Flux[,1:n])/dy

}
return(list(as.vector(dY)))

}

# parameters
dy <- dx <- dz <-1 # grid size
Dy <- Dx <- Dz <-1 # diffusion coeff, X- and Y-direction
r <- 0.025 # consumption rate

n <- 10
y <- array(dim=c(n, n, n), data = 10.)

# stodes is used, so we should specify the size of the work array (lrw)
# We take a rather large value initially

print(system.time(
ST3 <- steady.3D(y, func =diffusion3D, parms = NULL, pos = TRUE,

dimens = c(n, n, n), lrw = 100000,
atol = 1e-10, rtol = 1e-10, ctol = 1e-10,
verbose = TRUE)

))

# the actual size of lrw is in the attributes()$dims vector.
# it is best to set lrw as small as possible
attributes(ST3)
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# image plot
y <- array(dim=c(n, n, n), data = ST3$y)
filled.contour(y[ , ,n/2], color.palette = terrain.colors)

# rootSolve's image plot, looping over 3rd dimension
image(ST3, mfrow = c(4,3))

# loop over 1st dimension, contours, legends added
image(ST3, mfrow = c(2, 2), add.contour = TRUE, legend = TRUE,

dimselect = list(x = c(1, 4, 8, 10)))

steady.band Steady-state solver for ordinary differential equations; assumes a
banded jacobian

Description

Estimates the steady-state condition for a system of ordinary differential equations.

Assumes a banded jacobian matrix.

Usage

steady.band(y, time = 0, func, parms = NULL,
nspec = NULL, bandup = nspec, banddown = nspec,
times = time, ...)

Arguments

y the initial guess of (state) values for the ODE system, a vector. If y has a name
attribute, the names will be used to label the output matrix.

time, times time for which steady-state is wanted; the default is times=0. (note- since ver-
sion 1.7, ’times’ has been added as an alias to ’time’).

func either an R-function that computes the values of the derivatives in the ode system
(the model defininition) at time time, or a character string giving the name of
a compiled function in a dynamically loaded shared library. If func is an R-
function, it must be defined as: yprime = func(t, y, parms,...). t is the
current time point in the integration, y is the current estimate of the variables in
the ODE system. If the initial values y has a names attribute, the names will be
available inside func. parms is a vector or list of parameters; ... (optional) are
any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values whose steady-state value is also required.
The derivatives should be specified in the same order as the state variables y.

parms parameters passed to func.
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nspec the number of *species* (components) in the model.

bandup the number of nonzero bands above the Jacobian diagonal.

banddown the number of nonzero bands below the Jacobian diagonal.

... additional arguments passed to function stode.

Details

This is the method of choice for single-species 1-D models.

For multi-species 1-D models, this method can only be used if the state variables are arranged per
box, per species (e.g. A[1],B[1],A[2],B[2],A[3],B[3],.... for species A, B).

Usually a 1-D *model* function will have the species arranged as A[1],A[2],A[3],....B[1],B[2],B[3],....
in this case, use steady.1D

Value

A list containing

y a vector with the state variable values from the last iteration during estimation
of steady-state condition of the system of equations. If y has a names attribute,
it will be used to label the output values.

... the number of "global" values returned.

The output will have the attribute steady, which returns TRUE, if steady-state has been reached and
the attribute precis with the precision attained during each iteration.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

steady, for a general interface to most of the steady-state solvers

steady.1D, steady.2D, steady.3D, steady-state solvers for 1-D, 2-D and 3-D partial differential
equations.

stode, iterative steady-state solver for ODEs with full or banded Jacobian.

stodes, iterative steady-state solver for ODEs with arbitrary sparse Jacobian.

runsteady, steady-state solver by dynamically running to steady-state

Examples

## =======================================================================
## 1000 simultaneous equations, solved 6 times for different
## values of parameter "decay"
## =======================================================================

model <- function (time, OC, parms, decay) {
# model of particles (OC) that sink out of the water and decay
# exponentially declining sinking rate, maximal 100 m/day
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sink <- 100 * exp(-0.01*dist)

# boundary flux; upper boundary=imposed concentration (100)
Flux <- sink * c(100 ,OC)

# Rate of change= Flux gradient and first-order consumption
dOC <- -diff(Flux)/dx - decay*OC
list(dOC, maxC = max(OC))

}

dx <- 1 # thickness of boxes
dist <- seq(0, 1000, by = dx) # water depth at each modeled box interface

ss <- NULL
for (decay in seq(from = 0.1, to = 1.1, by = 0.2))

ss <- cbind(ss, steady.band(runif(1000), func = model,
parms = NULL, nspec = 1, decay = decay)$y)

matplot(ss, 1:1000, type = "l", lwd = 2, main = "steady.band",
ylim=c(1000, 0), ylab = "water depth, m",
xlab = "concentration of sinking particles")

legend("bottomright", legend = seq(from = 0.1, to = 1.1, by = 0.2),
lty = 1:10, title = "decay rate", col = 1:10, lwd = 2)

## =======================================================================
## 5001 simultaneous equations: solve
## dy/dt = 0 = d2y/dx2 + 1/x*dy/dx + (1-1/(4x^2)y - sqrx(x)*cos(x),
## over the interval [1,6], with boundary conditions: y(1)=1, y(6)=-0.5
## =======================================================================

derivs <- function(t, y, parms, x, dx, N, y1, y6) {

# Numerical approximation of derivates:
# d2y/dx2 = (yi+1-2yi+yi-1)/dx^2
d2y <- (c(y[-1],y6) -2*y + c(y1,y[-N])) /dx/dx

# dy/dx = (yi+1-yi-1)/(2dx)
dy <- (c(y[-1],y6) - c(y1,y[-N])) /2/dx

res <- d2y+dy/x+(1-1/(4*x*x))*y-sqrt(x)*cos(x)
return(list(res))

}

dx <- 0.001
x <- seq(1,6,by=dx)
N <- length(x)
y <- steady.band(y = rep(1, N), time = 0, func = derivs, x = x, dx = dx,

N = N, y1 = 1, y6 = -0.5, nspec = 1)$y
plot(x, y, type = "l", main = "5001 nonlinear equations - banded Jacobian")

# add the analytic solution for comparison:
xx <- seq(1, 6, by = 0.1)



stode 51

ana <- 0.0588713*cos(xx)/sqrt(xx)+1/4*sqrt(xx)*cos(xx)+
0.740071*sin(xx)/sqrt(xx)+1/4*xx^(3/2)*sin(xx)

points(xx, ana)
legend("topright", pch = c(NA, 1), lty = c(1, NA),

c("numeric", "analytic"))

stode Iterative steady-state solver for ordinary differential equations (ODE)
and a full or banded Jacobian.

Description

Estimates the steady-state condition for a system of ordinary differential equations (ODE) written
in the form:

dy/dt = f(t, y)

i.e. finds the values of y for which f(t,y) = 0.

Uses a newton-raphson method, implemented in Fortran 77.

The system of ODE’s is written as an R function or defined in compiled code that has been dynam-
ically loaded.

Usage

stode(y, time = 0, func, parms = NULL,
rtol = 1e-6, atol = 1e-8, ctol = 1e-8,
jacfunc = NULL, jactype = "fullint", verbose = FALSE,
bandup = 1, banddown = 1, positive = FALSE,
maxiter = 100, ynames = TRUE,
dllname = NULL, initfunc = dllname, initpar = parms,
rpar = NULL, ipar = NULL, nout = 0, outnames = NULL,
forcings = NULL, initforc = NULL, fcontrol = NULL,
times = time, ...)

Arguments

y the initial guess of (state) values for the ode system, a vector. If y has a name
attribute, the names will be used to label the output matrix.

time, times time for which steady-state is wanted; the default is times=0. (note- since ver-
sion 1.7, ’times’ has been added as an alias to ’time’).

func either a user-supplied function that computes the values of the derivatives in the
ode system (the model definition) at time time, or a character string giving the
name of a compiled function in a dynamically loaded shared library.
If func is a user-supplied function, it must be called as: yprime = func(t, y,
parms, ...). t is the time point at which the steady-state is wanted, y is the
current estimate of the variables in the ode system. If the initial values y has a
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names attribute, the names will be available inside func. parms is a vector of
parameters (which may have a names attribute).
The return value of func should be a list, whose first element is a vector contain-
ing the derivatives of y with respect to time, and whose next elements (possibly
with a names attribute) are global values that are required as output.
The derivatives should be specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before stode() is called. see Details for
more information.

parms other parameters passed to func and jacfunc.

rtol relative error tolerance, either a scalar or a vector, one value for each y.

atol absolute error tolerance, either a scalar or a vector, one value for each y.

ctol if between two iterations, the maximal change in y is less than this amount,
steady-state is assumed to be reached.

jacfunc if not NULL, either a user-supplied R function that estimates the Jacobian of the
system of differential equations dydot(i)/dy(j), or a character string giving the
name of a compiled function in a dynamically loaded shared library as provided
in dllname. In some circumstances, supplying jacfunc can speed up the com-
putations. The R calling sequence for jacfunc is identical to that of func.
If the Jacobian is a full matrix, jacfunc should return a matrix dydot/dy, where
the ith row contains the derivative of dyi/dt with respect to yj , or a vector con-
taining the matrix elements by columns (the way R and Fortran store matrices).
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the jacobian, (dydot/dy), rotated row-wise.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr", or "bandint"
- either full or banded and estimated internally or by the user.

verbose if TRUE: full output to the screen, e.g. will output the steady-state settings.

bandup number of non-zero bands above the diagonal, in case the Jacobian is banded.

banddown number of non-zero bands below the diagonal, in case the jacobian is banded.

positive either a logical or a vector with indices of the state variables that have to be non-
negative; if TRUE, all state variables y are forced to be non-negative numbers.

maxiter maximal number of iterations during one call to the solver.\

ynames if FALSE: names of state variables are not passed to function func ; this may
speed up the simulation especially for multi-D models.

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions referred to in func and
jacfunc.

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See details.

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).
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rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if ‘dllname’ is specified and the model is defined in compiled code:
the number of output variables calculated in the compiled function func, present
in the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the dll - you have to perform this
check in the code - see package vignette.

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library.

forcings only used if ‘dllname’ is specified: a vector with the forcing function values, or
a list with the forcing function data sets, each present as a two-columned matrix,
with (time,value); interpolation outside the interval [min(times), max(times)]
is done by taking the value at the closest data extreme.
This feature is here for compatibility with models defined in compiled code from
package deSolve; see deSolve’s package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
deSolve’s package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See deSolve’s package
vignette "compiledCode".

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

The work is done by a Fortran 77 routine that implements the Newton-Raphson method. It uses
code from LINPACK.

The form of the Jacobian can be specified by jactype which can take the following values:

• jactype = "fullint" : a full jacobian, calculated internally by the solver, the default.

• jactype = "fullusr" : a full jacobian, specified by user function jacfunc.

• jactype = "bandusr" : a banded jacobian, specified by user function jacfunc; the size of the
bands specified by bandup and banddown.

• jactype = "bandint" : a banded jacobian, calculated by the solver; the size of the bands speci-
fied by bandup and banddown.

if jactype= "fullusr" or "bandusr" then the user must supply a subroutine jacfunc.

The input parameters rtol, atol and ctol determine the error control performed by the solver.

The solver will control the vector e of estimated local errors in y, according to an inequality of the
form max-norm of ( e/ewt ) ≤ 1, where ewt is a vector of positive error weights. The values of
rtol and atol should all be non-negative. The form of ewt is:

rtol× abs(y) + atol
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where multiplication of two vectors is element-by-element.

In addition, the solver will stop if between two iterations, the maximal change in the values of y is
less than ctol.

Models may be defined in compiled C or Fortran code, as well as in R.

If func or jacfunc are a string, then they are assumed to be compiled code.

In this case, dllname must give the name of the shared library (without extension) which must be
loaded before stode() is called.

See vignette("rooSolve") for how a model has to be specified in compiled code. Also, vignette("compiledCode")
from package deSolve contains examples of how to do this.

If func is a user-supplied R-function, it must be called as: yprime = func(t, y, parms,...). t is the
time at which the steady-state should be estimated, y is the current estimate of the variables in the
ode system. The return value of func should be a list, whose first element is a vector containing
the derivatives of y with respect to time, and whose next elements contains output variables whose
values at steady-state are also required.

An example is given below:

model<-function(t,y,pars)
{
with (as.list(c(y,pars)),{
Min = r*OM
oxicmin = Min*(O2/(O2+ks))
anoxicmin = Min*(1-O2/(O2+ks))* SO4/(SO4+ks2
dOM = Flux - oxicmin - anoxicmin
dO2 = -oxicmin -2*rox*HS*(O2/(O2+ks)) + D*(BO2-O2)
dSO4 = -0.5*anoxicmin +rox*HS*(O2/(O2+ks)) + D*(BSO4-SO4)
dHS = 0.5*anoxicmin -rox*HS*(O2/(O2+ks)) + D*(BHS-HS)

list(c(dOM,dO2,dSO4,dHS),SumS=SO4+HS)
})
}

This model can be solved as follows:

pars <- c(D=1,Flux=100,r=0.1,rox =1,
ks=1,ks2=1,BO2=100,BSO4=10000,BHS = 0)

y<-c(OM=1,O2=1,SO4=1,HS=1)
ST <- stode(y=y,func=model,parms=pars,pos=TRUE))

Value

A list containing

y a vector with the state variable values from the last iteration during estimation
of steady-state condition of the system of equations. If y has a names attribute,
it will be used to label the output values.

... the number of "global" values returned.
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The output will have the attribute steady, which returns TRUE, if steady-state has been reached
and the attribute precis with an estimate of the precision attained during each iteration, the mean
absolute rate of change (sum(abs(dy))/n).

Note

The implementation of stode and substantial parts of the help file is similar to the implementation
of the integration routines (e.g. lsode) from package deSolve.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

For a description of the Newton-Raphson method, e.g.

Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, BP, 1996. Numerical Recipes in FORTRAN.
The Art of Scientific computing. 2nd edition. Cambridge University Press.

The algorithm uses LINPACK code:

Dongarra, J.J., J.R. Bunch, C.B. Moler and G.W. Stewart, 1979. LINPACK user’s guide, SIAM,
Philadelphia.

See Also

steady, for a general interface to most of the steady-state solvers

steady.band, to find the steady-state of ODE models with a banded Jacobian

steady.1D, steady.2D, steady.3D steady-state solvers for 1-D, 2-D and 3-D partial differential
equations.

stodes, iterative steady-state solver for ODEs with arbitrary sparse Jacobian.

runsteady, steady-state solver by dynamically running to steady-state

Examples

## =======================================================================
## Example 1. A simple sediment biogeochemical model
## =======================================================================

model<-function(t, y, pars)
{

with (as.list(c(y, pars)),{

Min = r*OM
oxicmin = Min*(O2/(O2+ks))
anoxicmin = Min*(1-O2/(O2+ks))* SO4/(SO4+ks2)

dOM = Flux - oxicmin - anoxicmin
dO2 = -oxicmin -2*rox*HS*(O2/(O2+ks)) + D*(BO2-O2)
dSO4 = -0.5*anoxicmin +rox*HS*(O2/(O2+ks)) + D*(BSO4-SO4)
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dHS = 0.5*anoxicmin -rox*HS*(O2/(O2+ks)) + D*(BHS-HS)

list(c(dOM, dO2, dSO4, dHS), SumS = SO4+HS)
})
}

# parameter values
pars <- c(D = 1, Flux = 100, r = 0.1, rox = 1,

ks = 1, ks2 = 1, BO2 = 100, BSO4 = 10000, BHS = 0)
# initial conditions
y<-c(OM = 1, O2 = 1, SO4 = 1, HS = 1)

# direct iteration - enforces positivitiy..
ST <- stode(y = y, func = model, parms = pars, pos = TRUE)

ST

## =======================================================================
## Example 2. 1000 simultaneous equations
## =======================================================================

model <- function (time, OC, parms, decay, ing) {
# model describing organic Carbon (C) in a sediment,
# Upper boundary = imposed flux, lower boundary = zero-gradient
Flux <- v * c(OC[1] ,OC) + # advection

-Kz*diff(c(OC[1],OC,OC[N]))/dx # diffusion;
Flux[1]<- flux # imposed flux

# Rate of change= Flux gradient and first-order consumption
dOC <- -diff(Flux)/dx - decay*OC

# Fraction of OC in first 5 layers is translocated to mean depth
dOC[1:5] <- dOC[1:5] - ing*OC[1:5]
dOC[N/2] <- dOC[N/2] + ing*sum(OC[1:5])
list(dOC)

}

v <- 0.1 # cm/yr
flux <- 10
dx <- 0.01
N <- 1000
dist <- seq(dx/2,by=dx,len=N)
Kz <- 1 #bioturbation (diffusion), cm2/yr
print( system.time(
ss <- stode(runif(N), func = model, parms = NULL, positive = TRUE,

decay = 5, ing = 20)))

plot(ss$y[1:N], dist, ylim = rev(range(dist)), type = "l", lwd = 2,
xlab = "Nonlocal exchange", ylab = "sediment depth",
main = "stode, full jacobian")

## =======================================================================
## Example 3. Solving a system of linear equations
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## =======================================================================

# this example is included to demonstrate how to use the "jactype" option.
# (and that stode is quite efficient).

A <- matrix(nrow = 500, ncol = 500, runif(500*500))
B <- 1:500

# this is how one would solve this in R
print(system.time(X1 <- solve(A, B)))

# to use stode:
# 1. create a function that receives the current estimate of x
# and that returns the difference A%*%x-b, as a list:

fun <- function (t, x, p) # t and p are dummies here...
list(A%*%x-B)

# 2. jfun returns the Jacobian: here this equals "A"
jfun <- function (t, x, p) # all input parameters are dummies

A

# 3. solve with jactype="fullusr" (a full Jacobian, specified by user)
print (system.time(

X <- stode(y = 1:500, func = fun, jactype = "fullusr", jacfunc = jfun)
))

# the results are the same (within precision)
sum((X1-X$y)^2)

stodes Steady-state solver for ordinary differential equations (ODE) with a
sparse jacobian.

Description

Estimates the steady-state condition for a system of ordinary differential equations (ODE) in the
form:

dy/dt = f(t, y)

and where the jacobian matrix df/dy has an arbitrary sparse structure.

Uses a newton-raphson method, implemented in Fortran.

The system of ODE’s is written as an R function or defined in compiled code that has been dynam-
ically loaded.
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Usage

stodes(y, time = 0, func, parms = NULL, rtol = 1e-6, atol = 1e-8,
ctol = 1e-8, sparsetype = "sparseint", verbose = FALSE,
nnz = NULL, inz = NULL, lrw = NULL, ngp = NULL,
positive = FALSE, maxiter = 100, ynames = TRUE,
dllname = NULL, initfunc = dllname, initpar = parms,
rpar = NULL, ipar = NULL, nout = 0, outnames = NULL,
forcings = NULL, initforc = NULL, fcontrol = NULL,
spmethod = "yale", control = NULL, times = time, ...)

Arguments

y the initial guess of (state) values for the ode system, a vector. If y has a name
attribute, the names will be used to label the output matrix.

time, times time for which steady-state is wanted; the default is times=0. (note- since ver-
sion 1.7, ’times’ has been added as an alias to ’time’).

func either a user-supplied function that computes the values of the derivatives in the
ode system (the model definition) at time time, or a character string giving the
name of a compiled function in a dynamically loaded shared library.
If func is a user-supplied function, it must be called as: yprime = func(t,
y, parms). t is the time point at which the steady-state is wanted, y is the
current estimate of the variables in the ode system. If the initial values y has a
names attribute, the names will be available inside func. parms is a vector of
parameters (which may have a names attribute).
The return value of func should be a list, whose first element is a vector contain-
ing the derivatives of y with respect to time, and whose next elements (possibly
with a names attribute) are global values that are required as output.
The derivatives should be specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before stodes() is called. see Details for
more information.

parms other parameters passed to func.

rtol relative error tolerance, either a scalar or a vector, one value for each y.

atol absolute error tolerance, either a scalar or a vector, one value for each y.

ctol if between two iterations, the maximal change in y is less than this amount,
steady-state is assumed to be reached.

sparsetype the sparsity structure of the Jacobian, one of "sparseint", "sparseusr", "sparse-
jan", "sparsereturn", ..., The sparsity can be estimated internally by stodes (first
and last option) or given by the user (other two). See details. Note: setting
sparsetype equal to "sparsereturn" will not solve for steady-state but solely
return the ian and jan vectors.

verbose if TRUE: full output to the screen, e.g. will output the steady-state settings.

nnz the number of nonzero elements in the sparse Jacobian (if this is unknown, use
an estimate); If NULL, a guess will be made, and if not sufficient, stodes will
return with a message indicating the size actually required.
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If a solution is found, the minimal value of nnz actually required is returned by
the solver (1st element of attribute dims).

inz if sparsetype equal to "sparseusr", a two-columned matrix with the (row, col-
umn) indices to the nonzero elements in the sparse Jacobian. If sparsetype =
"sparsejan", a vector with the elements ian followed by the elements jan as used
in the stodes code. See details. In all other cases, ignored. If inz is NULL, the
sparsity will be determined by stodes.

lrw the length of the work array of the solver; due to the sparsicity, this cannot be
readily predicted. If NULL, a guess will be made, and if not sufficient, stodes
will return with a message indicating that lrw should be increased. Therefore,
some experimentation may be necessary to estimate the value of lrw.
If a solution is found, the minimal value of lrw actually required is returned by
the solver (3rd element of attribute dims).
In case of an error induced by a too small value of lrw, its value can be assessed
by the attributes()$dims value.

ngp number of groups of independent state variables. Due to the sparsicity, this can-
not be readily predicted. If NULL, a guess will be made, and if not sufficient,
stodes will return with a message indicating the size actually required. There-
fore, some experimentation may be necessary to estimate the value of ngp
If a solution is found, the minimal value of ngp actually required is returned by
the solver (2nd element of attribute dims.

positive either a logical or a vector with indices of the state variables that have to be non-
negative; if TRUE, the state variables are forced to be non-negative numbers.

maxiter maximal number of iterations during one call to the solver.

ynames if FALSE: names of state variables are not passed to function func ; this may
speed up the simulation especially for multi-D models.

dllname a string giving the name of the shared library (without extension) that contains
all the compiled function or subroutine definitions referred to in func.

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See details.

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func.

nout only used if ‘dllname’ is specified: the number of output variables calculated in
the compiled function func, present in the shared library.

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library.

spmethod the sparse method to be used, one of "yale", "ilut", "ilutp". The default
uses the yale sparse matrix solver; the other use preconditioned GMRES (gen-
eralised minimum residual method) solvers from FORTRAN package sparsekit.
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ilut stands for incomplete LU factorisation with trheshold (or tolerances, drop-
tol); the "p" iin ilutp stands for pivoting.

control only used if spmethod not equal to "yale", a list with the control options of
the preconditioned solvers. The default is list( droptol = 1e-3, permtol =
1e-3, fillin = 10, lenplufac = 2). droptol is the tolerance in ilut, ilutp to
decide when to drop a value. permtol is used in ilutp, to decide whether or not
to permute variables. See Saad 1994, the manual of sparskit and Saad 2003,
chapter 10 for details.

forcings only used if ‘dllname’ is specified: a vector with the forcing function values, or
a list with the forcing function data sets, each present as a two-columned matrix,
with (time,value); interpolation outside the interval [min(times), max(times)]
is done by taking the value at the closest data extreme.
This feature is here for compatibility with models defined in compiled code from
package deSolve; see deSolve’s package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
deSolve’s package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See deSolve’s package
vignette "compiledCode".

... additional arguments passed to func allowing this to be a generic function.

Details

The work is done by a Fortran 77 routine that implements the Newton-Raphson method.

stodes is to be used for problems, where the Jacobian has a sparse structure.

There are several choices for the sparsity specification, selected by argument sparsetype.

• sparsetype = "sparseint". The sparsity is estimated by the solver, based on numerical
differences. In this case, it is advisable to provide an estimate of the number of non-zero
elements in the Jacobian (nnz). This value can be approximate; upon return the number of
nonzero elements actually required will be known (1st element of attribute dims). In this case,
inz need not be specified.

• sparsetype = "sparseusr". The sparsity is determined by the user. In this case, inz should
be a matrix, containing indices (row, column) to the nonzero elements in the Jacobian matrix.
The number of nonzeros nnz will be set equal to the number of rows in inz.

• sparsetype = "sparsejan". The sparsity is also determined by the user. In this case, inz
should be a vector, containting the ian and jan elements of the sparse storage format, as
used in the sparse solver. Elements of ian should be the first n+1 elements of this vector, and
contain the starting locations in jan of columns 1.. n. jan contains the row indices of the
nonzero locations of the jacobian, reading in columnwise order. The number of nonzeros nnz
will be set equal to the length of inz - (n+1).

• sparsetype = "1D", "2D", "3D". The sparsity is estimated by the solver, based on numerical
differences. Assumes finite differences in a 1D, 2D or 3D regular grid - used by functions
ode.1D, ode.2D, ode.3D. Similar are "2Dmap", and "3Dmap", which also include a mapping
variable (passed in nnz).
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The Jacobian itself is always generated by the solver (i.e. there is no provision to provide an analytic
Jacobian).

This is done by perturbing simulataneously a combination of state variables that do not affect each
other.

This significantly reduces computing time. The number of groups with independent state variables
can be given by ngp.

The input parameters rtol, atol and ctol determine the error control performed by the solver.
See help for stode for details.

Models may be defined in compiled C or Fortran code, as well as in R. See package vignette for
details on how to write models in compiled code.

When the spmethod equals ilut or ilutp, a number of parameters can be specified in argument
control. They are:

fillin, the fill-in parameter. Each row of L and each row of U will have a maximum of lfil elements
(excluding the diagonal element). lfil must be >= 0.

droptol, sets the threshold for dropping small terms in the factorization.

When ilutp is chosen the following arguments can also be specified:

permtol = tolerance ratio used to determne whether or not to permute two columns. At step i
columns i and j are permuted when abs(a(i,j))*permtol .gt. abs(a(i,i)) [0 –> never permute; good
values 0.1 to 0.01]

lenplufac = sets the working array - increase its value if a warning.

Value

A list containing

y a vector with the state variable values from the last iteration during estimation
of steady-state condition of the system of equations. If y has a names attribute,
it will be used to label the output values.

... the number of "global" values returned.

The output will have the attribute steady, which returns TRUE, if steady-state has been reached
and the attribute precis with an estimate of the precision attained during each iteration, the mean
absolute rate of change (sum(abs(dy))/n).

In case the argument sparsetype is set to "sparsereturn", then two extra attributes will be returned,
i.e. ian and jan. These can then be used to speed up subsequent calculations - see last example.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

For a description of the Newton-Raphson method, e.g.

Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, BP, 1996. Numerical Recipes in FORTRAN.
The Art of Scientific computing. 2nd edition. Cambridge University Press.
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When spmethod = "yale" then the algorithm uses linear algebra routines from the Yale sparse matrix
package:

Eisenstat, S.C., Gursky, M.C., Schultz, M.H., Sherman, A.H., 1982. Yale Sparse Matrix Package.
i. The symmetric codes. Int. J. Num. meth. Eng. 18, 1145-1151.

else the functions ilut and ilutp from sparsekit package are used:

Yousef Saad, 1994. SPARSKIT: a basic tool kit for sparse matrix computations. VERSION 2

Yousef Saad, 2003. Iterative methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics.

See Also

steady, for a general interface to most of the steady-state solvers

steady.band, to find the steady-state of ODE models with a banded Jacobian

steady.1D, steady.2D, steady.3D, steady-state solvers for 1-D, 2-D and 3-D partial differential
equations.

stode, iterative steady-state solver for ODEs with full or banded Jacobian.

runsteady, steady-state solver by dynamically running to steady-state

Examples

## =======================================================================
## 1000 simultaneous equations
## =======================================================================

model <- function (time, OC, parms, decay, ing)
{
# model describing C in a sediment,
# Upper boundary = imposed flux, lower boundary = zero-gradient
Flux <- v * c(OC[1] ,OC) + # advection

-Kz*diff(c(OC[1],OC,OC[N]))/dx # diffusion;
Flux[1]<- flux # imposed flux

# Rate of change= Flux gradient and first-order consumption
dOC <- -diff(Flux)/dx - decay*OC

# Fraction of OC in first 5 layers is translocated to mean depth
# (layer N/2)
dOC[1:5] <- dOC[1:5] - ing*OC[1:5]
dOC[N/2] <- dOC[N/2] + ing*sum(OC[1:5])
list(dOC)

}

v <- 0.1 # cm/yr
flux <- 10
dx <- 0.01
N <- 1000
dist <- seq(dx/2, by = dx, len = N)
Kz <- 1 #bioturbation (diffusion), cm2/yr
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print(system.time(
ss <- stodes(runif(N), func = model, parms = NULL,

positive = TRUE, decay = 5, ing = 20, verbose = TRUE)
))
plot(ss$y[1:N], dist, ylim = rev(range(dist)), type = "l", lwd = 2,

xlab = "Nonlocal exchange", ylab = "sediment depth",
main = "stodes, sparse jacobian")

# the size of lrw is in the attributes()$dims vector.
attributes(ss)

## =======================================================================
## deriving sparsity structure and speeding up calculations
## =======================================================================

sparse <- stodes(runif(N), func = model, parms = NULL,
sparsetype = "sparsereturn", decay = 5, ing = 20)

ian <- attributes(sparse)$ian
jan <- attributes(sparse)$jan
nnz <- length(jan)
inz <- c(ian, jan)

print(system.time(
s2 <- stodes(runif(N), func = model, parms = NULL, positive = TRUE,

sparsetype = "sparsejan", inz = inz, decay = 5, ing = 20)
))

# Can also be used with steady.1D, by setting jactype = "sparsejan".
# The advantage is this allows easy plotting...

print(system.time(
s2b <- steady.1D(runif(N), func = model, parms = NULL, method = "stodes",

nspec = 1, jactype = "sparsejan", inz = inz,
decay = 5, ing = 20, verbose = FALSE)

))

plot(s2b, grid = dist, xyswap = TRUE, type = "l", lwd = 2,
xlab = "Nonlocal exchange", ylab = "sediment depth",
main = "steady 1-D, sparse jacobian imposed")

uniroot.all Finds many (all) roots of one equation within an interval

Description

The function uniroot.all searches the interval from lower to upper for several roots (i.e., zero’s)
of a function f with respect to its first argument.
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Usage

uniroot.all(f, interval, lower = min(interval), upper = max(interval),
tol = .Machine$double.eps^0.2, maxiter = 1000,
trace = 0, n = 100, ...)

Arguments

f the function for which the root is sought.

interval a vector containing the end-points of the interval to be searched for the root.

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

tol the desired accuracy (convergence tolerance). Passed to function uniroot

maxiter the maximum number of iterations. Passed to function uniroot

trace integer number; if positive, tracing information is produced. Higher values giv-
ing more details. Passed to function uniroot

n number of subintervals in which the root is sought.

... additional named or unnamed arguments to be passed to f (but beware of partial
matching to other arguments).

Details

f will be called as f(x, ...) for a numeric value of x.

Run demo(Jacobandroots) for an example of the use of uniroot.all for steady-state analysis.

See also second example of gradient This example is discussed in the book by Soetaert and Her-
man (2009).

Value

a vector with the roots found in the interval

Note

The function calls uniroot, the basic R-function.

It is not guaranteed that all roots will be recovered.

This will depend on n, the number of subintervals in which the interval is divided.

If the function "touches" the X-axis (i.e. the root is a saddle point), then this root will generally not
be retrieved. (but chances of this are pretty small).

Whereas unitroot passes values one at a time to the function, uniroot.all passes a vector of
values to the function. Therefore f should be written such that it can handle a vector of values. See
last example.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>
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See Also

uniroot for more information about input.

Examples

## =======================================================================
## Mathematical examples
## =======================================================================

# a well-behaved case...
fun <- function (x) cos(2*x)^3

curve(fun(x), 0, 10,main = "uniroot.all")

All <- uniroot.all(fun, c(0, 10))
points(All, y = rep(0, length(All)), pch = 16, cex = 2)

# a difficult case...
f <- function (x) 1/cos(1+x^2)
AA <- uniroot.all(f, c(-5, 5))
curve(f(x), -5, 5, n = 500, main = "uniroot.all")
points(AA, rep(0, length(AA)), col = "red", pch = 16)

f(AA) # !!!

## =======================================================================
## Ecological modelling example
## =======================================================================

# Example from the book of Soetaert and Herman(2009)
# A practical guide to ecological modelling -
# using R as a simulation platform. Springer

r <- 0.05
K <- 10
bet <- 0.1
alf <- 1

# the model : density-dependent growth and sigmoid-type mortality rate
rate <- function(x, r = 0.05) r*x*(1-x/K) - bet*x^2/(x^2+alf^2)

# find all roots within the interval [0,10]
Eq <- uniroot.all(rate, c(0, 10))

# jacobian evaluated at all roots:
# This is just one value - and therefore jacobian = eigenvalue
# the sign of eigenvalue: stability of the root: neg=stable, 0=saddle, pos=unstable

eig <- vector()
for (i in 1:length(Eq))

eig[i] <- sign (gradient(rate, Eq[i]))
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curve(rate(x), ylab = "dx/dt", from = 0, to = 10,
main = "Budworm model, roots",
sub = "Example from Soetaert and Herman, 2009")

abline(h = 0)
points(x = Eq, y = rep(0, length(Eq)), pch = 21, cex = 2,

bg = c("grey", "black", "white")[eig+2] )
legend("topleft", pch = 22, pt.cex = 2,

c("stable", "saddle", "unstable"),
col = c("grey", "black", "white"),
pt.bg = c("grey", "black", "white"))

## =======================================================================
## Vectorisation:
## =======================================================================
# from R-help Digest, Vol 130, Issue 27
#https://stat.ethz.ch/pipermail/r-help/2013-December/364799.html

integrand1 <- function(x) 1/x*dnorm(x)
integrand2 <- function(x) 1/(2*x-50)*dnorm(x)
integrand3 <- function(x, C) 1/(x+C)

res <- function(C) {
integrate(integrand1, lower = 1, upper = 50)$value +
integrate(integrand2, lower = 50, upper = 100)$value -
integrate(integrand3, C = C, lower = 1, upper = 100)$value

}

# uniroot passes one value at a time to the function, so res can be used as such
uniroot(res, c(1, 1000))

# Need to vectorise the function to use uniroot.all:
res <- Vectorize(res)
uniroot.all(res, c(1,1000))
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