Sentiment Analysis via deep learning and gradient boosting models with a lot of the underlying hassle taken care of to make the process as simple as possible. In addition to out-performing traditional, lexicon-based sentiment analysis (see <https://benwiseman.github.io/sentiment.ai/#Benchmarks>), it also allows the user to create embedding vectors for text which can be used in other analyses. GPU acceleration is supported on Windows and Linux.
Version: | 0.1.1 |
Depends: | R (≥ 4.0.0) |
Imports: | data.table (≥ 1.12.8), jsonlite, reticulate (≥ 1.16), roperators (≥ 1.2.0), stats, tensorflow (≥ 2.2.0), tfhub (≥ 0.8.0), utils, xgboost |
Suggests: | rmarkdown, knitr, magrittr, microbenchmark, prettydoc, rappdirs, rstudioapi, text2vec (≥ 0.6) |
Published: | 2022-03-19 |
DOI: | 10.32614/CRAN.package.sentiment.ai |
Author: | Ben Wiseman [cre, aut, ccp],
Steven Nydick |
Maintainer: | Ben Wiseman <benjamin.h.wiseman at gmail.com> |
License: | MIT + file LICENSE |
URL: | https://benwiseman.github.io/sentiment.ai/, https://github.com/BenWiseman/sentiment.ai |
NeedsCompilation: | no |
Materials: | README NEWS |
In views: | NaturalLanguageProcessing |
CRAN checks: | sentiment.ai results |
Reference manual: | sentiment.ai.pdf |
Vignettes: |
sentiment.ai |
Package source: | sentiment.ai_0.1.1.tar.gz |
Windows binaries: | r-devel: sentiment.ai_0.1.1.zip, r-release: sentiment.ai_0.1.1.zip, r-oldrel: sentiment.ai_0.1.1.zip |
macOS binaries: | r-devel (arm64): sentiment.ai_0.1.1.tgz, r-release (arm64): sentiment.ai_0.1.1.tgz, r-oldrel (arm64): sentiment.ai_0.1.1.tgz, r-devel (x86_64): sentiment.ai_0.1.1.tgz, r-release (x86_64): sentiment.ai_0.1.1.tgz, r-oldrel (x86_64): sentiment.ai_0.1.1.tgz |
Old sources: | sentiment.ai archive |
Please use the canonical form https://CRAN.R-project.org/package=sentiment.ai to link to this page.