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as_bootstrap_design Convert a survey design object to a bootstrap replicate design

Description

Converts a survey design object to a replicate design object with replicate weights formed using
a bootstrap method. Supports stratified, cluster samples with one or more stages of sampling. At
each stage of sampling, either simple random sampling (with or without replacement) or unequal
probability sampling (with or without replacement) may be used.
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Usage

as_bootstrap_design(
design,
type = "Rao-Wu-Yue-Beaumont",
replicates = 500,
compress = TRUE,
mse = getOption("survey.replicates.mse"),
samp_method_by_stage = NULL

)

Arguments

design A survey design object created using the ’survey’ (or ’srvyr’) package, with class
'survey.design' or 'svyimputationList'.

type The type of bootstrap to use, which should be chosen based on its applicability
to the sampling method used for the survey. The available types are the follow-
ing:

• "Rao-Wu-Yue-Beaumont" (the default):
The bootstrap method of Beaumont and Émond (2022), which is a gener-
alization of the Rao-Wu-Yue bootstrap, and is applicable to a wide variety
of designs, including single-stage and multistage stratified designs. The de-
sign may have different sampling methods used at different stages. Each
stage of sampling may potentially be PPS (i.e., use unequal probabilities),
with or without replacement, and may potentially use Poisson sampling.

For a stratum with a fixed sample size of n sampling units, resampling
in each replicate resamples (n− 1) sampling units with replacement.

• "Rao-Wu":
The basic Rao-Wu (n − 1) bootstrap method, which is only applicable to
single-stage designs or multistage designs where the first-stage sampling
fractions are small (and can thus be ignored). Accommodates stratified
designs. All sampling within a stratum must be simple random sampling
with or without replacement, although the first-stage sampling is effectively
treated as sampling without replacement.

• "Preston":
Preston’s multistage rescaled bootstrap, which is applicable to single-stage
designs or multistage designs with arbitrary sampling fractions. Accom-
modates stratified designs. All sampling within a stratum must be simple
random sampling with or without replacement.

• "Canty-Davison":
The Canty-Davison bootstrap, which is only applicable to single-stage de-
signs, with arbitrary sampling fractions. Accommodates stratified designs.
All sampling with a stratum must be simple random sampling with or with-
out replacement.

replicates Number of bootstrap replicates (should be as large as possible, given computer
memory/storage limitations). A commonly-recommended default is 500.
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compress Use a compressed representation of the replicate weights matrix. This reduces
the computer memory required to represent the replicate weights and has no
impact on estimates.

mse If TRUE, compute variances from sums of squares around the point estimate
from the full-sample weights, If FALSE, compute variances from sums of squares
around the mean estimate from the replicate weights.

samp_method_by_stage

(Optional). By default, this function will automatically determine the sampling
method used at each stage. However, this argument can be used to ensure the
correct sampling method is identified for each stage.
Accepts a vector with length equal to the number of stages of sampling. Each
element should be one of the following:

• "SRSWOR" - Simple random sampling, without replacement
• "SRSWR" - Simple random sampling, with replacement
• "PPSWOR" - Unequal probabilities of selection, without replacement
• "PPSWR" - Unequal probabilities of selection, with replacement
• "Poisson" - Poisson sampling: each sampling unit is selected into the sam-

ple at most once, with potentially different probabilities of inclusion for
each sampling unit.

Value

A replicate design object, with class svyrep.design, which can be used with the usual functions,
such as svymean() or svyglm().

Use weights(..., type = 'analysis') to extract the matrix of replicate weights.
Use as_data_frame_with_weights() to convert the design object to a data frame with columns
for the full-sample and replicate weights.

References

Beaumont, J.-F.; Émond, N. (2022). "A Bootstrap Variance Estimation Method for Multistage
Sampling and Two-Phase Sampling When Poisson Sampling Is Used at the Second Phase." Stats,
5: 339–357. https://doi.org/10.3390/stats5020019

Canty, A.J.; Davison, A.C. (1999). "Resampling-based variance estimation for labour force sur-
veys." The Statistician, 48: 379-391.

Preston, J. (2009). "Rescaled bootstrap for stratified multistage sampling." Survey Methodology,
35(2): 227-234.

Rao, J.N.K.; Wu, C.F.J.; Yue, K. (1992). "Some recent work on resampling methods for complex
surveys." Survey Methodology, 18: 209–217.

See Also

Use estimate_boot_reps_for_target_cv to help choose the number of bootstrap replicates.

The underlying function for the Rao-Wu-Yue-Beaumont bootstrap is make_rwyb_bootstrap_weights.
Other bootstrap methods are implemented using functions from the ’survey’ package, including:
bootweights (Canty-Davison), subbootweights (Rao-Wu), and mrbweights (Preston).
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For systematic samples, one-PSU-per-stratum designs, or other especially complex sample designs,
one can use the generalized survey bootstrap method. See as_gen_boot_design or make_gen_boot_factors.

Examples

library(survey)
# Example 1: A multistage sample with two stages of SRSWOR

## Load an example dataset from a multistage sample, with two stages of SRSWOR
data("mu284", package = 'survey')
multistage_srswor_design <- svydesign(data = mu284,

ids = ~ id1 + id2,
fpc = ~ n1 + n2)

## Convert the survey design object to a bootstrap design
set.seed(2022)
bootstrap_rep_design <- as_bootstrap_design(multistage_srswor_design,

replicates = 500)

## Compare std. error estimates from bootstrap versus linearization
data.frame(

'Statistic' = c('total', 'mean', 'median'),
'SE (bootstrap)' = c(SE(svytotal(x = ~ y1, design = bootstrap_rep_design)),

SE(svymean(x = ~ y1, design = bootstrap_rep_design)),
SE(svyquantile(x = ~ y1, quantile = 0.5,

design = bootstrap_rep_design))),
'SE (linearization)' = c(SE(svytotal(x = ~ y1, design = multistage_srswor_design)),

SE(svymean(x = ~ y1, design = multistage_srswor_design)),
SE(svyquantile(x = ~ y1, quantile = 0.5,

design = multistage_srswor_design))),
check.names = FALSE

)

# Example 2: A multistage-sample,
# first stage selected with unequal probabilities without replacement
# second stage selected with simple random sampling without replacement

data("library_multistage_sample", package = "svrep")

multistage_pps <- svydesign(data = library_multistage_sample,
ids = ~ PSU_ID + SSU_ID,
fpc = ~ PSU_SAMPLING_PROB + SSU_SAMPLING_PROB,
pps = "brewer")

bootstrap_rep_design <- as_bootstrap_design(
multistage_pps, replicates = 500,
samp_method_by_stage = c("PPSWOR", "SRSWOR")

)

## Compare std. error estimates from bootstrap versus linearization
data.frame(

'Statistic' = c('total', 'mean'),
'SE (bootstrap)' = c(
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SE(svytotal(x = ~ TOTCIR, na.rm = TRUE,
design = bootstrap_rep_design)),

SE(svymean(x = ~ TOTCIR, na.rm = TRUE,
design = bootstrap_rep_design))),

'SE (linearization)' = c(
SE(svytotal(x = ~ TOTCIR, na.rm = TRUE,

design = multistage_pps)),
SE(svymean(x = ~ TOTCIR, na.rm = TRUE,

design = multistage_pps))),
check.names = FALSE

)

as_data_frame_with_weights

Convert a survey design object to a data frame with weights stored as
columns

Description

Convert a survey design object to a data frame with weights stored as columns

Usage

as_data_frame_with_weights(
design,
full_wgt_name = "FULL_SAMPLE_WGT",
rep_wgt_prefix = "REP_WGT_",
vars_to_keep = NULL

)

Arguments

design A survey design object, created with either the survey or srvyr packages.

full_wgt_name The column name to use for the full-sample weights

rep_wgt_prefix For replicate design objects, a prefix to use for the column names of the replicate
weights. The column names will be created by appending the replicate number
after the prefix.

vars_to_keep By default, all variables in the data will be kept. To select only a subset of the
non-weight variables, you can supply a character vector of variable names to
keep.

Value

A data frame, with new columns containing the weights from the survey design object
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Examples

data("lou_vax_survey", package = 'svrep')

library(survey)
# Create a survey design object
survey_design <- svydesign(data = lou_vax_survey,

weights = ~ SAMPLING_WEIGHT,
ids = ~ 1)

rep_survey_design <- as.svrepdesign(survey_design,
type = "boot",
replicates = 10)

# Adjust the weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = rep_survey_design,
reduce_if = RESPONSE_STATUS == "Nonrespondent",
increase_if = RESPONSE_STATUS == "Respondent",
by = c("RACE_ETHNICITY", "EDUC_ATTAINMENT")

)

# Save the survey design object as a data frame
nr_adjusted_data <- as_data_frame_with_weights(

nr_adjusted_design,
full_wgt_name = "NR_ADJUSTED_WGT",
rep_wgt_prefix = "NR_ADJUSTED_REP_WGT_"

)
head(nr_adjusted_data)

# Check the column names of the result
colnames(nr_adjusted_data)

as_fays_gen_rep_design

Convert a survey design object to a replication design using Fay’s gen-
eralized replication method

Description

Converts a survey design object to a replicate design object with replicate weights formed using the
generalized replication method of Fay (1989). The generalized replication method forms replicate
weights from a textbook variance estimator, provided that the variance estimator can be represented
as a quadratic form whose matrix is positive semidefinite (this covers a large class of variance
estimators).
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Usage

as_fays_gen_rep_design(
design,
variance_estimator = NULL,
aux_var_names = NULL,
max_replicates = 500,
balanced = TRUE,
psd_option = "warn",
mse = getOption("survey.replicates.mse"),
compress = TRUE

)

Arguments

design A survey design object created using the ’survey’ (or ’srvyr’) package, with class
'survey.design' or 'svyimputationList'.

variance_estimator

The name of the variance estimator whose quadratic form matrix should be cre-
ated. See variance-estimators for a detailed description of each variance estima-
tor. Options include:

• "Yates-Grundy": The Yates-Grundy variance estimator based on first-
order and second-order inclusion probabilities.

• "Horvitz-Thompson": The Horvitz-Thompson variance estimator based
on first-order and second-order inclusion probabilities.

• "Poisson Horvitz-Thompson": The Horvitz-Thompson variance estima-
tor based on assuming Poisson sampling, with first-order inclusion proba-
bilities inferred from the sampling probabilities of the survey design object.

• "Stratified Multistage SRS": The usual stratified multistage variance es-
timator based on estimating the variance of cluster totals within strata at
each stage.

• "Ultimate Cluster": The usual variance estimator based on estimating the
variance of first-stage cluster totals within first-stage strata.

• "Deville-1": A variance estimator for unequal-probability sampling with-
out replacement, described in Matei and Tillé (2005) as "Deville 1".

• "Deville-2": A variance estimator for unequal-probability sampling with-
out replacement, described in Matei and Tillé (2005) as "Deville 2".

• "Deville-Tille": A variance estimator useful for balanced sampling de-
signs, proposed by Deville and Tillé (2005).

• "SD1": The non-circular successive-differences variance estimator described
by Ash (2014), sometimes used for variance estimation for systematic sam-
pling.

• "SD2": The circular successive-differences variance estimator described
by Ash (2014). This estimator is the basis of the "successive-differences
replication" estimator commonly used for variance estimation for system-
atic sampling.

aux_var_names (Only used if variance_estimator = "Deville-Tille"). A vector of the
names of auxiliary variables used in sampling.
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max_replicates The maximum number of replicates to allow (should be as large as possible,
given computer memory/storage limitations). A commonly-recommended de-
fault is 500. If the number of replicates needed for a balanced, fully-efficient es-
timator is less than max_replicates, then only the number of replicates needed
will be created. If more replicates are needed than max_replicates, then the
full number of replicates needed will be created, but only a random subsample
will be retained.

balanced If balanced=TRUE, the replicates will all contribute equally to variance esti-
mates, but the number of replicates needed may slightly increase.

psd_option Either "warn" (the default) or "error". This option specifies what will happen
if the target variance estimator has a quadratic form matrix which is not positive
semidefinite. This can occasionally happen, particularly for two-phase designs.
If psd_option="error", then an error message will be displayed.
If psd_option="warn", then a warning message will be displayed, and the
quadratic form matrix will be approximated by the most similar positive semidef-
inite matrix. This approximation was suggested by Beaumont and Patak (2012),
who note that this is conservative in the sense of producing overestimates of
variance. Beaumont and Patak (2012) argue that this overestimation is expected
to be small in magnitude. See get_nearest_psd_matrix for details of the ap-
proximation.

mse If TRUE, compute variances from sums of squares around the point estimate
from the full-sample weights, If FALSE, compute variances from sums of squares
around the mean estimate from the replicate weights.

compress This reduces the computer memory required to represent the replicate weights
and has no impact on estimates.

Value

A replicate design object, with class svyrep.design, which can be used with the usual functions,
such as svymean() or svyglm().

Use weights(..., type = 'analysis') to extract the matrix of replicate weights.

Use as_data_frame_with_weights() to convert the design object to a data frame with columns
for the full-sample and replicate weights.

Statistical Details

See Fay (1989) for a full description of this replication method, or see the documentation in
make_fays_gen_rep_factors for implementation details.

See variance-estimators for a description of each variance estimator available for use with this
function.

Use rescale_reps to eliminate negative adjustment factors.

Two-Phase Designs

For a two-phase design, variance_estimator should be a list of variance estimators’ names,
with two elements, such as list('Ultimate Cluster', 'Poisson Horvitz-Thompson'). In two-
phase designs, only the following estimators may be used for the second phase:
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• "Ultimate Cluster"

• "Stratified Multistage SRS"

• "Poisson Horvitz-Thompson"

For statistical details on the handling of two-phase designs, see the documentation for make_twophase_quad_form.

References

The generalized replication method was first proposed in Fay (1984). Fay (1989) refined the gen-
eralized replication method to produce "balanced" replicates, in the sense that each replicate con-
tributes equally to variance estimates. The advantage of balanced replicates is that one can still
obtain a reasonable variance estimate by using only a random subset of the replicates.

- Ash, S. (2014). "Using successive difference replication for estimating variances." Survey Method-
ology, Statistics Canada, 40(1), 47–59.

- Deville, J.-C., and Tillé, Y. (2005). "Variance approximation under balanced sampling." Jour-
nal of Statistical Planning and Inference, 128, 569–591.

- Dippo, Cathryn, Robert Fay, and David Morganstein. 1984. “Computing Variances from Complex
Samples with Replicate Weights.” In, 489–94. Alexandria, VA: American Statistical Association.
http://www.asasrms.org/Proceedings/papers/1984_094.pdf.

- Fay, Robert. 1984. “Some Properties of Estimates of Variance Based on Replication Methods.” In,
495–500. Alexandria, VA: American Statistical Association. http://www.asasrms.org/Proceedings/papers/1984_095.pdf.

- Fay, Robert. 1989. “Theory And Application Of Replicate Weighting For Variance Calculations.”
In, 495–500. Alexandria, VA: American Statistical Association. http://www.asasrms.org/Proceedings/papers/1989_033.pdf

- Matei, Alina, and Yves Tillé. (2005). “Evaluation of Variance Approximations and Estimators in
Maximum Entropy Sampling with Unequal Probability and Fixed Sample Size.” Journal of Official
Statistics, 21(4):543–70.

See Also

For greater customization of the method, make_quad_form_matrix can be used to represent several
common variance estimators as a quadratic form’s matrix, which can then be used as an input to
make_fays_gen_rep_factors.

Examples

if (FALSE) {

library(survey)

## Load an example systematic sample ----
data('library_stsys_sample', package = 'svrep')

## First, ensure data are sorted in same order as was used in sampling
library_stsys_sample <- library_stsys_sample[
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order(library_stsys_sample$SAMPLING_SORT_ORDER),
]

## Create a survey design object
design_obj <- svydesign(

data = library_stsys_sample,
strata = ~ SAMPLING_STRATUM,
ids = ~ 1,
fpc = ~ STRATUM_POP_SIZE

)

## Convert to generalized replicate design

gen_rep_design_sd2 <- as_fays_gen_rep_design(
design = design_obj,
variance_estimator = "SD2",
max_replicates = 250,
mse = TRUE

)

svytotal(x = ~ TOTSTAFF, na.rm = TRUE, design = gen_rep_design_sd2)
}

as_gen_boot_design Convert a survey design object to a generalized bootstrap replicate
design

Description

Converts a survey design object to a replicate design object with replicate weights formed using the
generalized bootstrap method. The generalized survey bootstrap is a method for forming bootstrap
replicate weights from a textbook variance estimator, provided that the variance estimator can be
represented as a quadratic form whose matrix is positive semidefinite (this covers a large class of
variance estimators).

Usage

as_gen_boot_design(
design,
variance_estimator = NULL,
aux_var_names = NULL,
replicates = 500,
tau = "auto",
exact_vcov = FALSE,
psd_option = "warn",
mse = getOption("survey.replicates.mse"),
compress = TRUE

)
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Arguments

design A survey design object created using the ’survey’ (or ’srvyr’) package, with class
'survey.design' or 'svyimputationList'.

variance_estimator

The name of the variance estimator whose quadratic form matrix should be cre-
ated. See variance-estimators for a detailed description of each variance estima-
tor. Options include:

• "Yates-Grundy": The Yates-Grundy variance estimator based on first-
order and second-order inclusion probabilities.

• "Horvitz-Thompson": The Horvitz-Thompson variance estimator based
on first-order and second-order inclusion probabilities.

• "Poisson Horvitz-Thompson": The Horvitz-Thompson variance estima-
tor based on assuming Poisson sampling, with first-order inclusion proba-
bilities inferred from the sampling probabilities of the survey design object.

• "Stratified Multistage SRS": The usual stratified multistage variance es-
timator based on estimating the variance of cluster totals within strata at
each stage.

• "Ultimate Cluster": The usual variance estimator based on estimating the
variance of first-stage cluster totals within first-stage strata.

• "Deville-1": A variance estimator for unequal-probability sampling with-
out replacement, described in Matei and Tillé (2005) as "Deville 1".

• "Deville-2": A variance estimator for unequal-probability sampling with-
out replacement, described in Matei and Tillé (2005) as "Deville 2".

• "Deville-Tille": A variance estimator useful for balanced sampling de-
signs, proposed by Deville and Tillé (2005).

• "SD1": The non-circular successive-differences variance estimator described
by Ash (2014), sometimes used for variance estimation for systematic sam-
pling.

• "SD2": The circular successive-differences variance estimator described
by Ash (2014). This estimator is the basis of the "successive-differences
replication" estimator commonly used for variance estimation for system-
atic sampling.

aux_var_names (Only used if variance_estimator = "Deville-Tille"). A vector of the
names of auxiliary variables used in sampling.

replicates Number of bootstrap replicates (should be as large as possible, given computer
memory/storage limitations). A commonly-recommended default is 500.

tau Either "auto", or a single number. This is the rescaling constant used to avoid
negative weights through the transformation w+τ−1

τ , where w is the original
weight and τ is the rescaling constant tau.
If tau="auto", the rescaling factor is determined automatically as follows: if all
of the adjustment factors are nonnegative, then tau is set equal to 1; otherwise,
tau is set to the smallest value needed to rescale the adjustment factors such that
they are all at least 0.01.

exact_vcov If exact_vcov=TRUE, the replicate factors will be generated such that variance
estimates for totals exactly match the results from the target variance estimator.
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This requires that num_replicates exceeds the rank of Sigma. The replicate
factors are generated by applying PCA-whitening to a collection of draws from
a multivariate Normal distribution, then applying a coloring transformation to
the whitened collection of draws.

psd_option Either "warn" (the default) or "error". This option specifies what will happen
if the target variance estimator has a quadratic form matrix which is not positive
semidefinite. This can occasionally happen, particularly for two-phase designs.
If psd_option="error", then an error message will be displayed.
If psd_option="warn", then a warning message will be displayed, and the
quadratic form matrix will be approximated by the most similar positive semidef-
inite matrix. This approximation was suggested by Beaumont and Patak (2012),
who note that this is conservative in the sense of producing overestimates of
variance. Beaumont and Patak (2012) argue that this overestimation is expected
to be small in magnitude. See get_nearest_psd_matrix for details of the ap-
proximation.

mse If TRUE, compute variances from sums of squares around the point estimate
from the full-sample weights, If FALSE, compute variances from sums of squares
around the mean estimate from the replicate weights.

compress This reduces the computer memory required to represent the replicate weights
and has no impact on estimates.

Value

A replicate design object, with class svyrep.design, which can be used with the usual functions,
such as svymean() or svyglm().

Use weights(..., type = 'analysis') to extract the matrix of replicate weights.

Use as_data_frame_with_weights() to convert the design object to a data frame with columns
for the full-sample and replicate weights.

Statistical Details

Let v(T̂y) be the textbook variance estimator for an estimated population total T̂y of some variable
y. The base weight for case i in our sample is wi, and we let y̆i denote the weighted value wiyi.
Suppose we can represent our textbook variance estimator as a quadratic form: v(T̂y) = y̆Σy̆T , for
some n × n matrix Σ. The only constraint on Σ is that, for our sample, it must be symmetric and
positive semidefinite.

The bootstrapping process createsB sets of replicate weights, where the b-th set of replicate weights
is a vector of length n denoted a(b), whose k-th value is denoted a(b)k . This yields B replicate
estimates of the population total, T̂ ∗(b)y =

∑
k∈s a

(b)
k y̆k, for b = 1, . . . B, which can be used to

estimate sampling variance.

vB

(
T̂y

)
=

∑B
b=1

(
T̂
∗(b)
y − T̂y

)2
B

This bootstrap variance estimator can be written as a quadratic form:
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vB

(
T̂y

)
= y̆′ΣBy̆

where

ΣB =

∑B
b=1

(
a(b) − 1n

) (
a(b) − 1n

)′
B

Note that if the vector of adjustment factors a(b) has expectation 1n and variance-covariance ma-
trix Σ, then we have the bootstrap expectation E∗ (ΣB) = Σ. Since the bootstrap process takes
the sample values y̆ as fixed, the bootstrap expectation of the variance estimator is E∗ (y̆′ΣBy̆) =
y̆′Σy̆. Thus, we can produce a bootstrap variance estimator with the same expectation as the text-
book variance estimator simply by randomly generating a(b) from a distribution with the following
two conditions:
Condition 1: E∗(a) = 1n
Condition 2: E∗ (a− 1n) (a− 1n)

′
= Σ

While there are multiple ways to generate adjustment factors satisfying these conditions, the sim-
plest general method is to simulate from a multivariate normal distribution: a ∼ MVN(1n,Σ).
This is the method used by this function.

Details on Rescaling to Avoid Negative Adjustment Factors

Let A =
[
a(1) · · ·a(b) · · ·a(B)

]
denote the (n×B) matrix of bootstrap adjustment factors. To elim-

inate negative adjustment factors, Beaumont and Patak (2012) propose forming a rescaled matrix
of nonnegative replicate factors AS by rescaling each adjustment factor a(b)k as follows:

a
S,(b)
k =

a
(b)
k + τ − 1

τ

where τ ≥ 1− a(b)k ≥ 1 for all k in {1, . . . , n} and all b in {1, . . . , B}.

The value of τ can be set based on the realized adjustment factor matrix A or by choosing τ prior to
generating the adjustment factor matrix A so that τ is likely to be large enough to prevent negative
bootstrap weights.

If the adjustment factors are rescaled in this manner, it is important to adjust the scale factor used
in estimating the variance with the bootstrap replicates, which becomes τ2

B instead of 1
B .

Prior to rescaling: vB
(
T̂y

)
=

1

B

B∑
b=1

(
T̂ ∗(b)y − T̂y

)2

After rescaling: vB
(
T̂y

)
=
τ2

B

B∑
b=1

(
T̂S∗(b)y − T̂y

)2
When sharing a dataset that uses rescaled weights from a generalized survey bootstrap, the docu-
mentation for the dataset should instruct the user to use replication scale factor τ2

B rather than 1
B

when estimating sampling variances.
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Two-Phase Designs

For a two-phase design, variance_estimator should be a list of variance estimators’ names,
with two elements, such as list('Ultimate Cluster', 'Poisson Horvitz-Thompson'). In two-
phase designs, only the following estimators may be used for the second phase:

• "Ultimate Cluster"

• "Stratified Multistage SRS"

• "Poisson Horvitz-Thompson"

For statistical details on the handling of two-phase designs, see the documentation for make_twophase_quad_form.

References

The generalized survey bootstrap was first proposed by Bertail and Combris (1997). See Beaumont
and Patak (2012) for a clear overview of the generalized survey bootstrap. The generalized survey
bootstrap represents one strategy for forming replication variance estimators in the general frame-
work proposed by Fay (1984) and Dippo, Fay, and Morganstein (1984).

- Ash, S. (2014). "Using successive difference replication for estimating variances." Survey Method-
ology, Statistics Canada, 40(1), 47–59.

- Bellhouse, D.R. (1985). "Computing Methods for Variance Estimation in Complex Surveys."
Journal of Official Statistics, Vol.1, No.3.

- Beaumont, Jean-François, and Zdenek Patak. 2012. “On the Generalized Bootstrap for Sample
Surveys with Special Attention to Poisson Sampling: Generalized Bootstrap for Sample Surveys.”
International Statistical Review 80 (1): 127–48. https://doi.org/10.1111/j.1751-5823.2011.00166.x.

- Bertail, and Combris. 1997. “Bootstrap Généralisé d’un Sondage.” Annales d’Économie Et de
Statistique, no. 46: 49. https://doi.org/10.2307/20076068.

- Deville, J.-C., and Tillé, Y. (2005). "Variance approximation under balanced sampling." Jour-
nal of Statistical Planning and Inference, 128, 569–591.

- Dippo, Cathryn, Robert Fay, and David Morganstein. 1984. “Computing Variances from Complex
Samples with Replicate Weights.” In, 489–94. Alexandria, VA: American Statistical Association.
http://www.asasrms.org/Proceedings/papers/1984_094.pdf.

- Fay, Robert. 1984. “Some Properties of Estimates of Variance Based on Replication Methods.” In,
495–500. Alexandria, VA: American Statistical Association. http://www.asasrms.org/Proceedings/papers/1984_095.pdf.

- Matei, Alina, and Yves Tillé. (2005). “Evaluation of Variance Approximations and Estimators in
Maximum Entropy Sampling with Unequal Probability and Fixed Sample Size.” Journal of Official
Statistics, 21(4):543–70.

See Also

Use estimate_boot_reps_for_target_cv to help choose the number of bootstrap replicates.
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For greater customization of the method, make_quad_form_matrix can be used to represent several
common variance estimators as a quadratic form’s matrix, which can then be used as an input to
make_gen_boot_factors. The function rescale_reps is used to implement the rescaling of the
bootstrap adjustment factors.

See variance-estimators for a description of each variance estimator.

Examples

## Not run:
library(survey)

# Example 1: Bootstrap based on the Yates-Grundy estimator ----
set.seed(2014)

data('election', package = 'survey')

## Create survey design object
pps_design_yg <- svydesign(

data = election_pps,
id = ~1, fpc = ~p,
pps = ppsmat(election_jointprob),
variance = "YG"

)

## Convert to generalized bootstrap replicate design
gen_boot_design_yg <- pps_design_yg |>

as_gen_boot_design(variance_estimator = "Yates-Grundy",
replicates = 1000, tau = "auto")

svytotal(x = ~ Bush + Kerry, design = pps_design_yg)
svytotal(x = ~ Bush + Kerry, design = gen_boot_design_yg)

# Example 2: Bootstrap based on the successive-difference estimator ----

data('library_stsys_sample', package = 'svrep')

## First, ensure data are sorted in same order as was used in sampling
library_stsys_sample <- library_stsys_sample[

order(library_stsys_sample$SAMPLING_SORT_ORDER),
]

## Create a survey design object
design_obj <- svydesign(

data = library_stsys_sample,
strata = ~ SAMPLING_STRATUM,
ids = ~ 1,
fpc = ~ STRATUM_POP_SIZE

)

## Convert to generalized bootstrap replicate design
gen_boot_design_sd2 <- as_gen_boot_design(

design = design_obj,
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variance_estimator = "SD2",
replicates = 2000

)

## Estimate sampling variances
svytotal(x = ~ TOTSTAFF, na.rm = TRUE, design = gen_boot_design_sd2)
svytotal(x = ~ TOTSTAFF, na.rm = TRUE, design = design_obj)

# Example 3: Two-phase sample ----
# -- First stage is stratified systematic sampling,
# -- second stage is response/nonresponse modeled as Poisson sampling

nonresponse_model <- glm(
data = library_stsys_sample,
family = quasibinomial('logit'),
formula = I(RESPONSE_STATUS == "Survey Respondent") ~ 1,
weights = 1/library_stsys_sample$SAMPLING_PROB

)

library_stsys_sample[['RESPONSE_PROPENSITY']] <- predict(
nonresponse_model,
newdata = library_stsys_sample,
type = "response"

)

twophase_design <- twophase(
data = library_stsys_sample,
# Identify cases included in second phase sample
subset = ~ I(RESPONSE_STATUS == "Survey Respondent"),
strata = list(~ SAMPLING_STRATUM, NULL),
id = list(~ 1, ~ 1),
probs = list(NULL, ~ RESPONSE_PROPENSITY),
fpc = list(~ STRATUM_POP_SIZE, NULL),

)

twophase_boot_design <- as_gen_boot_design(
design = twophase_design,
variance_estimator = list(

"SD2", "Poisson Horvitz-Thompson"
)

)

svytotal(x = ~ LIBRARIA, design = twophase_boot_design)

## End(Not run)

as_random_group_jackknife_design

Convert a survey design object to a random-groups jackknife design
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Description

Forms a specified number of jackknife replicates based on grouping primary sampling units (PSUs)
into random, (approximately) equal-sized groups.

Usage

as_random_group_jackknife_design(
design,
replicates = 50,
var_strat = NULL,
var_strat_frac = NULL,
adj_method = "variance-stratum-psus",
scale_method = "variance-stratum-psus",
group_var_name = ".random_group",
compress = TRUE,
mse = getOption("survey.replicates.mse")

)

Arguments

design A survey design object created using the ’survey’ (or ’srvyr’) package, with class
'survey.design' or 'svyimputationList'.

replicates The number of replicates to create for each variance stratum. The total number
of replicates created is the number of variance strata times replicates. Every
design stratum must have at least as many primary sampling units (PSUs), as
replicates.

var_strat Specifies the name of a variable in the data that defines variance strata to use for
the grouped jackknife. If var_strat = NULL, then there is effectively only one
variance stratum.

var_strat_frac Specifies the sampling fraction to use for finite population corrections in each
value of var_strat. Can use either a single number or a variable in the data
corresponding to var_strat.

adj_method Specifies how to calculate the replicate weight adjustment factor. Available op-
tions for adj_method include:

• "variance-stratum-psus" (the default) The replicate weight adjustment for a
unit is based on the number of PSUs in its variance stratum.

• "variance-units" The replicate weight adjustment for a unit is based on the
number of variance units in its variance stratum.

See the section "Adjustment and Scale Methods" for details.

scale_method Specifies how to calculate the scale factor for each replicate. Available options
for scale_method include:

• "variance-stratum-psus" The scale factor for a variance unit is based on its
number of PSUs compared to the number of PSUs in its variance stratum.

• "variance-units" The scale factor for a variance unit is based on the number
of variance units in its variance stratum.
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See the section "Adjustment and Scale Methods" for details.

group_var_name (Optional) The name of a new variable created to save identifiers for which
random group each PSU was grouped into for the purpose of forming replicates.
Specify group_var_name = NULL to avoid creating the variable in the data.

compress Use a compressed representation of the replicate weights matrix. This reduces
the computer memory required to represent the replicate weights and has no
impact on estimates.

mse If TRUE, compute variances from sums of squares around the point estimate
from the full-sample weights, If FALSE, compute variances from sums of squares
around the mean estimate from the replicate weights.

Value

A replicate design object, with class svyrep.design, which can be used with the usual functions,
such as svymean() or svyglm().

Use weights(..., type = 'analysis') to extract the matrix of replicate weights.
Use as_data_frame_with_weights() to convert the design object to a data frame with columns
for the full-sample and replicate weights.

Formation of Random Groups

Within each value of VAR_STRAT, the data are sorted by first-stage sampling strata, and then the
PSUs in each stratum are randomly arranged. Groups are then formed by serially placing PSUs into
each group. The first PSU in the VAR_STRAT is placed into the first group, the second PSU into the
second group, and so on. Once a PSU has been assigned to the last group, the process begins again
by assigning the next PSU to the first group, the PSU after that to the second group, and so on.

The random group that each observation is assigned to can be saved as a variable in the data by
using the function argument group_var_name.

Adjustment and Scale Methods

The jackknife replication variance estimator based on R replicates takes the following form:

v(θ̂) =

R∑
r=1

(1− fr)× cr ×
(
θ̂r − θ̂

)2
where r indexes one of the R sets of replicate weights, cr is a corresponding scale factor for the
r-th replicate, and 1− fr is an optional finite population correction factor that can potentially differ
across variance strata.

To form the replicate weights, the PSUs are divided into H̃ variance strata, and the h̃-th variance
stratum containsGh̃ random groups. The number of replicatesR equals the total number of random

groups across all variance strata: R =
∑H̃
h̃ Gh̃. In other words, each replicate corresponds to one

of the random groups from one of the variance strata.

The weights for replicate r corresponding to random group g within variance stratum h̃ is defined
as follows.

If case i is not in variance stratum h̃, then w(r)
i = wi.
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If case i is in variance stratum h̃ but in random group g, then w(r)
i = ah̃gwi.

Otherwise, if case i is in in random group g of variance stratum h̃, then w(r)
i = 0.

The R function argument adj_method determines how the adjustment factor ah̃g is calculated.
When adj_method = "variance-units", then ah̃g is calculated based on Gh̃, which is the number
of random groups in variance stratum h̃. When adj_method = "variance-stratum-psus", then
ah̃g is calculated based on nh̃g , which is the number of PSUs in random group g in variance stratum
h̃, as well as nh̃, the total number of PSUs in variance stratum h̃.

If adj_method = "variance-units", then:

ah̃g =
Gh̃

Gh̃ − 1

If adj_method = "variance-stratum-psus", then:

ah̃g =
nh̃

nh̃ − nh̃g

The scale factor cr for replicate r corresponding to random group g within variance stratum h̃ is
calculated according to the function argument scale_method.

If scale_method = "variance-units", then:

cr =
Gh̃ − 1

Gh̃

If scale_method = "variance-stratum-psus", then:

cr =
nh̃ − nh̃g

nh̃

The sampling fraction fr used for finite population correction 1− fr is by default assumed to equal
0. However, the user can supply a sampling fraction for each variance stratum using the argument
var_strat_frac.

When variance units in a variance stratum have differing numbers of PSUs, the combination adj_method
= "variance-stratum-psus" and scale_method = "variance-units" is recommended by Val-
liant, Brick, and Dever (2008), corresponding to their method "GJ2".

The random-groups jackknife method often referred to as "DAGJK" corresponds to the options
var_strat = NULL, adj_method = "variance-units", and scale_method = "variance-units".
The DAGJK method will yield upwardly-biased variance estimates for totals if the total number of
PSUs is not a multiple of the total number of replicates (Valliant, Brick, and Dever 2008).

References

See Section 15.5 of Valliant, Dever, and Kreuter (2018) for an introduction to the grouped jackknife
and guidelines for creating the random groups.

- Valliant, R., Dever, J., Kreuter, F. (2018). "Practical Tools for Designing and Weighting Survey
Samples, 2nd edition." New York: Springer.
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See Valliant, Brick, and Dever (2008) for statistical details related to the adj_method and scale_method
arguments.

- Valliant, Richard, Michael Brick, and Jill Dever. 2008. "Weight Adjustments for the Grouped
Jackknife Variance Estimator." Journal of Official Statistics. 24: 469–88.

See Chapter 4 of Wolter (2007) for additional details of the jackknife, including the method based
on random groups.

- Wolter, Kirk. 2007. "Introduction to Variance Estimation." New York, NY: Springer New York.
https://doi.org/10.1007/978-0-387-35099-8.

Examples

library(survey)

# Load example data

data('api', package = 'survey')

api_strat_design <- svydesign(
data = apistrat,
id = ~ 1,
strata = ~stype,
weights = ~pw

)

# Create a random-groups jackknife design

jk_design <- as_random_group_jackknife_design(
api_strat_design,
replicates = 15

)
print(jk_design)

calibrate_to_estimate Calibrate weights from a primary survey to estimated totals from
a control survey, with replicate-weight adjustments that account for
variance of the control totals

Description

Calibrate the weights of a primary survey to match estimated totals from a control survey, using
adjustments to the replicate weights to account for the variance of the estimated control totals.
The adjustments to replicate weights are conducted using the method proposed by Fuller (1998).
This method can be used to implement general calibration as well as post-stratification or raking
specifically (see the details for the calfun parameter).
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Usage

calibrate_to_estimate(
rep_design,
estimate,
vcov_estimate,
cal_formula,
calfun = survey::cal.linear,
bounds = list(lower = -Inf, upper = Inf),
verbose = FALSE,
maxit = 50,
epsilon = 1e-07,
variance = NULL,
col_selection = NULL

)

Arguments

rep_design A replicate design object for the primary survey, created with either the survey
or srvyr packages.

estimate A vector of estimated control totals. The names of entries must match the names
from calling svytotal(x = cal_formula, design = rep_design).

vcov_estimate A variance-covariance matrix for the estimated control totals. The column names
and row names must match the names of estimate.

cal_formula A formula listing the variables to use for calibration. All of these variables must
be included in rep_design.

calfun A calibration function from the survey package, such as cal.linear, cal.raking,
or cal.logit. Use cal.linear for ordinary post-stratification, and cal.raking
for raking. See calibrate for additional details.

bounds Parameter passed to grake for calibration. See calibrate for details.

verbose Parameter passed to grake for calibration. See calibrate for details.

maxit Parameter passed to grake for calibration. See calibrate for details.

epsilon Parameter passed to grake for calibration.
After calibration, the absolute difference between each calibration target and the
calibrated estimate will be no larger than epsilon times (1 plus the absolute
value of the target). See calibrate for details.

variance Parameter passed to grake for calibration. See calibrate for details.

col_selection Optional parameter to determine which replicate columns will have their control
totals perturbed. If supplied, col_selection must be an integer vector with
length equal to the length of estimate.

Details

With the Fuller method, each of k randomly-selected replicate columns from the primary survey
are calibrated to control totals formed by perturbing the k-dimensional vector of estimated control
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totals using a spectral decomposition of the variance-covariance matrix of the estimated control to-
tals. Other replicate columns are simply calibrated to the unperturbed control totals.

Because the set of replicate columns whose control totals are perturbed should be random, there
are multiple ways to ensure that this matching is reproducible. The user can either call set.seed
before using the function, or supply a vector of randomly-selected column indices to the argument
col_selection.

Value

A replicate design object, with full-sample weights calibrated to totals from estimate, and repli-
cate weights adjusted to account for variance of the control totals. The element col_selection
indicates, for each replicate column of the calibrated primary survey, which column of replicate
weights it was matched to from the control survey.

Syntax for Common Types of Calibration

For ratio estimation with an auxiliary variable X, use the following options:
- cal_formula = ~ -1 + X
- variance = 1,
- cal.fun = survey::cal.linear

For post-stratification, use the following option:

- cal.fun = survey::cal.linear

For raking, use the following option:

- cal.fun = survey::cal.raking

References

Fuller, W.A. (1998). "Replication variance estimation for two-phase samples." Statistica Sinica, 8:
1153-1164.

Opsomer, J.D. and A. Erciulescu (2021). "Replication variance estimation after sample-based cali-
bration." Survey Methodology, 47: 265-277.

Examples

## Not run:

# Load example data for primary survey ----

suppressPackageStartupMessages(library(survey))
data(api)

primary_survey <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc) |>
as.svrepdesign(type = "JK1")

# Load example data for control survey ----

control_survey <- svydesign(id = ~ 1, fpc = ~fpc, data = apisrs) |>
as.svrepdesign(type = "JK1")
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# Estimate control totals ----

estimated_controls <- svytotal(x = ~ stype + enroll,
design = control_survey)

control_point_estimates <- coef(estimated_controls)
control_vcov_estimate <- vcov(estimated_controls)

# Calibrate totals for one categorical variable and one numeric ----

calibrated_rep_design <- calibrate_to_estimate(
rep_design = primary_survey,
estimate = control_point_estimates,
vcov_estimate = control_vcov_estimate,
cal_formula = ~ stype + enroll

)

# Inspect estimates before and after calibration ----

##_ For the calibration variables, estimates and standard errors
##_ from calibrated design will match those of the control survey

svytotal(x = ~ stype + enroll, design = primary_survey)
svytotal(x = ~ stype + enroll, design = control_survey)
svytotal(x = ~ stype + enroll, design = calibrated_rep_design)

##_ Estimates from other variables will be changed as well

svymean(x = ~ api00 + api99, design = primary_survey)
svymean(x = ~ api00 + api99, design = control_survey)
svymean(x = ~ api00 + api99, design = calibrated_rep_design)

# Inspect weights before and after calibration ----

summarize_rep_weights(primary_survey, type = 'overall')
summarize_rep_weights(calibrated_rep_design, type = 'overall')

# For reproducibility, specify which columns are randomly selected for Fuller method ----

column_selection <- calibrated_rep_design$col_selection
print(column_selection)

calibrated_rep_design <- calibrate_to_estimate(
rep_design = primary_survey,
estimate = control_point_estimates,
vcov_estimate = control_vcov_estimate,
cal_formula = ~ stype + enroll,
col_selection = column_selection

)

## End(Not run)
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calibrate_to_sample Calibrate weights from a primary survey to estimated totals from
a control survey, with replicate-weight adjustments that account for
variance of the control totals

Description

Calibrate the weights of a primary survey to match estimated totals from a control survey, using
adjustments to the replicate weights to account for the variance of the estimated control totals.
The adjustments to replicate weights are conducted using the method proposed by Opsomer and
Erciulescu (2021). This method can be used to implement general calibration as well as post-
stratification or raking specifically (see the details for the calfun parameter).

Usage

calibrate_to_sample(
primary_rep_design,
control_rep_design,
cal_formula,
calfun = survey::cal.linear,
bounds = list(lower = -Inf, upper = Inf),
verbose = FALSE,
maxit = 50,
epsilon = 1e-07,
variance = NULL,
control_col_matches = NULL

)

Arguments

primary_rep_design

A replicate design object for the primary survey, created with either the survey
or srvyr packages.

control_rep_design

A replicate design object for the control survey.

cal_formula A formula listing the variables to use for calibration. All of these variables must
be included in both primary_rep_design and control_rep_design.

calfun A calibration function from the survey package, such as cal.linear, cal.raking,
or cal.logit. Use cal.linear for ordinary post-stratification, and cal.raking
for raking. See calibrate for additional details.

bounds Parameter passed to grake for calibration. See calibrate for details.

verbose Parameter passed to grake for calibration. See calibrate for details.

maxit Parameter passed to grake for calibration. See calibrate for details.
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epsilon Parameter passed to grake for calibration.
After calibration, the absolute difference between each calibration target and the
calibrated estimate will be no larger than epsilon times (1 plus the absolute
value of the target). See calibrate for details.

variance Parameter passed to grake for calibration. See calibrate for details.
control_col_matches

Optional parameter to control which control survey replicate is matched to each
primary survey replicate. Entries of NA denote a primary survey replicate not
matched to any control survey replicate. If this parameter is not used, matching
is done at random.

Details

With the Opsomer-Erciulescu method, each column of replicate weights from the control survey is
randomly matched to a column of replicate weights from the primary survey, and then the column
from the primary survey is calibrated to control totals estimated by perturbing the control sample’s
full-sample estimates using the estimates from the matched column of replicate weights from the
control survey.

If there are fewer columns of replicate weights in the control survey than in the primary survey,
then not all primary replicate columns will be matched to a replicate column from the control sur-
vey.

If there are more columns of replicate weights in the control survey than in the primary survey,
then the columns of replicate weights in the primary survey will be duplicated k times, where k is
the smallest positive integer such that the resulting number of columns of replicate weights for the
primary survey is greater than or equal to the number of columns of replicate weights in the control
survey.

Because replicate columns of the control survey are matched at random to primary survey replicate
columns, there are multiple ways to ensure that this matching is reproducible. The user can either
call set.seed before using the function, or supply a mapping to the argument control_col_matches.

Value

A replicate design object, with full-sample weights calibrated to totals from control_rep_design,
and replicate weights adjusted to account for variance of the control totals. If primary_rep_design
had fewer columns of replicate weights than control_rep_design, then the number of replicate
columns and the length of rscales will be increased by a multiple k, and the scale will be updated
by dividing by k.

The element control_column_matches indicates, for each replicate column of the calibrated pri-
mary survey, which column of replicate weights it was matched to from the control survey. Columns
which were not matched to control survey replicate column are indicated by NA.

The element degf will be set to match that of the primary survey to ensure that the degrees of
freedom are not erroneously inflated by potential increases in the number of columns of replicate
weights.
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Syntax for Common Types of Calibration

For ratio estimation with an auxiliary variable X, use the following options:
- cal_formula = ~ -1 + X
- variance = 1,
- cal.fun = survey::cal.linear

For post-stratification, use the following option:

- cal.fun = survey::cal.linear

For raking, use the following option:

- cal.fun = survey::cal.raking

References

Opsomer, J.D. and A. Erciulescu (2021). "Replication variance estimation after sample-based cali-
bration." Survey Methodology, 47: 265-277.

Examples

## Not run:

# Load example data for primary survey ----

suppressPackageStartupMessages(library(survey))
data(api)

primary_survey <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc) |>
as.svrepdesign(type = "JK1")

# Load example data for control survey ----

control_survey <- svydesign(id = ~ 1, fpc = ~fpc, data = apisrs) |>
as.svrepdesign(type = "JK1")

# Calibrate totals for one categorical variable and one numeric ----

calibrated_rep_design <- calibrate_to_sample(
primary_rep_design = primary_survey,
control_rep_design = control_survey,
cal_formula = ~ stype + enroll,

)

# Inspect estimates before and after calibration ----

##_ For the calibration variables, estimates and standard errors
##_ from calibrated design will match those of the control survey

svytotal(x = ~ stype + enroll, design = primary_survey)
svytotal(x = ~ stype + enroll, design = control_survey)
svytotal(x = ~ stype + enroll, design = calibrated_rep_design)

##_ Estimates from other variables will be changed as well



28 estimate_boot_reps_for_target_cv

svymean(x = ~ api00 + api99, design = primary_survey)
svymean(x = ~ api00 + api99, design = control_survey)
svymean(x = ~ api00 + api99, design = calibrated_rep_design)

# Inspect weights before and after calibration ----

summarize_rep_weights(primary_survey, type = 'overall')
summarize_rep_weights(calibrated_rep_design, type = 'overall')

# For reproducibility, specify how to match replicates between surveys ----

column_matching <- calibrated_rep_design$control_col_matches
print(column_matching)

calibrated_rep_design <- calibrate_to_sample(
primary_rep_design = primary_survey,
control_rep_design = control_survey,
cal_formula = ~ stype + enroll,
control_col_matches = column_matching

)

## End(Not run)

estimate_boot_reps_for_target_cv

Estimate the number of bootstrap replicates needed to reduce the boot-
strap simulation error to a target level

Description

This function estimates the number of bootstrap replicates needed to reduce the simulation error of
a bootstrap variance estimator to a target level, where "simulation error" is defined as error caused
by using only a finite number of bootstrap replicates and this simulation error is measured as a
simulation coefficient of variation ("simulation CV").

Usage

estimate_boot_reps_for_target_cv(svrepstat, target_cv = 0.05)

Arguments

svrepstat An estimate obtained from a bootstrap replicate survey design object, with a
function such as svymean(..., return.replicates = TRUE) or withReplicates(...,
return.replicates = TRUE).

target_cv A numeric value (or vector of numeric values) between 0 and 1. This is the
target simulation CV for the bootstrap variance estimator.
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Value

A data frame with one row for each value of target_cv. The column TARGET_CV gives the target
coefficient of variation. The column MAX_REPS gives the maximum number of replicates needed for
all of the statistics included in svrepstat. The remaining columns give the number of replicates
needed for each statistic.

Suggested Usage

- Step 1: Determine the largest acceptable level of simulation error for key survey estimates, where
the level of simulation error is measured in terms of the simulation CV. We refer to this as the "target
CV." A conventional value for the target CV is 5%.

- Step 2: Estimate key statistics of interest using a large number of bootstrap replicates (such
as 5,000) and save the estimates from each bootstrap replicate. This can be conveniently done
using a function from the survey package such as svymean(..., return.replicates = TRUE) or
withReplicates(..., return.replicates = TRUE).

- Step 3: Use the function estimate_boot_reps_for_target_cv() to estimate the minimum
number of bootstrap replicates needed to attain the target CV.

Statistical Details

Unlike other replication methods such as the jackknife or balanced repeated replication, the boot-
strap variance estimator’s precision can always be improved by using a larger number of replicates,
as the use of only a finite number of bootstrap replicates introduces simulation error to the variance
estimation process. Simulation error can be measured as a "simulation coefficient of variation"
(CV), which is the ratio of the standard error of a bootstrap estimator to the expectation of that
bootstrap estimator, where the expectation and standard error are evaluated with respect to the boot-
strapping process given the selected sample.

For a statistic θ̂, the simulation CV of the bootstrap variance estimator vB(θ̂) based on B replicate
estimates θ̂?1 , . . . , θ̂

?
B is defined as follows:

CV?(vB(θ̂)) =

√
var?(vB(θ̂))

E?(vB(θ̂))
=
CV?(E2)√

B

where
E2 = (θ̂? − θ̂)2

CV?(E2) =

√
var?(E2)

E?(E2)

and var? and E? are evaluated with respect to the bootstrapping process, given the selected sample.

The simulation CV, denoted CV?(vB(θ̂)), is estimated for a given number of replicates B by es-
timating CV?(E2) using observed values and dividing this by

√
B. If the bootstrap errors are

assumed to be normally distributed, then CV?(E2) =
√

2 and so CV?(vB(θ̂)) would not need to be
estimated. Using observed replicate estimates to estimate the simulation CV instead of assuming
normality allows simulation CV to be used for a a wide array of bootstrap methods.
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References

See Section 3.3 and Section 8 of Beaumont and Patak (2012) for details and an example where the
simulation CV is used to determine the number of bootstrap replicates needed for various alternative
bootstrap methods in an empirical illustration.

Beaumont, J.-F. and Z. Patak. (2012), "On the Generalized Bootstrap for Sample Surveys with Spe-
cial Attention to Poisson Sampling." International Statistical Review, 80: 127-148. doi:10.1111/
j.17515823.2011.00166.x.

See Also

Use estimate_boot_sim_cv to estimate the simulation CV for the number of bootstrap replicates
actually used.

Examples

## Not run:
set.seed(2022)

# Create an example bootstrap survey design object ----
library(survey)
data('api', package = 'survey')

boot_design <- svydesign(id=~1,strata=~stype, weights=~pw,
data=apistrat, fpc=~fpc) |>

svrep::as_bootstrap_design(replicates = 5000)

# Calculate estimates of interest and retain estimates from each replicate ----

estimated_means_and_proportions <- svymean(x = ~ api00 + api99 + stype, design = boot_design,
return.replicates = TRUE)

custom_statistic <- withReplicates(design = boot_design,
return.replicates = TRUE,
theta = function(wts, data) {

numerator <- sum(data$api00 * wts)
denominator <- sum(data$api99 * wts)
statistic <- numerator/denominator
return(statistic)

})
# Determine minimum number of bootstrap replicates needed to obtain given simulation CVs ----

estimate_boot_reps_for_target_cv(
svrepstat = estimated_means_and_proportions,
target_cv = c(0.01, 0.05, 0.10)

)

estimate_boot_reps_for_target_cv(
svrepstat = custom_statistic,
target_cv = c(0.01, 0.05, 0.10)

)

## End(Not run)

https://doi.org/10.1111/j.1751-5823.2011.00166.x
https://doi.org/10.1111/j.1751-5823.2011.00166.x
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estimate_boot_sim_cv Estimate the bootstrap simulation error

Description

Estimates the bootstrap simulation error, expressed as a "simulation coefficient of variation" (CV).

Usage

estimate_boot_sim_cv(svrepstat)

Arguments

svrepstat An estimate obtained from a bootstrap replicate survey design object, with a
function such as svymean(..., return.replicates = TRUE) or withReplicates(...,
return.replicates = TRUE).

Value

A data frame with one row for each statistic. The column STATISTIC gives the name of the statis-
tic. The column SIMULATION_CV gives the estimated simulation CV of the statistic. The column
N_REPLICATES gives the number of bootstrap replicates.

Statistical Details

Unlike other replication methods such as the jackknife or balanced repeated replication, the boot-
strap variance estimator’s precision can always be improved by using a larger number of replicates,
as the use of only a finite number of bootstrap replicates introduces simulation error to the variance
estimation process. Simulation error can be measured as a "simulation coefficient of variation"
(CV), which is the ratio of the standard error of a bootstrap estimator to the expectation of that
bootstrap estimator, where the expectation and standard error are evaluated with respect to the boot-
strapping process given the selected sample.

For a statistic θ̂, the simulation CV of the bootstrap variance estimator vB(θ̂) based on B replicate
estimates θ̂?1 , . . . , θ̂

?
B is defined as follows:

CV?(vB(θ̂)) =

√
var?(vB(θ̂))

E?(vB(θ̂))
=
CV?(E2)√

B

where
E2 = (θ̂? − θ̂)2

CV?(E2) =

√
var?(E2)

E?(E2)

and var? and E? are evaluated with respect to the bootstrapping process, given the selected sample.

The simulation CV, denoted CV?(vB(θ̂)), is estimated for a given number of replicates B by es-
timating CV?(E2) using observed values and dividing this by

√
B. If the bootstrap errors are
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assumed to be normally distributed, then CV?(E2) =
√

2 and so CV?(vB(θ̂)) would not need to be
estimated. Using observed replicate estimates to estimate the simulation CV instead of assuming
normality allows simulation CV to be used for a a wide array of bootstrap methods.

References

See Section 3.3 and Section 8 of Beaumont and Patak (2012) for details and an example where the
simulation CV is used to determine the number of bootstrap replicates needed for various alternative
bootstrap methods in an empirical illustration.

Beaumont, J.-F. and Z. Patak. (2012), "On the Generalized Bootstrap for Sample Surveys with Spe-
cial Attention to Poisson Sampling." International Statistical Review, 80: 127-148. doi:10.1111/
j.17515823.2011.00166.x.

See Also

Use estimate_boot_reps_for_target_cv to help choose the number of bootstrap replicates.

Examples

## Not run:
set.seed(2022)

# Create an example bootstrap survey design object ----
library(survey)
data('api', package = 'survey')

boot_design <- svydesign(id=~1,strata=~stype, weights=~pw,
data=apistrat, fpc=~fpc) |>

svrep::as_bootstrap_design(replicates = 5000)

# Calculate estimates of interest and retain estimates from each replicate ----

estimated_means_and_proportions <- svymean(x = ~ api00 + api99 + stype, design = boot_design,
return.replicates = TRUE)

custom_statistic <- withReplicates(design = boot_design,
return.replicates = TRUE,
theta = function(wts, data) {

numerator <- sum(data$api00 * wts)
denominator <- sum(data$api99 * wts)
statistic <- numerator/denominator
return(statistic)

})
# Estimate simulation CV of bootstrap estimates ----

estimate_boot_sim_cv(
svrepstat = estimated_means_and_proportions

)

estimate_boot_sim_cv(
svrepstat = custom_statistic

)

https://doi.org/10.1111/j.1751-5823.2011.00166.x
https://doi.org/10.1111/j.1751-5823.2011.00166.x
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## End(Not run)

get_design_quad_form Determine the quadratic form matrix of a variance estimator for a
survey design object

Description

Determines the quadratic form matrix of a specified variance estimator, by parsing the information
stored in a survey design object created using the ’survey’ package.

Usage

get_design_quad_form(
design,
variance_estimator,
ensure_psd = FALSE,
aux_var_names = NULL

)

Arguments

design A survey design object created using the ’survey’ (or ’srvyr’) package, with class
'survey.design' or 'svyimputationList'. Also accepts two-phase design
objects with class 'twophase2'; see the section below titled "Two-Phase De-
signs" for more information about handling of two-phase designs.

variance_estimator

The name of the variance estimator whose quadratic form matrix should be cre-
ated.
See the section "Variance Estimators" below. Options include:

• "Yates-Grundy": The Yates-Grundy variance estimator based on first-
order and second-order inclusion probabilities.

• "Horvitz-Thompson": The Horvitz-Thompson variance estimator based
on first-order and second-order inclusion probabilities.

• "Poisson Horvitz-Thompson": The Horvitz-Thompson variance estima-
tor based on assuming Poisson sampling with specified first-order inclusion
probabilities.

• "Stratified Multistage SRS": The usual stratified multistage variance es-
timator based on estimating the variance of cluster totals within strata at
each stage.

• "Ultimate Cluster": The usual variance estimator based on estimating the
variance of first-stage cluster totals within first-stage strata.

• "Deville-1": A variance estimator for unequal-probability sampling with-
out replacement, described in Matei and Tillé (2005) as "Deville 1".

• "Deville-2": A variance estimator for unequal-probability sampling with-
out replacement, described in Matei and Tillé (2005) as "Deville 2".
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• "Deville-Tille": A variance estimator useful for balanced sampling de-
signs, proposed by Deville and Tillé (2005).

• "SD1": The non-circular successive-differences variance estimator described
by Ash (2014), sometimes used for variance estimation for systematic sam-
pling.

• "SD2": The circular successive-differences variance estimator described
by Ash (2014). This estimator is the basis of the "successive-differences
replication" estimator commonly used for variance estimation for system-
atic sampling.

ensure_psd If TRUE (the default), ensures that the result is a positive semidefinite matrix.
This is necessary if the quadratic form is used as an input for replication methods
such as the generalized bootstrap. For mathematical details, please see the doc-
umentation for the function get_nearest_psd_matrix(). The approximation
method is discussed by Beaumont and Patak (2012) in the context of forming
replicate weights for two-phase samples. The authors argue that this approxi-
mation should lead to only a small overestimation of variance.

aux_var_names Only required if variance_estimator = "Deville-Tille". Should be a char-
acter vector of variable names for auxiliary variables to be used in the Breidt
and Chauvet (2011) variance estimator.

Value

A matrix representing the quadratic form of a specified variance estimator, based on extracting in-
formation about clustering, stratification, and selection probabilities from the survey design object.

Variance Estimators

See variance-estimators for a description of each variance estimator.

Two-Phase Designs

For a two-phase design, variance_estimator should be a list of variance estimators’ names,
with two elements, such as list('Ultimate Cluster', 'Poisson Horvitz-Thompson'). In two-
phase designs, only the following estimators may be used for the second phase:

• "Ultimate Cluster"

• "Stratified Multistage SRS"

• "Poisson Horvitz-Thompson"

For statistical details on the handling of two-phase designs, see the documentation for make_twophase_quad_form.

References

- Ash, S. (2014). "Using successive difference replication for estimating variances." Survey Method-
ology, Statistics Canada, 40(1), 47–59.

- Beaumont, Jean-François, and Zdenek Patak. (2012). "On the Generalized Bootstrap for Sample
Surveys with Special Attention to Poisson Sampling: Generalized Bootstrap for Sample Surveys."
International Statistical Review 80 (1): 127–48.
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- Bellhouse, D.R. (1985). "Computing Methods for Variance Estimation in Complex Surveys."
Journal of Official Statistics, Vol.1, No.3.

- Deville, J.-C., and Tillé, Y. (2005). "Variance approximation under balanced sampling." Jour-
nal of Statistical Planning and Inference, 128, 569–591.

- Särndal, C.-E., Swensson, B., & Wretman, J. (1992). "Model Assisted Survey Sampling." Springer
New York.

Examples

## Not run:
# Example 1: Quadratic form for successive-difference variance estimator ----

data('library_stsys_sample', package = 'svrep')

## First, ensure data are sorted in same order as was used in sampling
library_stsys_sample <- library_stsys_sample[

order(library_stsys_sample$SAMPLING_SORT_ORDER),
]

## Create a survey design object
design_obj <- svydesign(

data = library_stsys_sample,
strata = ~ SAMPLING_STRATUM,
ids = ~ 1,
fpc = ~ STRATUM_POP_SIZE

)

## Obtain quadratic form
quad_form_matrix <- get_design_quad_form(

design = design_obj,
variance_estimator = "SD2"

)

## Estimate variance of estimated population total
y <- design_obj$variables$LIBRARIA
wts <- weights(design_obj, type = 'sampling')
y_wtd <- as.matrix(y) * wts
y_wtd[is.na(y_wtd)] <- 0

pop_total <- sum(y_wtd)

var_est <- t(y_wtd) %*% quad_form_matrix %*% y_wtd
std_error <- sqrt(var_est)

print(pop_total); print(std_error)

# Compare to estimate from assuming SRS
svytotal(x = ~ LIBRARIA, na.rm = TRUE,

design = design_obj)



36 get_nearest_psd_matrix

# Example 2: Two-phase design (second phase is nonresponse) ----

## Estimate response propensities, separately by stratum
library_stsys_sample[['RESPONSE_PROB']] <- svyglm(
design = design_obj,
formula = I(RESPONSE_STATUS == "Survey Respondent") ~ SAMPLING_STRATUM,
family = quasibinomial('logistic')

) |> predict(type = 'response')

## Create a survey design object,
## where nonresponse is treated as a second phase of sampling
twophase_design <- twophase(

data = library_stsys_sample,
strata = list(~ SAMPLING_STRATUM, NULL),
id = list(~ 1, ~ 1),
fpc = list(~ STRATUM_POP_SIZE, NULL),
probs = list(NULL, ~ RESPONSE_PROB),
subset = ~ I(RESPONSE_STATUS == "Survey Respondent")

)

## Obtain quadratic form for the two-phase variance estimator,
## where first phase variance contribution estimated
## using the successive differences estimator
## and second phase variance contribution estimated
## using the Horvitz-Thompson estimator
## (with joint probabilities based on assumption of Poisson sampling)
get_design_quad_form(

design = twophase_design,
variance_estimator = list(

"SD2",
"Poisson Horvitz-Thompson"

)
)

## End(Not run)

get_nearest_psd_matrix

Approximates a symmetric, real matrix by the nearest positive semidef-
inite matrix.

Description

Approximates a symmetric, real matrix by the nearest positive semidefinite matrix in the Frobenius
norm, using the method of Higham (1988). For a real, symmetric matrix, this is equivalent to
"zeroing out" negative eigenvalues. See the "Details" section for more information.

Usage

get_nearest_psd_matrix(X)
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Arguments

X A symmetric, real matrix with no missing values.

Details

Let A denote a symmetric, real matrix which is not positive semidefinite. Then we can form the
spectral decomposition A = ΓΛΓ′, where Λ is the diagonal matrix whose entries are eigenvalues
of A. The method of Higham (1988) is to approximate A with Ã = ΓΛ+Γ′, where the ii-th entry
of Λ+ is max(Λii, 0).

Value

The nearest positive semidefinite matrix of the same dimension as X.

References

- Higham, N. J. (1988). "Computing a nearest symmetric positive semidefinite matrix." Linear
Algebra and Its Applications, 103, 103–118.

Examples

X <- matrix(
c(2, 5, 5,
5, 2, 5,
5, 5, 2),

nrow = 3, byrow = TRUE
)
get_nearest_psd_matrix(X)

is_psd_matrix Check whether a matrix is positive semidefinite

Description

Check whether a matrix is positive semidefinite, based on checking for symmetric and negative
eigenvalues.

Usage

is_psd_matrix(X, tolerance = sqrt(.Machine$double.eps))

Arguments

X A matrix with no missing or infinite values.
tolerance Tolerance for controlling whether a tiny computed eigenvalue will actually be

considered negative. Computed negative eigenvalues will be considered nega-
tive if they are less than which are less than -abs(tolerance * max(eigen(X)$values)).
A small nonzero tolerance is recommended since eigenvalues are nearly always
computed with some floating-point error.
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Value

A logical value. TRUE if the matrix is deemed positive semidefinite. Negative otherwise (including
if X is not symmetric).

See Also

The function get_nearest_psd_matrix() can be used to approximate a symmetric matrix which
is not positive semidefinite, by a similar positive semidefinite matrix.

Examples

X <- matrix(
c(2, 5, 5,
5, 2, 5,
5, 5, 2),

nrow = 3, byrow = TRUE
)

is_psd_matrix(X)

eigen(X)$values

libraries Public Libraries Survey (PLS): A Census of U.S. Public Libraries in
FY2020

Description

Data taken from a complete census of public libraries in the United States in FY2020 (April 2020 to
March 2021). The Public Libraries Survey (PLS) is an annual census of public libraries in the U.S.,
including all public libraries identified by state library administrative agencies in the 50 states, the
District of Columbia, and the outlying territories of American Samoa, Guam, the Northern Mariana
Islands, and the U.S. Virgin Islands (Puerto Rico did not participate in FY2020).

The primary dataset, library_census, represents the full microdata from the census. The datasets
library_multistage_sample and library_stsys_sample are samples drawn from library_census
using different sampling methods.

Usage

data(library_census)

data(library_multistage_sample)

data(library_stsys_sample)
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Format

Library Census (library_census):

The dataset includes 9,245 records (one per library) and 23 variables. Each column has a vari-
able label, accessible using the function var_label() from the ’labelled’ package or simply by
calling attr(x, 'label') to a given column. These data include a subset of the variables included
in the public-use data published by PLS, specifically from the Public Library System Data File.
Particularly relevant variables include:

Identifier variables and survey response status:

• FSCSKEY: A unique identifier for libraries.

• LIBNAME: The name of the library

• RESPONSE_STATUS: Response status for the Public Library Survey: indicates whether the
library was a respondent, nonrespondent, or was closed.

Numeric summaries:

• TOTCIR: Total circulation

• VISITS: Total visitors

• REGBOR: Total number of registered users

• TOTSTAFF: Total staff (measured in full-time equivalent staff)

• LIBRARIA: Total librarians (measured in full-time equivalent staff)

• TOTOPEXP: Total operating expenses

• TOTINCM: Total income

• BRANLIB: Number of library branches

• CENTLIB: Number of central library locations

Location:

• LONGITUD: Geocoded longitude (in WGS84 CRS)

• LATITUD: Geocoded latitude (in WGS84 CRS)

• STABR: Two-letter state abbreviation

• CBSA: Five-digit identifer for a core-based statistical area (CBSA)

• MICROF: Flag for a metropolitan or micropolitan statistical area

Library Multistage Sample (library_multistage_sample):

These data represent a two-stage sample (PSUs and SSUs), where the first stage sample is selected
using unequal probability sampling without replacement (PPSWOR) and the second stage sample
is selected using simple random sampling without replacement (SRSWOR).

Includes the same variables as library_census, but with additional design variables.

• PSU_ID: A unique identifier for primary sampling units

• SSU_ID: A unique identifer for secondary sampling units
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• SAMPLING_PROB: Overall inclusion probability

• PSU_SAMPLING_PROB: Inclusion probability for the PSU

• SSU_SAMPLING_PROB: Inclusion probability for the SSU

• PSU_POP_SIZE: The number of PSUs in the population

• SSU_POP_SIZE: The number of population SSUs within the PSU

Library Stratified Systematic Sample (library_stsys_sample):

These data represent a stratified systematic sample.

Includes the same variables as library_census, but with additional design variables.

• SAMPLING_STRATUM: Unique identifier for sampling strata

• STRATUM_POP_SIZE: The population size in the stratum

• SAMPLING_SORT_ORDER: The sort order used before selecting a random systematic sam-
ple

• SAMPLING_PROB: Overall inclusion probability

References

Pelczar, M., Soffronoff, J., Nielsen, E., Li, J., & Mabile, S. (2022). Data File Documentation:
Public Libraries in the United States Fiscal Year 2020. Institute of Museum and Library Services:
Washington, D.C.

lou_pums_microdata ACS PUMS Data for Louisville

Description

Person-level microdata from the American Community Survey (ACS) 2015-2019 public-use micro-
data sample (PUMS) data for Louisville, KY. This microdata sample represents all adults (persons
aged 18 or over) in Louisville, KY.

These data include replicate weights to use for variance estimation.

Usage

data(lou_pums_microdata)
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Format

A data frame with 80 rows and 85 variables

• UNIQUE_ID: Unique identifier for records

• AGE: Age in years (copied from the AGEP variable in the ACS microdata)

• RACE_ETHNICITY: Race and Hispanic/Latino ethnicity derived from RAC1P and HISP
variables of ACS microdata and collapsed to a smaller number of categories.

• SEX: Male or Female

• EDUC_ATTAINMENT: Highest level of education attained (’Less than high school’ or ’High
school or beyond’) derived from SCHL variable in ACS microdata and collapsed to a smaller
number of categories.

• PWGTP: Weights for the full-sample

• PWGTP1-PWGTP80: 80 columns of replicate weights created using the Successive Differ-
ences Replication (SDR) method.

Examples

## Not run:
data(lou_pums_microdata)

# Prepare the data for analysis with the survey package
library(survey)

lou_pums_rep_design <- survey::svrepdesign(
data = lou_pums_microdata,
variables = ~ UNIQUE_ID + AGE + SEX + RACE_ETHNICITY + EDUC_ATTAINMENT,
weights = ~ PWGTP, repweights = "PWGTP\\d{1,2}",
type = "successive-difference",
mse = TRUE

)

# Estimate population proportions
svymean(~ SEX, design = lou_pums_rep_design)

## End(Not run)

lou_vax_survey Louisville Vaccination Survey

Description

A survey measuring Covid-19 vaccination status and a handful of demographic variables, based on
a simple random sample of 1,000 residents of Louisville, Kentucky with an approximately 50%
response rate.

These data were created using simulation.
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Usage

data(lou_vax_survey)

Format

A data frame with 1,000 rows and 6 variables

RESPONSE_STATUS Response status to the survey (’Respondent’ or ’Nonrespondent’)

RACE_ETHNICITY Race and Hispanic/Latino ethnicity derived from RAC1P and HISP vari-
ables of ACS microdata and collapsed to a smaller number of categories.

SEX Male or Female

EDUC_ATTAINMENT Highest level of education attained (’Less than high school’ or ’High
school or beyond’) derived from SCHL variable in ACS microdata and collapsed to a smaller
number of categories.

VAX_STATUS Covid-19 vaccination status (’Vaccinated’ or ’Unvaccinated’)

SAMPLING_WEIGHT Sampling weight: equal for all cases since data come from a simple ran-
dom sample

lou_vax_survey_control_totals

Control totals for the Louisville Vaccination Survey

Description

Control totals to use for raking or post-stratification for the Louisville Vaccination Survey data.
Control totals are population size estimates from the ACS 2015-2019 5-year Public Use Microdata
Sample (PUMS) for specific demographic categories among adults in Jefferson County, KY.

These data were created using simulation.

Usage

data(lou_vax_survey_control_totals)

Format

A nested list object with two lists, poststratification and raking, each of which contains two
elements: estimates and variance-covariance.

poststratification Control totals for the combination of RACE_ETHNICITY, SEX, and EDUC_ATTAINMENT.

• estimates: A numeric vector of estimated population totals.
• variance-covariance: A variance-covariance matrix for the estimated population totals.

raking Separate control totals for each of RACE_ETHNICITY, SEX, and EDUC_ATTAINMENT.

• estimates: A numeric vector of estimated population totals.
• variance-covariance: A variance-covariance matrix for the estimated population totals.
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make_fays_gen_rep_factors

Form replication factors using Fay’s generalized replication method

Description

Generate a matrix of replication factors using Fay’s generalized replication method. This method
yields a fully efficient variance estimator if a sufficient number of replicates is used.

Usage

make_fays_gen_rep_factors(
Sigma,
max_replicates = Matrix::rankMatrix(Sigma) + 4,
balanced = TRUE

)

Arguments

Sigma A quadratic form matrix corresponding to a target variance estimator. Must be
positive semidefinite.

max_replicates The maximum number of replicates to allow. The function will attempt to create
the minimum number of replicates needed to produce a fully-efficient variance
estimator. If more replicates are needed than max_replicates, then the full
number of replicates needed will be created, but only a random subsample will
be retained.

balanced If balanced=TRUE, the replicates will all contribute equally to variance esti-
mates, but the number of replicates needed may slightly increase.

Value

A matrix of replicate factors, with the number of rows matching the number of rows of Sigma and
the number of columns less than or equal to max_replicates. To calculate variance estimates using
these factors, use the overall scale factor given by calling attr(x, "scale") on the result.

Statistical Details

See Fay (1989) for a full explanation of Fay’s generalized replication method. This documentation
provides a brief overview.

Let Σ be the quadratic form matrix for a target variance estimator, which is assumed to be positive
semidefinite. Suppose the rank of Σ is k, and so Σ can be represented by the spectral decomposition
of k eigenvectors and eigenvalues, where the r-th eigenvector and eigenvalue are denoted v(r) and
λr, respectively.

Σ =

k∑
r=1

λrv(r)v
′
(r)
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If balanced = FALSE, then we let H denote an identity matrix with k′ = k rows/columns. If
balanced = TRUE, then we let H be a Hadamard matrix (with all entries equal to 1 or −1), of order
k′ ≥ k. Let Hmr denote the entry in row m and column r of H.

Then k′ replicates are formed as follows. Let r denote a given replicate, with r = 1, ..., k′, and let
c denote some positive constant (yet to be specified).

The r-th replicate adjustment factor fr is formed as:

fr = 1 + c

k∑
m=1

Hmrλ
1
2

(m)v(m)

If balanced = FALSE, then c = 1. If balanced = TRUE, then c = 1√
k′

.

If any of the replicates are negative, you can use rescale_reps, which recalculates the replicate
factors with a smaller value of c.

If all k′ replicates are used, then variance estimates are calculated as:

vrep

(
T̂y

)
=

k′∑
r=1

(
T̂ ∗(r)y − T̂y

)2
For population totals, this replication variance estimator will exactly match the target variance esti-
mator if the number of replicates k′ matches the rank of Σ.

The Number of Replicates

If balanced=TRUE, the number of replicates created may need to increase slightly. This is due to
the fact that a Hadamard matrix of order k′ ≥ k is used to balance the replicates, and it may be
necessary to use order k′ > k.

If the number of replicates k′ is too large for practical purposes, then one can simply retain only a
random subset of R of the k′ replicates. In this case, variances are calculated as follows:

vrep

(
T̂y

)
=
k′

R

R∑
r=1

(
T̂ ∗(r)y − T̂y

)2
This is what happens if max_replicates is less than the matrix rank of Sigma: only a random
subset of the created replicates will be retained.

Subsampling replicates is only recommended when using balanced=TRUE, since in this case every
replicate contributes equally to variance estimates. If balanced=FALSE, then randomly subsampling
replicates is valid but may produce large variation in variance estimates since replicates in that case
may vary greatly in their contribution to variance estimates.

Reproducibility

If balanced=TRUE, a Hadamard matrix is used as described above. The Hadamard matrix is deter-
ministically created using the function hadamard() from the ’survey’ package. However, the order
of rows/columns is randomly permuted before forming replicates.

In general, column-ordering of the replicate weights is random. To ensure exact reproducibility, it
is recommended to call set.seed() before using this function.



make_fays_gen_rep_factors 45

References

Fay, Robert. 1989. "Theory And Application Of Replicate Weighting For Variance Calculations."
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See Also

Use rescale_reps to eliminate negative adjustment factors.

Examples

## Not run:
library(survey)

# Load an example dataset that uses unequal probability sampling ----
data('election', package = 'survey')

# Create matrix to represent the Horvitz-Thompson estimator as a quadratic form ----
n <- nrow(election_pps)
pi <- election_jointprob
horvitz_thompson_matrix <- matrix(nrow = n, ncol = n)
for (i in seq_len(n)) {
for (j in seq_len(n)) {

horvitz_thompson_matrix[i,j] <- 1 - (pi[i,i] * pi[j,j])/pi[i,j]
}

}

## Equivalently:

horvitz_thompson_matrix <- make_quad_form_matrix(
variance_estimator = "Horvitz-Thompson",
joint_probs = election_jointprob

)

# Make generalized replication adjustment factors ----

adjustment_factors <- make_fays_gen_rep_factors(
Sigma = horvitz_thompson_matrix,
max_replicates = 50

)
attr(adjustment_factors, 'scale')

# Compute the Horvitz-Thompson estimate and the replication estimate

ht_estimate <- svydesign(data = election_pps, ids = ~ 1,
prob = diag(election_jointprob),
pps = ppsmat(election_jointprob)) |>

svytotal(x = ~ Kerry)

rep_estimate <- svrepdesign(
data = election_pps,
weights = ~ wt,
repweights = adjustment_factors,
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combined.weights = FALSE,
scale = attr(adjustment_factors, 'scale'),
rscales = rep(1, times = ncol(adjustment_factors)),
type = "other",
mse = TRUE

) |>
svytotal(x = ~ Kerry)

SE(rep_estimate)
SE(ht_estimate)
SE(rep_estimate) / SE(ht_estimate)

## End(Not run)

make_gen_boot_factors Creates replicate factors for the generalized survey bootstrap

Description

Creates replicate factors for the generalized survey bootstrap method. The generalized survey boot-
strap is a method for forming bootstrap replicate weights from a textbook variance estimator, pro-
vided that the variance estimator can be represented as a quadratic form whose matrix is positive
semidefinite (this covers a large class of variance estimators).

Usage

make_gen_boot_factors(Sigma, num_replicates, tau = "auto", exact_vcov = FALSE)

Arguments

Sigma The matrix of the quadratic form used to represent the variance estimator. Must
be positive semidefinite.

num_replicates The number of bootstrap replicates to create.

tau Either "auto", or a single number. This is the rescaling constant used to avoid
negative weights through the transformation w+τ−1

τ , where w is the original
weight and τ is the rescaling constant tau.
If tau="auto", the rescaling factor is determined automatically as follows: if all
of the adjustment factors are nonnegative, then tau is set equal to 1; otherwise,
tau is set to the smallest value needed to rescale the adjustment factors such that
they are all at least 0.01.

exact_vcov If exact_vcov=TRUE, the replicate factors will be generated such that their variance-
covariance matrix exactly matches the target variance estimator’s quadratic form
(within numeric precision). This is desirable as it causes variance estimates
for totals to closely match the values from the target variance estimator. This
requires that num_replicates exceeds the rank of Sigma. The replicate fac-
tors are generated by applying PCA-whitening to a collection of draws from a
multivariate Normal distribution, then applying a coloring transformation to the
whitened collection of draws.
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Value

A matrix with the same number of rows as Sigma, and the number of columns equal to num_replicates.
The object has an attribute named tau which can be retrieved by calling attr(which = 'tau') on
the object. The value tau is a rescaling factor which was used to avoid negative weights.

In addition, the object has attributes named scale and rscales which can be passed directly to
svrepdesign. Note that the value of scale is τ2/B, while the value of rscales is vector of length
B, with every entry equal to 1.

Statistical Details

Let v(T̂y) be the textbook variance estimator for an estimated population total T̂y of some variable
y. The base weight for case i in our sample is wi, and we let y̆i denote the weighted value wiyi.
Suppose we can represent our textbook variance estimator as a quadratic form: v(T̂y) = y̆Σy̆T , for
some n × n matrix Σ. The only constraint on Σ is that, for our sample, it must be symmetric and
positive semidefinite.

The bootstrapping process createsB sets of replicate weights, where the b-th set of replicate weights
is a vector of length n denoted a(b), whose k-th value is denoted a(b)k . This yields B replicate
estimates of the population total, T̂ ∗(b)y =

∑
k∈s a

(b)
k y̆k, for b = 1, . . . B, which can be used to

estimate sampling variance.

vB

(
T̂y

)
=

∑B
b=1

(
T̂
∗(b)
y − T̂y

)2
B

This bootstrap variance estimator can be written as a quadratic form:

vB

(
T̂y

)
= y̆′ΣBy̆

where

ΣB =

∑B
b=1

(
a(b) − 1n

) (
a(b) − 1n

)′
B

Note that if the vector of adjustment factors a(b) has expectation 1n and variance-covariance ma-
trix Σ, then we have the bootstrap expectation E∗ (ΣB) = Σ. Since the bootstrap process takes
the sample values y̆ as fixed, the bootstrap expectation of the variance estimator is E∗ (y̆′ΣBy̆) =
y̆′Σy̆. Thus, we can produce a bootstrap variance estimator with the same expectation as the text-
book variance estimator simply by randomly generating a(b) from a distribution with the following
two conditions:

Condition 1: E∗(a) = 1n
Condition 2: E∗ (a− 1n) (a− 1n)

′
= Σ

While there are multiple ways to generate adjustment factors satisfying these conditions, the sim-
plest general method is to simulate from a multivariate normal distribution: a ∼ MVN(1n,Σ).
This is the method used by this function.
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Details on Rescaling to Avoid Negative Adjustment Factors

Let A =
[
a(1) · · ·a(b) · · ·a(B)

]
denote the (n×B) matrix of bootstrap adjustment factors. To elim-

inate negative adjustment factors, Beaumont and Patak (2012) propose forming a rescaled matrix
of nonnegative replicate factors AS by rescaling each adjustment factor a(b)k as follows:

a
S,(b)
k =

a
(b)
k + τ − 1

τ

where τ ≥ 1− a(b)k ≥ 1 for all k in {1, . . . , n} and all b in {1, . . . , B}.
The value of τ can be set based on the realized adjustment factor matrix A or by choosing τ prior to
generating the adjustment factor matrix A so that τ is likely to be large enough to prevent negative
bootstrap weights.

If the adjustment factors are rescaled in this manner, it is important to adjust the scale factor used
in estimating the variance with the bootstrap replicates, which becomes τ2

B instead of 1
B .

Prior to rescaling: vB
(
T̂y

)
=

1

B

B∑
b=1

(
T̂ ∗(b)y − T̂y

)2

After rescaling: vB
(
T̂y

)
=
τ2

B

B∑
b=1

(
T̂S∗(b)y − T̂y

)2
When sharing a dataset that uses rescaled weights from a generalized survey bootstrap, the docu-
mentation for the dataset should instruct the user to use replication scale factor τ2

B rather than 1
B

when estimating sampling variances.
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See Also

The function make_quad_form_matrix can be used to represent several common variance estima-
tors as a quadratic form’s matrix, which can then be used as an input to make_gen_boot_factors().

Examples

## Not run:
library(survey)

# Load an example dataset that uses unequal probability sampling ----
data('election', package = 'survey')

# Create matrix to represent the Horvitz-Thompson estimator as a quadratic form ----
n <- nrow(election_pps)
pi <- election_jointprob
horvitz_thompson_matrix <- matrix(nrow = n, ncol = n)
for (i in seq_len(n)) {
for (j in seq_len(n)) {

horvitz_thompson_matrix[i,j] <- 1 - (pi[i,i] * pi[j,j])/pi[i,j]
}

}

## Equivalently:

horvitz_thompson_matrix <- make_quad_form_matrix(
variance_estimator = "Horvitz-Thompson",
joint_probs = election_jointprob

)

# Make generalized bootstrap adjustment factors ----

bootstrap_adjustment_factors <- make_gen_boot_factors(
Sigma = horvitz_thompson_matrix,
num_replicates = 80,
tau = 'auto'

)

# Determine replication scale factor for variance estimation ----
tau <- attr(bootstrap_adjustment_factors, 'tau')
B <- ncol(bootstrap_adjustment_factors)
replication_scaling_constant <- tau^2 / B

# Create a replicate design object ----
election_pps_bootstrap_design <- svrepdesign(

data = election_pps,
weights = 1 / diag(election_jointprob),
repweights = bootstrap_adjustment_factors,
combined.weights = FALSE,
type = "other",
scale = attr(bootstrap_adjustment_factors, 'scale'),
rscales = attr(bootstrap_adjustment_factors, 'rscales')

)
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# Compare estimates to Horvitz-Thompson estimator ----

election_pps_ht_design <- svydesign(
id = ~1,
fpc = ~p,
data = election_pps,
pps = ppsmat(election_jointprob),
variance = "HT"

)

svytotal(x = ~ Bush + Kerry,
design = election_pps_bootstrap_design)

svytotal(x = ~ Bush + Kerry,
design = election_pps_ht_design)

## End(Not run)

make_quad_form_matrix Represent a variance estimator as a quadratic form

Description

Common variance estimators for estimated population totals can be represented as a quadratic form.
Given a choice of variance estimator and information about the sample design, this function con-
structs the matrix of the quadratic form.

In notation, let v(Ŷ ) = y̆′Σy̆, where y̆ is the vector of weighted values, yi/πi, i = 1, . . . , n.
This function constructs the n× n matrix of the quadratic form, Σ.

Usage

make_quad_form_matrix(
variance_estimator = "Yates-Grundy",
probs = NULL,
joint_probs = NULL,
cluster_ids = NULL,
strata_ids = NULL,
strata_pop_sizes = NULL,
sort_order = NULL,
aux_vars = NULL

)

Arguments

variance_estimator

The name of the variance estimator whose quadratic form matrix should be cre-
ated. See the section "Variance Estimators" below. Options include:
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• "Yates-Grundy": The Yates-Grundy variance estimator based on first-
order and second-order inclusion probabilities. If this is used, the argument
joint_probs must also be used.

• "Horvitz-Thompson": The Horvitz-Thompson variance estimator based
on first-order and second-order inclusion probabilities. If this is used, the
argument joint_probs must also be used.

• "Stratified Multistage SRS": The usual stratified multistage variance esti-
mator based on estimating the variance of cluster totals within strata at each
stage. If this option is used, then it is necessary to also use the arguments
strata_ids, cluster_ids, strata_pop_sizes, and strata_pop_sizes.

• "Ultimate Cluster": The usual variance estimator based on estimating the
variance of first-stage cluster totals within first-stage strata. If this op-
tion is used, then it is necessary to also use the arguments strata_ids,
cluster_ids, strata_pop_sizes. Optionally, to use finite population
correction factors, one can also use the argument strata_pop_sizes.

• "Deville-1": A variance estimator for unequal-probability sampling with-
out replacement, described in Matei and Tillé (2005) as "Deville 1". If this
option is used, then it is necessary to also use the arguments strata_ids,
cluster_ids, and probs.

• "Deville-2": A variance estimator for unequal-probability sampling with-
out replacement, described in Matei and Tillé (2005) as "Deville 2". If this
option is used, then it is necessary to also use the arguments strata_ids,
cluster_ids, and probs.

• "SD1": The non-circular successive-differences variance estimator described
by Ash (2014), sometimes used for variance estimation for systematic sam-
pling.

• "SD2": The circular successive-differences variance estimator described
by Ash (2014). This estimator is the basis of the "successive-differences
replication" estimator commonly used for variance estimation for system-
atic sampling.

• "Deville-Tille": The estimator of Deville and Tillé (2005), developed for
balanced sampling using the cube method.

probs Required if variance_estimator equals "Deville-1", "Deville-2", or "Breidt-Chauvet".
This should be a matrix or data frame of sampling probabilities. If there are
multiple stages of sampling, then probs can have multiple columns, with one
column for each level of sampling to be accounted for by the variance estimator.

joint_probs Only used if variance_estimator = "Horvitz-Thompson" or variance_estimator
= "Yates-Grundy". This should be a matrix of joint inclusion probabilities. El-
ement [i,i] of the matrix is the first-order inclusion probability of unit i, while
element [i,j] is the joint inclusion probability of units i and j.

cluster_ids Required unless variance_estimator equals "Horvitz-Thompson" or "Yates-Grundy".
This should be a matrix or data frame of cluster IDs. If there are multiple stages
of sampling, then cluster_ids can have multiple columns, with one column
for each level of sampling to be accounted for by the variance estimator.

strata_ids Required if variance_estimator equals "Stratified Multistage SRS" or
"Ultimate Cluster". This should be a matrix or data frame of strata IDs.
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If there are multiple stages of sampling, then strata_ids can have multiple
columns, with one column for each level of sampling to be accounted for by the
variance estimator.

strata_pop_sizes

Required if variance_estimator equals "Stratified Multistage SRS", but
can optionally be used if variance_estimator equals "Ultimate Cluster",
"SD1", or "SD2". If there are multiple stages of sampling, then strata_pop_sizes
can have multiple columns, with one column for each level of sampling to be
accounted for by the variance estimator.

sort_order Required if variance_estimator equals "SD1" or "SD2". This should be a
vector that orders the rows of data into the order used for sampling.

aux_vars Required if variance_estimator equals "Deville-Tille". A matrix of aux-
iliary variables.

Value

The matrix of the quadratic form representing the variance estimator.

Variance Estimators

See variance-estimators for a description of each variance estimator.

Arguments required for each variance estimator

Below are the arguments that are required or optional for each variance estimator.

variance_estimator probs joint_probs cluster_ids strata_ids strata_pop_sizes sort_order aux_vars
Stratified Multistage SRS Required Required Required
Ultimate Cluster Required Required Optional
SD1 Required Optional Optional Required
SD2 Required Optional Optional Required
Deville-1 Required Required Optional
Deville-2 Required Required Optional
Deville-Tille Required Required Optional Required
Yates-Grundy Required
Horvitz-Thompson Required

See Also

See variance-estimators for a description of each variance estimator.

For a two-phase design, the function make_twophase_quad_form combines the quadratic form ma-
trix from each phase.

Examples

## Not run:
# Example 1: The Horvitz-Thompson Estimator

library(survey)
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data("election", package = "survey")

ht_quad_form_matrix <- make_quad_form_matrix(variance_estimator = "Horvitz-Thompson",
joint_probs = election_jointprob)

##_ Produce variance estimate
wtd_y <- as.matrix(election_pps$wt * election_pps$Bush)
t(wtd_y) %*% ht_quad_form_matrix %*% wtd_y

##_ Compare against result from 'survey' package
svytotal(x = ~ Bush,

design = svydesign(data=election_pps,
variance = "HT",
pps = ppsmat(election_jointprob),
ids = ~ 1, fpc = ~ p)) |> vcov()

# Example 2: Stratified multistage Sample ----

data("mu284", package = 'survey')
multistage_srswor_design <- svydesign(data = mu284,

ids = ~ id1 + id2,
fpc = ~ n1 + n2)

multistage_srs_quad_form <- make_quad_form_matrix(
variance_estimator = "Stratified Multistage SRS",
cluster_ids = mu284[,c('id1', 'id2')],
strata_ids = matrix(1, nrow = nrow(mu284), ncol = 2),
strata_pop_sizes = mu284[,c('n1', 'n2')]

)

wtd_y <- as.matrix(weights(multistage_srswor_design) * mu284$y1)
t(wtd_y) %*% multistage_srs_quad_form %*% wtd_y

##_ Compare against result from 'survey' package
svytotal(x = ~ y1, design = multistage_srswor_design) |> vcov()

# Example 3: Successive-differences estimator ----

data('library_stsys_sample', package = 'svrep')

sd1_quad_form <- make_quad_form_matrix(
variance_estimator = 'SD1',
cluster_ids = library_stsys_sample[,'FSCSKEY',drop=FALSE],
strata_ids = library_stsys_sample[,'SAMPLING_STRATUM',drop=FALSE],
strata_pop_sizes = library_stsys_sample[,'STRATUM_POP_SIZE',drop=FALSE],
sort_order = library_stsys_sample[['SAMPLING_SORT_ORDER']]

)

wtd_y <- as.matrix(library_stsys_sample[['TOTCIR']] /
library_stsys_sample$SAMPLING_PROB)

wtd_y[is.na(wtd_y)] <- 0

t(wtd_y) %*% sd1_quad_form %*% wtd_y
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# Example 4: Deville estimators ----

data('library_multistage_sample', package = 'svrep')

deville_quad_form <- make_quad_form_matrix(
variance_estimator = 'Deville-1',
cluster_ids = library_multistage_sample[,c("PSU_ID", "SSU_ID")],
strata_ids = cbind(rep(1, times = nrow(library_multistage_sample)),

library_multistage_sample$PSU_ID),
probs = library_multistage_sample[,c("PSU_SAMPLING_PROB",

"SSU_SAMPLING_PROB")]
)

## End(Not run)

make_rwyb_bootstrap_weights

Create bootstrap replicate weights for a general survey design, using
the Rao-Wu-Yue-Beaumont bootstrap method

Description

Creates bootstrap replicate weights for a multistage stratified sample design using the method of
Beaumont and Émond (2022), which is a generalization of the Rao-Wu-Yue bootstrap.

The design may have different sampling methods used at different stages. Each stage of sampling
may potentially use unequal probabilities (with or without replacement) and may potentially use
Poisson sampling.

Usage

make_rwyb_bootstrap_weights(
num_replicates = 100,
samp_unit_ids,
strata_ids,
samp_unit_sel_probs,
samp_method_by_stage = rep("PPSWOR", times = ncol(samp_unit_ids)),
allow_final_stage_singletons = TRUE,
output = "weights"

)

Arguments

num_replicates Positive integer giving the number of bootstrap replicates to create

samp_unit_ids Matrix or data frame of sampling unit IDs for each stage of sampling

strata_ids Matrix or data frame of strata IDs for each sampling unit at each stage of sam-
pling
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samp_unit_sel_probs

Matrix or data frame of selection probabilities for each sampling unit at each
stage of sampling.

samp_method_by_stage

A vector with length equal to the number of stages of sampling, correspond-
ing to the number of columns in samp_unit_ids. This describes the method of
sampling used at each stage. Each element should be one of the following:

• "SRSWOR" - Simple random sampling, without replacement
• "SRSWR" - Simple random sampling, with replacement
• "PPSWOR" - Unequal probabilities of selection, without replacement
• "PPSWR" - Unequal probabilities of selection, with replacement
• "Poisson" - Poisson sampling: each sampling unit is selected into the sam-

ple at most once, with potentially different probabilities of inclusion for
each sampling unit.

allow_final_stage_singletons

Logical value indicating whether to allow non-certainty singleton strata at the
final sampling stage (rather than throw an error message).
If TRUE, the sampling unit in a non-certainty singleton stratum will have its final-
stage adjustment factor calculated as if it was selected with certainty at the final
stage (i.e., its adjustment factor will be 1), and then its final bootstrap weight will
be calculated by combining this adjustment factor with its final-stage selection
probability.

output Either "weights" (the default) or "factors". Specifying output = "factors"
returns a matrix of replicate adjustment factors which can later be multiplied
by the full-sample weights to produce a matrix of replicate weights. Speci-
fying output = "weights" returns the matrix of replicate weights, where the
full-sample weights are inferred using samp_unit_sel_probs.

Details

Beaumont and Émond (2022) describe a general algorithm for forming bootstrap replicate weights
for multistage stratified samples, based on the method of Rao-Wu-Yue, with extensions to sampling
without replacement and use of unequal probabilities of selection (i.e., sampling with probability
proportional to size) as well as Poisson sampling. These methods are guaranteed to produce non-
negative replicate weights and provide design-unbiased and design-consistent variance estimates
for totals, for designs where sampling uses one or more of the following methods:

• "SRSWOR" - Simple random sampling, without replacement

• "SRSWR" - Simple random sampling, with replacement

• "PPSWR" - Unequal probabilities of selection, with replacement

• "Poisson" - Poisson sampling: each sampling unit is selected into the sample at most once,
with potentially different probabilities of inclusion for each sampling unit.

For designs where at least one stage’s strata have sampling without replacement with unequal prob-
abilities of selection ("PPSWOR"), the bootstrap method of Beaumont and Émond (2022) is guar-
anteed to produce nonnegative weights, but is not design-unbiased, since the method only approxi-
mates the joint selection probabilities which would be needed for unbiased estimation.
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Unless any stages use simple random sampling without replacement, the resulting bootstrap repli-
cate weights are guaranteed to all be strictly positive, which may be useful for calibration or analyses
of domains with small sample sizes. If any stages use simple random sampling without replacement,
it is possible for some replicate weights to be zero.

If there is survey nonresponse, it may be useful to represent the response/nonresponse as an ad-
ditional stage of sampling, where sampling is conducted with Poisson sampling where each unit’s
"selection probability" at that stage is its response propensity (which typically has to be estimated).

Value

A matrix of with the same number of rows as samp_unit_ids and the number of columns equal to
the value of the argument num_replicates. Specifying output = "factors" returns a matrix of
replicate adjustment factors which can later be multiplied by the full-sample weights to produce a
matrix of replicate weights. Specifying output = "weights" returns the matrix of replicate weights,
where the full-sample weights are inferred using samp_unit_sel_probs.

References

Beaumont, J.-F.; Émond, N. (2022). "A Bootstrap Variance Estimation Method for Multistage
Sampling and Two-Phase Sampling When Poisson Sampling Is Used at the Second Phase." Stats,
5: 339–357. https://doi.org/10.3390/stats5020019

Rao, J.N.K.; Wu, C.F.J.; Yue, K. (1992). "Some recent work on resampling methods for complex
surveys." Surv. Methodol., 18: 209–217.

See Also

If the survey design can be accurately represented using svydesign, then it is easier to simply use
as_bootstrap_design with argument type = "Rao-Wu-Yue-Beaumont".

Use estimate_boot_reps_for_target_cv to help choose the number of bootstrap replicates.

Examples

## Not run:
library(survey)

# Example 1: A multistage sample with two stages of SRSWOR

## Load an example dataset from a multistage sample, with two stages of SRSWOR
data("mu284", package = 'survey')
multistage_srswor_design <- svydesign(data = mu284,

ids = ~ id1 + id2,
fpc = ~ n1 + n2)

## Create bootstrap replicate weights
set.seed(2022)
bootstrap_replicate_weights <- make_rwyb_bootstrap_weights(

num_replicates = 5000,
samp_unit_ids = multistage_srswor_design$cluster,
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strata_ids = multistage_srswor_design$strata,
samp_unit_sel_probs = multistage_srswor_design$fpc$sampsize /

multistage_srswor_design$fpc$popsize,
samp_method_by_stage = c("SRSWOR", "SRSWOR")

)

## Create a replicate design object with the survey package
bootstrap_rep_design <- svrepdesign(

data = multistage_srswor_design$variables,
repweights = bootstrap_replicate_weights,
weights = weights(multistage_srswor_design, type = "sampling"),
type = "bootstrap"

)

## Compare std. error estimates from bootstrap versus linearization
data.frame(

'Statistic' = c('total', 'mean', 'median'),
'SE (bootstrap)' = c(SE(svytotal(x = ~ y1, design = bootstrap_rep_design)),

SE(svymean(x = ~ y1, design = bootstrap_rep_design)),
SE(svyquantile(x = ~ y1, quantile = 0.5,

design = bootstrap_rep_design))),
'SE (linearization)' = c(SE(svytotal(x = ~ y1, design = multistage_srswor_design)),

SE(svymean(x = ~ y1, design = multistage_srswor_design)),
SE(svyquantile(x = ~ y1, quantile = 0.5,

design = multistage_srswor_design))),
check.names = FALSE

)

# Example 2: A single-stage sample selected with unequal probabilities, without replacement

## Load an example dataset of U.S. counties states with 2004 Presidential vote counts
data("election", package = 'survey')
pps_wor_design <- svydesign(data = election_pps,

pps = "overton",
fpc = ~ p, # Inclusion probabilities
ids = ~ 1)

## Create bootstrap replicate weights
set.seed(2022)
bootstrap_replicate_weights <- make_rwyb_bootstrap_weights(

num_replicates = 5000,
samp_unit_ids = pps_wor_design$cluster,
strata_ids = pps_wor_design$strata,
samp_unit_sel_probs = pps_wor_design$prob,
samp_method_by_stage = c("PPSWOR")

)

## Create a replicate design object with the survey package
bootstrap_rep_design <- svrepdesign(

data = pps_wor_design$variables,
repweights = bootstrap_replicate_weights,
weights = weights(pps_wor_design, type = "sampling"),
type = "bootstrap"
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)

## Compare std. error estimates from bootstrap versus linearization
data.frame(

'Statistic' = c('total', 'mean'),
'SE (bootstrap)' = c(SE(svytotal(x = ~ Bush, design = bootstrap_rep_design)),

SE(svymean(x = ~ I(Bush/votes),
design = bootstrap_rep_design))),

'SE (Overton\'s PPS approximation)' = c(SE(svytotal(x = ~ Bush,
design = pps_wor_design)),

SE(svymean(x = ~ I(Bush/votes),
design = pps_wor_design))),

check.names = FALSE
)

## End(Not run)

make_twophase_quad_form

Combine quadratic forms from each phase of a two phase design

Description

This function combines quadratic forms from each phase of a two phase design, so that the com-
bined variance of the entire two-phase sampling design can be estimated.

Usage

make_twophase_quad_form(
sigma_1,
sigma_2,
phase_2_joint_probs,
ensure_psd = TRUE

)

Arguments

sigma_1 The quadratic form for the first phase variance estimator, subsetted to only in-
clude cases selected in the phase two sample.

sigma_2 The quadratic form for the second phase variance estimator, conditional on the
selection of the first phase sample.

phase_2_joint_probs

The matrix of conditional joint inclusion probabilities for the second phase,
given the selected first phase sample.

ensure_psd If TRUE (the default), ensures that the result is a positive semidefinite matrix.
This is necessary if the quadratic form is used as an input for replication meth-
ods such as the generalized bootstrap. For details, see the help section entitled
"Ensuring the Result is Positive Semidefinite".
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Value

A quadratic form matrix that can be used to estimate the sampling variance from a two-phase sample
design.

Statistical Details

The two-phase variance estimator has a quadratic form matrix Σab given by:

Σab = W−1b (Σa′ ◦Db)W
−1
b + Σb

The first term estimates the variance contribution from the first phase of sampling, while the second
term estimates the variance contribution from the second phase of sampling.

The full quadratic form of the variance estimator is:

v(t̂y) =
˘̆
y

′
Σab

˘̆y

where the weighted variable ˘̆yk = yk
πakπbk

, is formed using the first phase inclusion probability,
denoted πak, and the conditional second phase inclusion probability (given the selected first phase
sample), denoted πbk.

The notation for this estimator is as follows:

• na denotes the first phase sample size.

• nb denotes the second phase sample size.

• Σa denotes the matrix of dimension na × na representing the quadratic form for the variance
estimator used for the full first-phase design.

• Σa′ denotes the matrix of dimension nb × nb formed by subsetting the rows and columns of
Σa to only include cases selected in the second-phase sample.

• Σb denotes the matrix of dimension nb × nb representing the Horvitz-Thompson estimator of
variance for the second-phase sample, conditional on the selected first-phase sample.

• Db denotes the nb × nb matrix of weights formed by the inverses of the second-phase joint
inclusion probabilities, with element kl equal to π−1bkl, where πbkl is the conditional probability
that units k and l are included in the second-phase sample, given the selected first-phase
sample. Note that this matrix will often not be positive semidefinite, and so the two-phase
variance estimator has a quadratic form which is not necessarily positive semidefinite.

• W b denotes the diagonal nb×nb matrix whose k-th diagonal entry is the second-phase weight
π−1bk , where πbk is the conditional probability that unit k is included in the second-phase sam-
ple, given the selected first-phase sample.

Ensuring the Result is Positive Semidefinite

Note that the matrix (Σa′ ◦Db) may not be positive semidefinite, since the matrix Db is not guar-
anteed to be positive semidefinite. If (Σa′ ◦Db) is found not to be positive semidefinite, then it is
approximated by the nearest positive semidefinite matrix in the Frobenius norm, using the method
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of Higham (1988).

This approximation is discussed by Beaumont and Patak (2012) in the context of forming repli-
cate weights for two-phase samples. The authors argue that this approximation should lead to only
a small overestimation of variance.

Since (Σa′ ◦ Db) is a real, symmetric matrix, this is equivalent to "zeroing out" negative eigen-
values. To be more precise, denote A = (Σa′ ◦Db). Then we can form the spectral decomposition
A = ΓΛΓ′, where Λ is the diagonal matrix whose entries are eigenvalues of A. The method of
Higham (1988) is to approximate A with Ã = ΓΛ+Γ′, where the ii-th entry of Λ+ is max(Λii, 0).

References

See Section 7.5 of Tillé (2020) or Section 9.3 of Särndal, Swensson, and Wretman (1992) for an
overview of variance estimation for two-phase sampling. In the case where the Horvitz-Thompson
variance estimator is used for both phases, the method used in this function is equivalent to equation
(9.3.8) of Särndal, Swensson, and Wretman (1992) and equation (7.7) of Tillé (2020). However,
this function can be used for any combination of first-phase and second-phase variance estimators,
provided that the joint inclusion probabilities from the second-phase design are available and are all
nonzero.

• Beaumont, Jean-François, and Zdenek Patak. (2012). “On the Generalized Bootstrap for Sam-
ple Surveys with Special Attention to Poisson Sampling: Generalized Bootstrap for Sample
Surveys.” International Statistical Review 80 (1): 127–48.

• Higham, N. J. (1988). "Computing a nearest symmetric positive semidefinite matrix." Linear
Algebra and Its Applications, 103, 103–118.

• Särndal, C.-E., Swensson, B., & Wretman, J. (1992). "Model Assisted Survey Sampling."
Springer New York.

• Tillé, Y. (2020). "Sampling and estimation from finite populations." (I. Hekimi, Trans.). Wiley.

See Also

For each phase of sampling, the function make_quad_form_matrix can be used to create the appro-
priate quadratic form matrix.

Examples

## Not run:

## ---------------------- Example 1 ------------------------##
## First phase is a stratified multistage sample ##
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## Second phase is a simple random sample ##
##----------------------------------------------------------##
data('library_multistage_sample', package = 'svrep')

# Load first-phase sample
twophase_sample <- library_multistage_sample

# Select second-phase sample
set.seed(2022)

twophase_sample[['SECOND_PHASE_SELECTION']] <- sampling::srswor(
n = 100,
N = nrow(twophase_sample)

) |> as.logical()

# Declare survey design
twophase_design <- twophase(

method = "full",
data = twophase_sample,
# Identify the subset of first-phase elements
# which were selected into the second-phase sample
subset = ~ SECOND_PHASE_SELECTION,
# Describe clusters, probabilities, and population sizes
# at each phase of sampling
id = list(~ PSU_ID + SSU_ID,

~ 1),
probs = list(~ PSU_SAMPLING_PROB + SSU_SAMPLING_PROB,

NULL),
fpc = list(~ PSU_POP_SIZE + SSU_POP_SIZE,

NULL)
)

# Get quadratic form matrix for the first phase design
first_phase_sigma <- get_design_quad_form(
design = twophase_design$phase1$full,
variance_estimator = "Stratified Multistage SRS"

)

# Subset to only include cases sampled in second phase

first_phase_sigma <- first_phase_sigma[twophase_design$subset,
twophase_design$subset]

# Get quadratic form matrix for the second-phase design
second_phase_sigma <- get_design_quad_form(
design = twophase_design$phase2,
variance_estimator = "Ultimate Cluster"

)

# Get second-phase joint probabilities
n <- twophase_design$phase2$fpc$sampsize[1,1]
N <- twophase_design$phase2$fpc$popsize[1,1]
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second_phase_joint_probs <- Matrix::Matrix((n/N)*((n-1)/(N-1)),
nrow = n, ncol = n)

diag(second_phase_joint_probs) <- rep(n/N, times = n)

# Get quadratic form for entire two-phase variance estimator
twophase_quad_form <- make_twophase_quad_form(
sigma_1 = first_phase_sigma,
sigma_2 = second_phase_sigma,
phase_2_joint_probs = second_phase_joint_probs

)

# Use for variance estimation

rep_factors <- make_gen_boot_factors(
Sigma = twophase_quad_form,
num_replicates = 500

)

library(survey)

combined_weights <- 1/twophase_design$prob

twophase_rep_design <- svrepdesign(
data = twophase_sample |>

subset(SECOND_PHASE_SELECTION),
type = 'other',
repweights = rep_factors,
weights = combined_weights,
combined.weights = FALSE,
scale = attr(rep_factors, 'scale'),
rscales = attr(rep_factors, 'rscales')

)

svymean(x = ~ LIBRARIA, design = twophase_rep_design)

## ---------------------- Example 2 ------------------------##
## First phase is a stratified systematic sample ##
## Second phase is nonresponse, modeled as Poisson sampling ##
##----------------------------------------------------------##

data('library_stsys_sample', package = 'svrep')

# Determine quadratic form for full first-phase sample variance estimator

full_phase1_quad_form <- make_quad_form_matrix(
variance_estimator = "SD2",
cluster_ids = library_stsys_sample[,'FSCSKEY',drop=FALSE],
strata_ids = library_stsys_sample[,'SAMPLING_STRATUM',drop=FALSE],
strata_pop_sizes = library_stsys_sample[,'STRATUM_POP_SIZE',drop=FALSE],
sort_order = library_stsys_sample$SAMPLING_SORT_ORDER

)
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# Identify cases included in phase two sample
# (in this example, respondents)

phase2_inclusion <- (
library_stsys_sample$RESPONSE_STATUS == "Survey Respondent"

)
phase2_sample <- library_stsys_sample[phase2_inclusion,]

# Estimate response propensities

response_propensities <- glm(
data = library_stsys_sample,
family = quasibinomial('logit'),
formula = phase2_inclusion ~ 1,
weights = 1/library_stsys_sample$SAMPLING_PROB

) |>
predict(type = "response",

newdata = phase2_sample)

# Estimate conditional joint inclusion probabilities for second phase

phase2_joint_probs <- outer(response_propensities, response_propensities)
diag(phase2_joint_probs) <- response_propensities

# Determine quadratic form for variance estimator of second phase
# (Horvitz-Thompson estimator for nonresponse modeled as Poisson sampling)

phase2_quad_form <- make_quad_form_matrix(
variance_estimator = "Horvitz-Thompson",
joint_probs = phase2_joint_probs

)

# Create combined quadratic form for entire design

twophase_quad_form <- make_twophase_quad_form(
sigma_1 = full_phase1_quad_form[phase2_inclusion, phase2_inclusion],
sigma_2 = phase2_quad_form,
phase_2_joint_probs = phase2_joint_probs

)

combined_weights <- 1/(phase2_sample$SAMPLING_PROB * response_propensities)

# Use for variance estimation

rep_factors <- make_gen_boot_factors(
Sigma = twophase_quad_form,
num_replicates = 500

)

library(survey)

twophase_rep_design <- svrepdesign(
data = phase2_sample,
type = 'other',
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repweights = rep_factors,
weights = combined_weights,
combined.weights = FALSE,
scale = attr(rep_factors, 'scale'),
rscales = attr(rep_factors, 'rscales')

)

svymean(x = ~ LIBRARIA, design = twophase_rep_design)

## End(Not run)

redistribute_weights Redistribute weight from one group to another

Description

Redistributes weight from one group to another: for example, from non-respondents to respondents.
Redistribution is conducted for the full-sample weights as well as each set of replicate weights.
This can be done separately for each combination of a set of grouping variables, for example to
implement a nonresponse weighting class adjustment.

Usage

redistribute_weights(design, reduce_if, increase_if, by)

Arguments

design A survey design object, created with either the survey or srvyr packages.
reduce_if An expression indicating which cases should have their weights set to zero.

Must evaluate to a logical vector with only values of TRUE or FALSE.
increase_if An expression indicating which cases should have their weights increased. Must

evaluate to a logical vector with only values of TRUE or FALSE.
by (Optional) A character vector with the names of variables used to group the

redistribution of weights. For example, if the data include variables named
"stratum" and "wt_class", one could specify by = c("stratum", "wt_class").

Value

The survey design object, but with updated full-sample weights and updated replicate weights. The
resulting survey design object always has its value of combined.weights set to TRUE.

References

See Chapter 2 of Heeringa, West, and Berglund (2017) or Chapter 13 of Valliant, Dever, and Kreuter
(2018) for an overview of nonresponse adjustment methods based on redistributing weights.

- Heeringa, S., West, B., Berglund, P. (2017). Applied Survey Data Analysis, 2nd edition. Boca
Raton, FL: CRC Press. "Applied Survey Data Analysis, 2nd edition." Boca Raton, FL: CRC Press.

- Valliant, R., Dever, J., Kreuter, F. (2018). "Practical Tools for Designing and Weighting Survey
Samples, 2nd edition." New York: Springer.
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Examples

# Load example data
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

rep_design <- as.svrepdesign(dclus1)

# Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

# Adjust weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = ue_adjusted_design,
reduce_if = response_status %in% c("Nonrespondent"),
increase_if = response_status == "Respondent",
by = c("stype")

)

rescale_reps Rescale replicate factors to have specified lower bound

Description

Rescale replicate factors to ensure that they all exceed a specified lower bound. The main use of
this rescaling is to ensure that all replicate weights are strictly positive.

Note that this rescaling has no impact on variance estimates for totals, but variance estimates for
nonlinear statistics will be affected by the rescaling.

Usage

rescale_reps(x, tau = "auto", min_wgt = 0.01, digits = 2)

Arguments

x Either a replicate survey design object, or a numeric matrix of replicate weights.
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tau Either "auto", or a single number. This is the rescaling constant used to avoid
negative weights through the transformation w+τ−1

τ , where w is the original
weight and τ is the rescaling constant tau.
If tau="auto", the rescaling factor is determined automatically as follows: if
all of the adjustment factors exceed the minimum value min_wgt, then tau is
set equal to 1; otherwise, tau is set to the smallest value needed to rescale the
adjustment factors such that they are all at least min_wgt.

min_wgt Only used if tau='auto'. Specifies the minimum acceptable value for the
rescaled weights. Must be at least zero and must be less than one.

digits Only used if tau='auto'. Specifies the number of decimal places to use for
choosing tau. Using a smaller number of digits is useful simply for producing
easier-to-read documentation.

Details

Let A =
[
a(1) · · ·a(b) · · ·a(B)

]
denote the (n×B) matrix of replicate adjustment factors. To elim-

inate negative adjustment factors, Beaumont and Patak (2012) propose forming a rescaled matrix
of nonnegative replicate factors AS by rescaling each adjustment factor a(b)k as follows:

a
S,(b)
k =

a
(b)
k + τ − 1

τ

where τ ≥ 1− a(b)k ≥ 1 for all k in {1, . . . , n} and all b in {1, . . . , B}.
The value of τ can be set based on the realized adjustment factor matrix A or by choosing τ prior to
generating the adjustment factor matrix A so that τ is likely to be large enough to prevent negative
adjustment factors.

If the adjustment factors are rescaled in this manner, it is important to adjust the scale factor used
in estimating the variance with the bootstrap replicates. For example, for bootstrap replicates, the
adjustment factor becomes τ2

B instead of 1
B .

Prior to rescaling: vB
(
T̂y

)
=

1

B

B∑
b=1

(
T̂ ∗(b)y − T̂y

)2

After rescaling: vB
(
T̂y

)
=
τ2

B

B∑
b=1

(
T̂S∗(b)y − T̂y

)2
Value

If the input is a numeric matrix, returns the rescaled matrix. If the input is a replicate survey design
object, returns an updated replicate survey design object.

For a replicate survey design object, results depend on whether the object has a matrix of replicate
factors rather than a matrix of replicate weights (which are the product of replicate factors and
sampling weights). If the design object has combined.weights=FALSE, then the replication factors
are adjusted. If the design object has combined.weights=TRUE, then the replicate weights are
adjusted. It is strongly recommended to only use the rescaling method for replication factors rather
than the weights.



rescale_reps 67

For a replicate survey design object, the scale element of the design object will be updated appro-
priately, and an element tau will also be added. If the input is a matrix instead of a survey design
object, the result matrix will have an attribute named tau which can be retrieved using attr(x,
'tau').

References

This method was suggested by Fay (1989) for the specific application of creating replicate factors
using his generalized replication method. Beaumont and Patak (2012) provided an extended discus-
sion on this rescaling method in the context of creating generalized bootstrap weights. The notation
used in this documentation is taken from Beaumont and Patak (2012).

- Beaumont, Jean-François, and Zdenek Patak. 2012. "On the Generalized Bootstrap for Sample
Surveys with Special Attention to Poisson Sampling: Generalized Bootstrap for Sample Surveys."
International Statistical Review 80 (1): 127–48. https://doi.org/10.1111/j.1751-5823.2011.00166.x.

- Fay, Robert. 1989. "Theory And Application Of Replicate Weighting For Variance Calculations."
In, 495–500. Alexandria, VA: American Statistical Association. http://www.asasrms.org/Proceedings/papers/1989_033.pdf

Examples

# Example 1: Rescaling a matrix of replicate weights

rep_wgts <- matrix(
c(1.69742746694909, -0.230761178913411, 1.53333377634192,

0.0495043413294782, 1.81820367441039, 1.13229198793703,
1.62482013925955, 1.0866133494029, 0.28856654131668,
0.581930729719006, 0.91827012312825, 1.49979905894482,
1.26281337410693, 1.99327362761477, -0.25608700039304),

nrow = 3, ncol = 5
)

rescaled_wgts <- rescale_reps(rep_wgts, tau = 'auto', min_wgt = 0.01)

print(rep_wgts)
print(rescaled_wgts)

# Example 2: Rescaling replicate weights of a survey design object
set.seed(2023)
library(survey)
data('mu284', package = 'survey')

## First create a bootstrap design object
svy_design_object <- svydesign(

data = mu284,
ids = ~ id1 + id2,
fpc = ~ n1 + n2

)

boot_design <- as_gen_boot_design(
design = svy_design_object,
variance_estimator = "Stratified Multistage SRS",
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replicates = 5, tau = 1
)

## Rescale the weights
rescaled_boot_design <- boot_design |>

rescale_reps(tau = 'auto', min_wgt = 0.01)

boot_wgts <- weights(boot_design, "analysis")
rescaled_boot_wgts <- weights(rescaled_boot_design, 'analysis')

print(boot_wgts)
print(rescaled_boot_wgts)

stack_replicate_designs

Stack replicate designs, combining data and weights into a single ob-
ject

Description

Stack replicate designs: combine rows of data, rows of replicate weights, and the respective full-
sample weights. This can be useful when comparing estimates before and after a set of adjustments
made to the weights. Another more delicate application is when combining sets of replicate weights
from multiple years of data for a survey, although this must be done carefully based on guidance
from a data provider.

Usage

stack_replicate_designs(..., .id = "Design_Name")

Arguments

... Replicate-weights survey design objects to combine. These can be supplied in
one of two ways.

• Option 1 - A series of design objects, for example 'adjusted' = adjusted_design,
'orig' = orig_design.

• Option 2 - A list object containing design objects, for example list('nr'
= nr_adjusted_design, 'ue' = ue_adjusted_design).

All objects must have the same specifications for type, rho, mse, scales, and
rscales.

.id A single character value, which becomes the name of a new column of identifiers
created in the output data to link each row to the design from which it was taken.
The labels used for the identifiers are taken from named arguments.
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Value

A replicate-weights survey design object, with class svyrep.design and svyrep.stacked. The
resulting survey design object always has its value of combined.weights set to TRUE.

Examples

# Load example data, creating a replicate design object
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

orig_rep_design <- as.svrepdesign(dclus1)

# Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = orig_rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

# Adjust weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = ue_adjusted_design,
reduce_if = response_status %in% c("Nonrespondent"),
increase_if = response_status == "Respondent",
by = c("stype")

)

# Stack the three designs, using any of the following syntax options
stacked_design <- stack_replicate_designs(orig_rep_design, ue_adjusted_design, nr_adjusted_design,

.id = "which_design")
stacked_design <- stack_replicate_designs('original' = orig_rep_design,

'unknown eligibility adjusted' = ue_adjusted_design,
'nonresponse adjusted' = nr_adjusted_design,
.id = "which_design")

list_of_designs <- list('original' = orig_rep_design,
'unknown eligibility adjusted' = ue_adjusted_design,
'nonresponse adjusted' = nr_adjusted_design)

stacked_design <- stack_replicate_designs(list_of_designs, .id = "which_design")

summarize_rep_weights Summarize the replicate weights

Description

Summarize the replicate weights of a design
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Usage

summarize_rep_weights(rep_design, type = "both", by)

Arguments

rep_design A replicate design object, created with either the survey or srvyr packages.
type Default is "both". Use type = "overall", for an overall summary of the repli-

cate weights. Use type = "specific" for a summary of each column of repli-
cate weights, with each column of replicate weights summarized in a given row
of the summary.

Use type = "both" for a list containing both summaries, with the list containing
the names "overall" and "both".

by (Optional) A character vector with the names of variables used to group the
summaries.

Value

If type = "both" (the default), the result is a list of data frames with names "overall" and "specific".
If type = "overall", the result is a data frame providing an overall summary of the replicate
weights.

The contents of the "overall" summary are the following:

• "nrows": Number of rows for the weights
• "ncols": Number of columns of replicate weights
• "degf_svy_pkg": The degrees of freedom according to the survey package in R
• "rank": The matrix rank as determined by a QR decomposition
• "avg_wgt_sum": The average column sum
• "sd_wgt_sums": The standard deviation of the column sums
• "min_rep_wgt": The minimum value of any replicate weight
• "max_rep_wgt": The maximum value of any replicate weight

If type = "specific", the result is a data frame providing a summary of each column of replicate
weights, with each column of replicate weights described in a given row of the data frame. The
contents of the "specific" summary are the following:

• "Rep_Column": The name of a given column of replicate weights. If columns are unnamed,
the column number is used instead

• "N": The number of entries
• "N_NONZERO": The number of nonzero entries
• "SUM": The sum of the weights
• "MEAN": The average of the weights
• "CV": The coefficient of variation of the weights (standard deviation divided by mean)
• "MIN": The minimum weight
• "MAX": The maximum weight
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Examples

# Load example data
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

rep_design <- as.svrepdesign(dclus1)

# Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

# Summarize replicate weights

summarize_rep_weights(rep_design, type = "both")

# Summarize replicate weights by grouping variables

summarize_rep_weights(ue_adjusted_design, type = 'overall',
by = c("response_status"))

summarize_rep_weights(ue_adjusted_design, type = 'overall',
by = c("stype", "response_status"))

# Compare replicate weights

rep_wt_summaries <- lapply(list('original' = rep_design,
'adjusted' = ue_adjusted_design),

summarize_rep_weights,
type = "overall")

print(rep_wt_summaries)

svyby_repwts Compare survey statistics calculated separately from different sets of
replicate weights

Description

A modified version of the svyby() function from the survey package. Whereas svyby() calcu-
lates statistics separately for each subset formed by a specified grouping variable, svyby_repwts()
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calculates statistics separately for each replicate design, in addition to any additional user-specified
grouping variables.

Usage

svyby_repwts(
rep_designs,
formula,
by,
FUN,
...,
deff = FALSE,
keep.var = TRUE,
keep.names = TRUE,
verbose = FALSE,
vartype = c("se", "ci", "ci", "cv", "cvpct", "var"),
drop.empty.groups = TRUE,
return.replicates = FALSE,
na.rm.by = FALSE,
na.rm.all = FALSE,
multicore = getOption("survey.multicore")

)

Arguments

rep_designs The replicate-weights survey designs to be compared. Supplied either as:

• A named list of replicate-weights survey design objects, for example list('nr'
= nr_adjusted_design, 'ue' = ue_adjusted_design).

• A ’stacked’ replicate-weights survey design object created by stack_replicate_designs().

The designs must all have the same number of columns of replicate weights, of
the same type (bootstrap, JKn, etc.)

formula A formula specifying the variables to pass to FUN

by A formula specifying factors that define subsets

FUN A function taking a formula and survey design object as its first two arguments.
Usually a function from the survey package, such as svytotal or svymean.

... Other arguments to FUN

deff A value of TRUE or FALSE, indicating whether design effects should be estimated
if possible.

keep.var A value of TRUE or FALSE. If FUN returns a svystat object, indicates whether to
extract standard errors from it.

keep.names Define row names based on the subsets

verbose If TRUE, print a label for each subset as it is processed.

vartype Report variability as one or more of standard error, confidence interval, coeffi-
cient of variation, percent coefficient of variation, or variance

drop.empty.groups

If FALSE, report NA for empty groups, if TRUE drop them from the output
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return.replicates

If TRUE, return all the replicates as the "replicates" attribute of the result. This
can be useful if you want to produce custom summaries of the estimates from
each replicate.

na.rm.by If true, omit groups defined by NA values of the by variables

na.rm.all If true, check for groups with no non-missing observations for variables defined
by formula and treat these groups as empty

multicore Use multicore package to distribute subsets over multiple processors?

Value

An object of class "svyby": a data frame showing the grouping factors and results of FUN for each
combination of the grouping factors. The first grouping factor always consists of indicators for
which replicate design was used for an estimate.

Examples

## Not run:
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

orig_rep_design <- as.svrepdesign(dclus1)

# Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = orig_rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

# Adjust weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = ue_adjusted_design,
reduce_if = response_status %in% c("Nonrespondent"),
increase_if = response_status == "Respondent",
by = c("stype")

)

# Compare estimates from the three sets of replicate weights

list_of_designs <- list('original' = orig_rep_design,
'unknown eligibility adjusted' = ue_adjusted_design,
'nonresponse adjusted' = nr_adjusted_design)

##_ First compare overall means for two variables
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means_by_design <- svyby_repwts(formula = ~ api00 + api99,
FUN = svymean,
rep_design = list_of_designs)

print(means_by_design)

##_ Next compare domain means for two variables
domain_means_by_design <- svyby_repwts(formula = ~ api00 + api99,

by = ~ stype,
FUN = svymean,
rep_design = list_of_designs)

print(domain_means_by_design)

# Calculate confidence interval for difference between estimates

ests_by_design <- svyby_repwts(rep_designs = list('NR-adjusted' = nr_adjusted_design,
'Original' = orig_rep_design),

FUN = svymean, formula = ~ api00 + api99)

differences_in_estimates <- svycontrast(stat = ests_by_design, contrasts = list(
'Mean of api00: NR-adjusted vs. Original' = c(1,-1,0,0),
'Mean of api99: NR-adjusted vs. Original' = c(0,0,1,-1)

))

print(differences_in_estimates)

confint(differences_in_estimates, level = 0.95)

## End(Not run)

variance-estimators Variance Estimators

Description

This help page describes variance estimators which are commonly used for survey samples. These
variance estimators can be used as the basis of the generalized replication methods, implemented
with the functions as_fays_gen_rep_design(), as_gen_boot_design(), make_fays_gen_rep_factors(),
or make_gen_boot_factors()

Shared Notation

Let s denote the selected sample of size n, with elements i = 1, . . . , n. Element i in the sample
had probability πi of being included in the sample. The pair of elements ij was sampled with
probability πij .

The population total for a variable is denoted Y =
∑
i∈U yi, and the Horvitz-Thompson estimator

for Ŷ is denoted Ŷ =
∑
i∈s yi/πi. For convenience, we denote y̆i = yi/πi.

The true sampling variance of Ŷ is denoted V (Ŷ ), while an estimator of this sampling variance is
denoted v(Ŷ ).
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Horvitz-Thompson

The Horvitz-Thompson variance estimator:

v(Ŷ ) =
∑
i∈s

∑
j∈s

(1− πiπj
πij

)
yi
πi

yj
πj

Yates-Grundy

The Yates-Grundy variance estimator:

v(Ŷ ) = −1

2

∑
i∈s

∑
j∈s

(1− πiπj
πij

)(
yi
πi
− yj
πj

)2

Poisson Horvitz-Thompson

The Poisson Horvitz-Thompson variance estimator is simply the Horvitz-Thompson variance es-
timator, but where πij = πi × πj , which is the case for Poisson sampling.

Stratified Multistage SRS

The Stratified Multistage SRS variance estimator is the recursive variance estimator proposed by
Bellhouse (1985) and used in the ’survey’ package’s function svyrecvar. In the case of simple
random sampling without replacement (with one or more stages), this estimator exactly matches
the Horvitz-Thompson estimator.

The estimator can be used for any number of sampling stages. For illustration, we describe its use
for two sampling stages.

v(Ŷ ) = V̂1 + V̂2

where

V̂1 =

H∑
h=1

(1− nh
Nh

)
nh

nh − 1

nh∑
i=1

(yhi. − ȳhi.)2

and

V̂2 =

H∑
h=1

nh
Nh

nh∑
i=1

vhi(yhi.)

where nh is the number of sampled clusters in stratum h, Nh is the number of population clusters
in stratum h, yhi. is the weighted cluster total in cluster i of stratum h, ȳhi. is the mean weighted
cluster total of stratum h, (ȳhi. = 1

nh

∑nh

i=1 yhi.), and vhi(yhi.) is the estimated sampling variance
of yhi..
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Ultimate Cluster

The Ultimate Cluster variance estimator is simply the stratified multistage SRS variance estimator,
but ignoring variances from later stages of sampling.

v(Ŷ ) = V̂1

This is the variance estimator used in the ’survey’ package when the user specifies option(survey.ultimate.cluster
= TRUE) or uses svyrecvar(..., one.stage = TRUE). When the first-stage sampling fractions are
small, analysts often omit the finite population corrections (1− nh

Nh
) when using the ultimate cluster

estimator.

SD1 and SD2 (Successive Difference Estimators)

The SD1 and SD2 variance estimators are "successive difference" estimators sometimes used for
systematic sampling designs. Ash (2014) describes each estimator as follows:

v̂SD1(Ŷ ) =
(

1− n

N

) n

2(n− 1)

n∑
k=2

(y̆k − y̆k−1)
2

v̂SD2(Ŷ ) =
(

1− n

N

) 1

2

[
n∑
k=2

(y̆k − y̆k−1)
2

+ (y̆n − y̆1)
2

]
where y̆k = yk/πk is the weighted value of unit k with selection probability πk. The SD1 estima-
tor is recommended by Wolter (1984). The SD2 estimator is the basis of the successive difference
replication estimator commonly used for systematic sampling designs and is more conservative.
See Ash (2014) for details.

For multistage samples, SD1 and SD2 are applied to the clusters at each stage, separately by stra-
tum. For later stages of sampling, the variance estimate from a stratum is multiplied by the product
of sampling fractions from earlier stages of sampling. For example, at a third stage of sampling,
the variance estimate from a third-stage stratum is multiplied by n1

N1

n2

N2
, which is the product of

sampling fractions from the first-stage stratum and second-stage stratum.

Deville 1 and Deville 2

The "Deville-1" and "Deville-2" variance estimators are clearly described in Matei and Tillé
(2005), and are intended for designs that use fixed-size, unequal-probability random sampling with-
out replacement. These variance estimators have been shown to be effective for designs that use
a fixed sample size with a high-entropy sampling method. This includes most PPSWOR sampling
methods, but unequal-probability systematic sampling is an important exception.

These variance estimators take the following form:

v̂(Ŷ ) =

n∑
i=1

ci(y̆i −
1∑n
i=k ck

n∑
k=1

cky̆k)2

where y̆i = yi/πi is the weighted value of the the variable of interest, and ci depend on the method
used:
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• "Deville-1":
ci = (1− πi)

n

n− 1

• "Deville-2":

ci = (1− πi)

[
1−

n∑
k=1

(
1− πk∑n

k=1(1− πk)

)2
]−1

In the case of simple random sampling without replacement (SRSWOR), these estimators are both
identical to the usual stratified multistage SRS estimator (which is itself a special case of the
Horvitz-Thompson estimator).

For multistage samples, "Deville-1" and "Deville-2" are applied to the clusters at each stage, sepa-
rately by stratum. For later stages of sampling, the variance estimate from a stratum is multiplied
by the product of sampling probabilities from earlier stages of sampling. For example, at a third
stage of sampling, the variance estimate from a third-stage stratum is multiplied by π1 × π(2|1),
where π1 is the sampling probability of the first-stage unit and π(2|1) is the sampling probability of
the second-stage unit within the first-stage unit.

Deville-Tillé

See Section 6.8 of Tillé (2020) for more detail on this estimator, including an explanation of its
quadratic form. See Deville and Tillé (2005) for the results of a simulation study comparing this
and other alternative estimators for balanced sampling.

The estimator can be written as follows:

v(Ŷ ) =
∑
k∈S

ck
π2
k

(yk − ŷ∗k)
2
,

where

ŷ∗k = z>k

(∑
`∈S

c`
z`z
′
`

π2
`

)−1∑
`∈S

c`
z`y`
π2
`

and zk denotes the vector of auxiliary variables for observation k included in sample S, with inclu-
sion probability πk. The value ck is set to n

n−q (1− πk), where n is the number of observations and
q is the number of auxiliary variables.

References

Ash, S. (2014). "Using successive difference replication for estimating variances." Survey Method-
ology, Statistics Canada, 40(1), 47–59.

Bellhouse, D.R. (1985). "Computing Methods for Variance Estimation in Complex Surveys." Jour-
nal of Official Statistics, Vol.1, No.3.

Deville, J.-C., and Tillé, Y. (2005). "Variance approximation under balanced sampling." Journal
of Statistical Planning and Inference, 128, 569–591.

Tillé, Y. (2020). "Sampling and estimation from finite populations." (I. Hekimi, Trans.). Wiley.

Matei, Alina, and Yves Tillé. (2005). “Evaluation of Variance Approximations and Estimators in
Maximum Entropy Sampling with Unequal Probability and Fixed Sample Size.” Journal of Official
Statistics, 21(4):543–70.



Index

∗ datasets
libraries, 38
lou_pums_microdata, 40
lou_vax_survey, 41
lou_vax_survey_control_totals, 42

∗ libraries
libraries, 38

as_bootstrap_design, 2, 56
as_data_frame_with_weights, 6
as_fays_gen_rep_design, 7, 74
as_gen_boot_design, 5, 11, 74
as_random_group_jackknife_design, 17

bootweights, 4

cal.linear, 22, 25
cal.logit, 22, 25
cal.raking, 22, 25
calibrate, 22, 25, 26
calibrate_to_estimate, 21
calibrate_to_sample, 25

estimate_boot_reps_for_target_cv, 4, 15,
28, 32, 56

estimate_boot_sim_cv, 30, 31

get_design_quad_form, 33
get_nearest_psd_matrix, 9, 13, 36, 38
grake, 22, 25, 26

hadamard, 44

is_psd_matrix, 37

libraries, 38
library_census (libraries), 38
library_multistage_sample (libraries),

38
library_stsys_sample (libraries), 38
lou_pums_microdata, 40

lou_vax_survey, 41
lou_vax_survey_control_totals, 42

make_fays_gen_rep_factors, 9, 10, 43, 74
make_gen_boot_factors, 5, 16, 46, 74
make_quad_form_matrix, 10, 16, 49, 50, 60
make_rwyb_bootstrap_weights, 4, 54
make_twophase_quad_form, 10, 15, 34, 52,

58
mrbweights, 4

redistribute_weights, 64
rescale_reps, 9, 16, 44, 45, 65

set.seed, 23, 26, 44
stack_replicate_designs, 68
subbootweights, 4
summarize_rep_weights, 69
svrepdesign, 47
svyby_repwts, 71
svydesign, 56
svyrecvar, 75

variance-estimators, 8, 9, 12, 16, 34, 52, 74

78


	as_bootstrap_design
	as_data_frame_with_weights
	as_fays_gen_rep_design
	as_gen_boot_design
	as_random_group_jackknife_design
	calibrate_to_estimate
	calibrate_to_sample
	estimate_boot_reps_for_target_cv
	estimate_boot_sim_cv
	get_design_quad_form
	get_nearest_psd_matrix
	is_psd_matrix
	libraries
	lou_pums_microdata
	lou_vax_survey
	lou_vax_survey_control_totals
	make_fays_gen_rep_factors
	make_gen_boot_factors
	make_quad_form_matrix
	make_rwyb_bootstrap_weights
	make_twophase_quad_form
	redistribute_weights
	rescale_reps
	stack_replicate_designs
	summarize_rep_weights
	svyby_repwts
	variance-estimators
	Index

