The goal of ucminf is to provide an algorithm for
general-purpose unconstrained non-linear optimization. The algorithm is
of quasi-Newton type with BFGS updating of the inverse Hessian and soft
line search with a trust region type monitoring of the input to the line
search algorithm. The interface of ucminf is designed for easy
interchange with optim
You can install the development version of ucminf from GitHub with:
# install.packages("devtools")
::install_github("hdakpo/ucminf") devtools
library(ucminf)
# Rosenbrock Banana function
<- function(x) (1 - x[1])^2 + 100 * (x[2] - x[1]^2)^2
fR <- function(x) c(-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
gR 200 * (x[2] - x[1] * x[1]))
## Find minimum and show trace
<- ucminf(par = c(2,.5), fn = fR, gr = gR, control = list(trace = 1))
optRes #> neval = 1, F(x) = 1.2260e+03, max|g(x)| = 2.8020e+03
#> x = 2.0000e+00, 5.0000e-01
#> Line search: alpha = 1.0000e+00, dphi(0) =-2.8881e+03, dphi(1) =-1.4263e+02
#> neval = 2, F(x) = 1.0123e+01, max|g(x)| = 1.3111e+02
#> x = 1.0298e+00, 7.4237e-01
#> Line search: alpha = 1.0000e+00, dphi(0) =-3.1743e+01, dphi(1) = 1.0180e+01
#> neval = 3, F(x) = 1.7049e+00, max|g(x)| = 6.3969e+01
#> x = 1.2600e+00, 1.7155e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-2.5788e+00, dphi(1) =-5.6182e-01
#> neval = 4, F(x) = 1.1612e-01, max|g(x)| = 1.2343e+01
#> x = 1.2174e+00, 1.5083e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-1.5867e-01, dphi(1) = 1.2108e-02
#> neval = 5, F(x) = 4.2253e-02, max|g(x)| = 1.8638e+00
#> x = 1.2033e+00, 1.4449e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-1.1826e-03, dphi(1) =-3.2371e-04
#> neval = 6, F(x) = 4.1500e-02, max|g(x)| = 8.6681e-01
#> x = 1.2035e+00, 1.4474e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-5.9673e-04, dphi(1) =-4.7194e-04
#> neval = 7, F(x) = 4.0965e-02, max|g(x)| = 4.8839e-01
#> x = 1.2024e+00, 1.4456e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-3.9731e-03, dphi(1) =-2.3018e-03
#> neval = 8, F(x) = 3.7853e-02, max|g(x)| = 8.5215e-01
#> x = 1.1928e+00, 1.4254e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-8.0453e-03, dphi(1) =-6.3954e-03
#> neval = 9, F(x) = 3.0800e-02, max|g(x)| = 2.0990e+00
#> x = 1.1676e+00, 1.3685e+00
#> Line search: alpha = 8.2084e-01, dphi(0) =-4.4175e-02, dphi(1) = 1.8746e-02
#> neval = 11, F(x) = 4.8486e-03, max|g(x)| = 2.2862e+00
#> x = 1.0458e+00, 1.0884e+00
#> Line search: alpha = 3.8293e-01, dphi(0) =-4.8734e-03, dphi(1) = 4.6817e-04
#> neval = 13, F(x) = 4.0485e-03, max|g(x)| = 1.1863e+00
#> x = 1.0584e+00, 1.1177e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-6.4354e-04, dphi(1) =-5.6879e-04
#> neval = 14, F(x) = 3.4426e-03, max|g(x)| = 1.1238e+00
#> x = 1.0535e+00, 1.1074e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-4.7371e-03, dphi(1) =-1.0920e-03
#> neval = 15, F(x) = 6.1678e-04, max|g(x)| = 7.3075e-01
#> x = 1.0180e+00, 1.0347e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-7.9043e-04, dphi(1) =-2.5377e-04
#> neval = 16, F(x) = 1.0437e-04, max|g(x)| = 1.6394e-01
#> x = 1.0096e+00, 1.0189e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-1.8089e-04, dphi(1) =-1.8237e-05
#> neval = 17, F(x) = 5.8219e-06, max|g(x)| = 9.1455e-02
#> x = 1.0009e+00, 1.0016e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-1.3102e-05, dphi(1) = 2.0222e-06
#> neval = 18, F(x) = 2.9162e-07, max|g(x)| = 1.7185e-02
#> x = 1.0003e+00, 1.0007e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-5.9332e-07, dphi(1) = 1.1234e-08
#> neval = 19, F(x) = 1.2578e-10, max|g(x)| = 2.0751e-04
#> x = 9.9999e-01, 9.9998e-01
#> Line search: alpha = 1.0000e+00, dphi(0) =-2.5270e-10, dphi(1) = 1.1297e-12
#> neval = 20, F(x) = 3.5670e-15, max|g(x)| = 2.0836e-06
#> x = 1.0000e+00, 1.0000e+00
#> Line search: alpha = 1.0000e+00, dphi(0) =-7.1150e-15, dphi(1) =-1.8980e-17
#> Optimization has converged
#> Stopped by small gradient (grtol).
#> maxgradient laststep stepmax neval
#> 1.020598e-08 6.480989e-08 1.225000e-01 2.100000e+01